Foundations of the Theory of Groupoids and Groups

14. Generating decompositions

In: Otakar Bortivka (author): Foundations of the Theory of Groupoids and Groups. (English). Berlin:
VEB Deutscher Verlag der Wissenschaften, 1974. pp. 104--109.

Persistent URL: http://dml.cz/dmlcz/401553

Terms of use:

© VEB Deutscher Verlag der Wissenschaften, Berlin

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/401553
http://project.dml.cz

104 II. Groupoids

k = 1it is an automorphism of 3 and for £ = 0 an operator but not a meromor-
phic mapping of 3.

The simplest example of an automorphism of any groupoid & is the identical
mapping of &, the so-called identical automorphism of &.

13.6. Exercises

1. If any two elements of © are interchangeable, then their images under every deformation
of @ into @* are also interchangeable. The image of every Abelian groupoid is also Abelian.

2. If the product of a three-membered sequence of elements a, b, ¢ ¢ @ consists of a single
element, then the same holds for the sequence of images da, db, dc ¢ &* under any de-
formation d of & into &@*. The image of every associative groupoid under any deformation
is also associative.

3. If & is associative and has a center, then the image of the center under any deformation
of & onto @* lies in the center of G*.

4. The inverse image of a groupoidal subset of &* under a deformation of & onto &* need
not be groupoidal.

5. Every meromorphic mapping of a finite groupoid & is an automorphism of &.

6. For isomorphisms of the groupoids %, B, € the following statements are true: a) A ~ A
(reflexivity); b) A~ B yields B ~ A (symmetry); c) from Y ~ B, B ~ € there follows
A =~ € (transitivity).

7. It is left to the reader to give some examples of deformation himself.

14. Generating decompositions

14.1. Basic concepts

Suppose & is an arbitrary groupoid.

Definition. Any decomposition 4 in @& is called generating if there exists, to
any two-membered sequence of the elements @, b¢ A, an element ¢ € 4 such that
ab € .

As to the generating decompositions on the groupoid &, note that the greatest
decomposition G e, and the least decomposition Gy, are generating. Onevery grou-
poid there exist at least these two extreme generating decompositions.

The equivalence belonging to a generating decomposition (9.3) is usually called
a congruence.
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14.2, Deformation decompositions

Let &, &* denote arbitrary groupoids.

Suppose there exists a deformation d of @ onto &*. Since d is a mapping of ¢
onto G*, it determines a decomposition D on @, corresponding to d ; each element
@ of D consists of all the inverse d-images of an element a* ¢ @*. D is called the
deformation decomposition with regard to d or the decomposition corresponding (be-
longing) to the deformation d. Since d preserves the multiplications in both group-
oids, it may be expected that D is in a certain relationship with the multiplication
in ¢. Consider any two elements @, b € D. By the definition of D, there exist
elements a*, b* € @* such that @ (b) is the set of all inverse d-images of a* (b*). Con-
sider the product @b of @ and b. Each element ¢ € @b is the product of an element
a € @and anelement b € b and is, with respect to dc = dab = da . db = a*b*, an
d-inverse image of a*b*. Hencec is contained in that element ¢ ¢ D which consists
of the inverse images of a*b*. Thus we have verified that the relation @b — @ is
true, hence D is generating. Consequently, the decomposition of the groupoid @,
corresponding to any deformation of & onto another groupoid is generating.

14.3. Generating decompositions in groupoids
Let us now study the properties of generating decompositions in groupoids.

1. The sum of the elements of a generating decomposition. Let A denote a generating
decomposition in &.

The subset sA — @, that is to say, the subset of &, consisting of all the elements
contained in some element of 4, is groupoidal. Indeed, to any elements a, b € s4
there correspond elements @, b,¢ € 4 such thata € @, b € b, @ — ¢ whence ab € @b
‘< ¢ — 84 ; thus ab is an element of s4. The corresponding subgroupoid of & is
denoted by s%. It is evident that 4 is a generating decomposition on s.

2. Closures and intersections. Let B denote a groupoidal subset and 4, C be ge-
nerating decompositions in @.

If B nsC == 0, then the closure B c C and the intersection B n C are generating
decompositions in &. More generally: if sA n sC =@, then the closure A c C and
the intersection A r C are generating decompositions in ©.

Proof. The decomposition Bpax consisting of a single element B is obviously a
generating decompos1t10n in®.If BnsC =0, then By, nsC = @ and, further-
more, B c C = By ¢ C, B C = By, 1 C. Consequently, the second part of
the above statement is, in fact, a generalization of the first part and so it is only
the latter we have to prove.
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a) As there holds 4 ¢ € = s4 c C, it is sufficient to show that the decomposi-
tion s4 c C is generating. Consider any two elements ¢, ¢, € s4 ¢ C. Since the
decomposition C is generating, there exists an element ¢ € C' such that ¢, ¢, — @.
Choose two arbitrary points € $4 n ¢,y € SA n . Then we have xy € s4 .s4d
n %6, = sS4 n¢ whence SA n¢ == @. There follows ¢ € sd c C.

b)Let Z,5¢ A nC be arbitrary elements. By the definition of 4 n C
there exist elements @,, @, € 4 ; 6, ¢, € C suchthatZ = @, n ¢, § = @, n G,. Since
the decomposition 4 (C) is generating, there exists an element @ € 4 (¢ € C) such
that @,d, — @ (¢,¢, — €). So we have

T C @iy nte, canceAnC
and the proof is accomplished. v

Now let us add the following remarks:

If C lies on @, then the above assumption: B n sC == 0 is satisfied because sC
= @ > B and we have BnsC = B == J; the decomposition B n C then lies on
B. Hence every generating decomposition C' on & and a groupoidal subset B of &
uniquely determine two generating decompositions in &: B c C, C' n B; the for-
mer is a subset of C, the latter a decomposition on B.

In asimilar way, every pair of generating decompositions A4, C' in & of which,
e.g., C lies on ¢ determines two generating decompositionsin &: 4 ¢ 0, 4 n C;
the former is a part of C, the latter a decomposition on sA4.

Finally, if both 4 and C lie on @&, then A n C = (4, C) (3.5). We see that the
greatest common refinement of two generating decompositions lying on & is again gen-
erating (14.4.3).

3. Enforced coverings. Let again A, O stand for generating decompositions in @.
Suppose 4 = C ¢ 4,0 = A c C andlet B denote a common covering of 4 n sC,
and €' n s4 ; these decompositions obviously lie on the set s4 n sC. Let us, more-
over, consider the coverings 4, € of 4, C, enforced by B (4.1). 4 and C are coupled
and B is their intersection: 4 n ¢ = B.

We shall prove that if B is generating, then A and C are generating as well.

Proof. Suppose B is generating and show that, e.g., 4 has the same property.
To simplify the notation, put 4 = s4, ¢ = sC.

Let Uy, Uqdp € A so that d@,, @, are elements of 4 and U;(@; n C), Uy(@, n C)
elements of B. Since 4 is generating, there exists, to every product @d,, an ele-
ment @, € A suchthat @@, — @, whence even (@, n C) (@, n C) < @y, n C. As B is
generating as well, there exists an element (@ n C) € B such that

U1(@ n Q) . U@, n C) = UU,(@ n C) (@ n O) = Us(ds n C),

where @, denotes elements of A characterized by U,d; € 4. For each element
@, (G@,) to which the symbol U, (U,) applies we then have:

(@ 0 C) (@ n C) < (@12 n C) € Ual@s n C).
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But the intersections @, n C, @ n C' are elements of A r O lying on 4 n C. Conse-
quently, among the elements @; to which Uz applies there exists an element @
such that @, n C = d; n C and we have @,, = d@;. Hence there holds U;a,\,a,
< UiUsflie < Usdis € A and the proof is complete.

14.4. Generating decompositions on groupoids

Now we shall deal with generating decompositions on groupoids. The results will be
useful even in case of generating decompositions in groupoids because every
generating decomposition 4 in the e groupoid & is simultaneously a generatmg de-
composition on the subgroupoid s.

1. Local properties of coverings and refinements. Let A = B denote any two gener-
ating decompositions on .

Consider two arbitrary elements @,, @, ¢ 4. Since 4 is generating, there exists
an element @, ¢ 4 such that d,d, — @, Next, consider the decompositions in &:
a, n B, @y N B, 3 11 B. The latter represent, with regard to 4 = B, nonempty
parts of B.As Bis generating, there exists, to any pair of elements z € @, n B,je¢
d, n B, an element 7 € B such that ¥j — 2.

We shall show that Z is an element of G, n B, hence z € d@; n B.

Indeed, from & < @,, § < @,, @;d, < G, there follows T < d;. So we have zj
C % n @, whence, with respect to B < 4, there follows z — @, (3.2) and, conse-
quently, z € @ n B.

We observe, in particular, that if the subset @, = & is groupoidal, then @, n B
is a generating decomposition (14.3.2).

2. The least common covering. Let A, B stand for arbitrary generating decompo-
sitions on @.

We shall show that their least common covering [A, B] is generating as well.

To that purpose we shall consider an arbitrary ordered pair of elements ,
7 € [4, B]. We are to verify that there exists an element % € [4, B] such that
U < Ww.

Suppose @ € A and b € A4 are arbitrary elements lying in % and ¥, respective-
ly, and so @ = @, b — 7. Since 4 is generating, there exists an element ¢ € 4 such
that @b — ¢. The element ¢ lies in a certain element % € [4, B] and we have ¢ — w.

Every element p € @ lies in a certain element 7 € 4 which is a part of %; similarly,
every element ¢ € 7 liesin a certain element § € 4 which is a part of 3. Moreover,
the set 77 is a part of a certain element 7 € 4 and so pq € p§ — . From this we
see that all we need to prove that & — @ applies is to verify that the element
7 € A comprising the set 7§ is, for any two elements p,§ € 4, p = 4,7 =7,
a part of w, i.e., 7 = W.

Now, let p,§ € A, P < 4, § = ¥ denote arbitrary elements.
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Taking account of the definition of the decomposition 4, B and of the fact that
the elements a and b lie in % and @, respectively, we conclude that there exists a
binding {4, B} from @ to P,

dl? ooy da (Where d] = d, da = ?), (1)
and, similarly, a binding {4, B} from b to g,
b1y« e Eﬁ (where b, = b, Eﬂ = q). (2)

We may assume that 8 = « because if, for example, 8 < «, then it is sufficient to
denote the element by by the further symbols: bﬂﬂ, vees Do
Since 4 is generating, there exist elements of 4

Cis vves Gy (where ¢, = ¢, ¢, = ) (3)

such that @b, = ¢y, ..., @b, = . With respect to the definition of [4, B] and to
the fact that the element ¢ lies in w, the relation # — w will be proved by verifying
that the sequence (3) is a binding {4, B} from ¢ to 7.

Since (1) and (2) are bindings {4, B}, there exists to every two elements d,, G,.,
and, similarly, to every two elements b,, b,,; an element %, ¢ B and an element
§,€ B (v =1, ...,a — 1), respectively, incident with both. As B is generating,
there exists a certaln element z, € B for which #,j, < 2,. Since 7, and #, are inci-
dent with @, and b,, respectively, the set Z,7, is incident with @,b, ; consequently,
Z, is incident with @,b, and therefore also with ¢,. Analogously, we observe that
Z, is incident with ¢,,;. Hence every two elements g,, ¢,,; are incident with a cer-
tain element z, € B and, consequently, the sequence (3) is a binding {4, B} from
ctof.

3. The greatest common refinement. Let again A, B denote arbitrary generating
decompositions on .

Theorem. The greatest common refinement (A, B) of the decompositions A, B is
also generating.

This theorem has already been proved (in 14.3.2) on the ground of (4, B)
= A n B by verifying that the intersection 4 n B of the generating decom-
positions 4, B is also generating.

14.5. Exercises

1. Ifanelement @ ¢ A of a generating decomposition 4 in the groupoid & contains a grou-
poidal subset X — @ so that X — @, then the element @ is groupoidal as well.

2. Let & denote the groupoid whose field consists of all positive integers and whose multi-
plication is defined as follows: the product ab (a, b ¢ @) is the numbera, ... a, b, ... by,
where the numbers a,, ..., a, and by, ..., bﬂ are the digits of @ and b, respectively, in the
decimal system. Thus, for example, 14.23 = 1423. Show that: a) the groupoid & is asso-
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ciative; b) the decomposition of @, the elements of which are the sets of all the numbers
in @ expressed, in the decimal system, by symbols containing the same number of digits,
is generating.

3. The groupoid &, whose field is an arbitrary set and the multiplication given by ab = a
(ab = b) for @, b € &, is associative and all its decompositions are generating.

15. Factoroids

The notion of a factoroid we shall now be concerned with plays an important part
throughout the following theory.

15.1. Basic concepts

Let again A denote an arbitrary generating decomposition in ¢. With A we can
uniquely associate a groupoid denoted A and defined as follows: The field of A
is the decomposition 4 and the multiplication is defined in the following way: the
product of any element @ ¢ A and any element b € 4 is the element ¢ € A for which
@b < ¢. Then we generally write

_OB:_

and we have @b — @ o b ¢ A. We employ the symbol o to denote the products in
A in the same way as we use the symbol . to denote the products in .

A is called a factoroid in & ; if A is on ®, then it is a factoroid on & or a facto-
roid of &. Every generating decomposition in @ uniquely determines a certain
factoroid in &, namely the one whose field it is; we say that to every generating de-
composition in @& there corresponds or belongs a certain factoroid in @.

Note that on @ there exist at least two factoroids, namely the so-called great-
est factoroid, @jmx, belonging to the greatest generating decomposition G,y and the
least factoroid, ®y;,, belonging to the least generating decomposition G, of the
groupoid @. These extreme factoroids on & are either different from each other or
coincide according as @& contains more than one or precisely one element.
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