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22.4. Exercises 

1. The order of any group consisting of permutations of a finite set of orders is a divisor of nU 
2. In every finite Abelian group of order N the number of elements inverse of themselves is a 

divisor of N. 

23. Special decompositions of groups, generated by subgroups 

23.1. Semi-coupled and coupled left decompositions 

Consider the subgroups 21=) 3 3 , © I D ® of @. Their fields are denoted by A, B, O, D. 
We first ask under what conditions the left decompositions 2l/j33, ©/*® are semi-

coupled or coupled. 
Since the intersection A n B contains the unit of ® and therefore is not empty, 

it is obvious, with respect to 4.1, that the mentioned decompositions are semi-coup­
led if and only if 

a / l 8ne = g/ia)na. 

In accordance with 21.2.1, this may be written 

(21 n <£)/, (© n 33) = (21 n <£,)/, (8 n ©). 

This equality is evidently true if and only if 

« n © = ® n » . (1) 

Thus we have verified that the left decompositions 2t/j33, (£/|2) are semi-coupled 
if and only if the subgroups 21 n ®, © n 33 coincide, i.e., if 21 n % = © n 33. 

Now suppose the left decompositions 2t/|23, ©/j® are coupled. Then (by 4.1; 
20.3.2) we have, besides (1), even: 

A = (AnC)B} C=(Cf)A)D, 

from which it follows (19.7.8) that 21 n © is interchangeable with both 33 and % 
and so: 

2t = ($ n ©)33, © = (©n2t)®. (2) 

Conversely, if (1) and (2) simultaneously apply, then with respect to 4.1 and 
21.2.1, the left decompositions 2t/j33? (£/j3) are coupled. 
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Consequently, the left decompositions 2l/,», g/j® are coupled if and only if there 
simultaneously holds: 

9 l n 5 ) = 6 ; n » ; 

2C = (2t n g)» , <£ = (<£n«)5). 

23.2. The general five-group theorem 

Consider arbitrary subgroups tCr3»,©=33)of@J. 
Suppose the subgroups % n %, © n » are interchangeable. Moreover, let tt be 

a subgroup of & such that 

UndzDUzD(Un $)(<£ n ») 

and let 91 n (E and U be interchangeable with both » and ®. 

Then there holds the general five-group theorem: 

The left decompositions (% n S)» / , t t» , (© n Sl)®/,ttS) are coupled and there­
fore equivalent, whence 

(1 n <£)»/,»» £ ( 6 n H)$/,ttS>. 

Moreover, there holds: 

(1 n <£)» n tt® = tt = (6 n %)% n tt». (1) 

___ Proof. Denote « ' = (« n <£)», <T = (<£ n 1)® and, furthermore, 1 =_8T/,», 
C = <T/,©jrhen we have « ' ID » , g ' =D % and, moreover (20.3.2): A =C cA, 
C = A cC. 

Consider the decompositions: 

A n g ' = «7,» n <T = («' n <£')/,(<£' n ») = (« n <£)/,(<£ n » ) , 

C n « ' = ©7,® nW == (C n «')/.(«' n $) = (<£ n «)/,(« n ®) 

and apply the construction described in 4.1 and leading to the coupled coverings 
A, C of the decompositions A, C. 

The least common covering of A n (£', On 2V is the left decomposition 
(3t n <£)/,(9l n $)(<£ n » ) (21.5). The decomposition B = ( I n g)/,tt is, with respect 
to I H S D U D ( t [n®)(g n » ) , a covering of the least common covering of 
the decompositions 4 n S ' , O n f (21.3) and therefore a common covering 
of the latter. In_accordance with the mentioned construction, we now define the 
decomposition A (U) on A (C) as follows: Each element of A (C) is the set of all 
elements of A (C) that are incident with the same element of J5. Then thejmen-
tioned coupled coverings A, 6 are the coverings of A, C, enforced by A, U. 
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Now let U 6 A be an arbitrary element. 1 is the set of all elements a € A in­
cident with an element b £ B* Simultaneously we have b = xU where x 6 91 n © 
is a point of 91 n ©. Obviously, there holds U = xU c A and, moreover (with 
regard to 20.3.2), 

a = sa = # t t» € A. 

Thus we have verified that the elements of the decomposition A are the left 
cosets, generated by tt», of the points lying in 9( n @. The sum of these cosets 
is evidently (91 n g ) t t» = (« n <£)». Hence: 

i = (9tng)»/,tt». 

Analogously, we obtain C = (S n 3t)$)//tt®. It follows that the left decompo­
sitions (91 n (£)»/,U», ((£ n 9t)(S)/,ttD are coupled. In accordance with the second 
equivalence theorem (6.8), they are also equivalent. 

Moreover, (by 4.1) we have: A n 6 = B and therefore (by 2.3): 

( i n s C ) n (6 nsA) = B; 

furthermore, (by 4.1): 

A n sC = C n sA. 

Thus we have arrived at the formulae A n sC = C n sA = B or 

((9t n (£)» n ( | n 9t)®)/*(((X n 9t)$) n tt») 

= ((<£ n 91)® n (91 n <£)»)/,((« n <£)» n tt®) = (91 n <£)/,« 

from which (1) immediately follows. 

Remark . Under the same assumption there, naturally, holds an analogous 
statement about the right decompositions and so, in particular, 

(91 n <E)»/rtt» ~ (<£ n «)®/fUS). 

Especially for tt = (91 n ®)(S n » ) we have the general four-group theorem: 

Let % ZD » , &ZD % be arbitrary subgroups of @. Suppose that the subgroup 
% n % is interchangeable with © n » , the subgroups % n (£, 91 n % are interchangeable 
with » and © n 91, 6 n » with %. Then the left decompositions 

(91 n <£)»/,(« n $ ) » , (<£ n %)%ft(^ n » ) $ 

are coupled and therefore equivalent so that 

(91 n <£)»/i(8t n $ ) » ~ (<£ n «)©/,(<£ n »)©. 
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Moreover, there holds: 

(© n 8T)» n (<£ n »)® = (91 n ©)(g n S3) 

= («n(E)® n(2ln®)23. 

An analogous statement applies to the right decompositions and so we have, 
in particular, 

(% n <£)»/,(« n $)23 ~ ( g n «)<£>/,(<£ n 33)®. 

23.3. Adjoint left decompositions 

Let again 8t =D » , (£ =3 % be arbitrary subgroups of © and i D B , C ZD D 
their fields. 

Our object now is to find out the circumstances under which the left decompo­
sitions 81//», (£/|® are adjoint with respect to B, D. 

The question is answered by the following theorem: 
The left decompositions 91/,», %ft% are adjoint with respect to J5, D i/ awd ow% if 

the subgroups 9t n ®, @ n » are interchangeable. Then there holds: 

(9t n 3>)» n 6 = (g n »)$> n 91 = (91 n ©)(g n » ) . (1) 

Proof. By 2.6.5 we have 

D c «/,» n C = (D c «/ f») n O = D c («/,» n <£), 

J5 c SAD n i = (Bc ©//®) n i = , B c (<£/,$ n 91). 

(Consequently, with regard to 21.2.1, there holds: 

8(2) c «/,» n(J) = s(D c «/,») n (7 = s(D c (91 n <£,)/,(<£ n »)), 

s(B c <£/,£> n A) = 8(5 c <£/,$) n i = s ( B c ( i n 9t)/j(9t n %)) 

which (by 20.3.2) may be expressed in the form: 

s(D c «/,» n C) = (4 n D)B n (7 = (4 n D)(O n 5 ) , 

s(B c ©A® n i ) = ((Jn 5)D n A = (C n B)(A nD). 

a) Suppose 9l/j», (£/J® are adjoint with respect to B, D. Then we have, by (2), 

(A n D)(C n JB) = (C n 5)(Ji n D). 

We see that 21 n $), S n » are interchangeable. Consequently, the product 
(91 n 1))((S n » ) is a subgroup of @. Moreover, from (2) we conclude that the 
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field of this subgroup coincides with either of the sets (A n D)B n O, (C n B)D n A, 
a fact expressed by the formulae (1). Note that neither 31 n ®, 33 nor © n 33, 5) 
are necessarily interchangeable. 

b) Suppose the subgroups 9t n $>, © n 33 are interchangeable. Then, by (2), 
there holds s(D c St/*S3 n C) = s ( 5 c K / / 5 ) n i ) and we observe that the 
decompositions 31//93, ©/J® are adjoint with respect to B$ D. This accomplishes 
the proof. 

Analogously, for the right decompositions there holds: 

The right decompositions 3t/r33, ®/r® are adjoint if and only if the subgroups 
31 n ®, (£ n % are interchangeable. In that case: 

93(31 n %) n g = ®((£ n 33) n 31 = (31 n ©) (<£ n 33). 

23.4. Series of subgroups 

In this chapter we shall describe the properties of the series of subgroups on the 
basis of our theory of series of decompositions, developed in Chapter 10. This 
new theory will prove extremely useful in connection with invariant subgroups 
(24.6) considered in the classical theory of groups. 

1. Basic notions. Let 31 =D 33 denote arbitrary subgroups of O. By a series of 
subgroups of the group @, from 31 to 33, briefly, a series from 31 to 33, we mean a 
finite &(^!)-membered sequence of subgroups Sli, . . . , 3ta of (3J such that: a) The 
first and the last member of the sequence is 31 and 33, respectively, i.e., 3IX = 31, 
3la == 33; b) each subsequent member is a subgroup of the subgroup immediately 
preceding it, thus: 

( « = ) « ! =D St ID ...ZD « „ ( = » ) . 

Such a series is briefly denoted by (31). The subgroups 3t1?..., 3ta are the members 
of (31). Sli is the initial and 3l« the final member of (31). By the length of (31) we mean 
the number of its members. 

Each subgroup 31 of @, for example, is a series of length 1 whose initial as well 
as final member coincides with 31. 

Now let ((31) =-) %i => • • • =3 3ta be a series from 31 to 33. 
A member of (31) is called essential if it is either the initial member %t or a 

proper subgroup (19.4.1) of the member immediately preceding it; otherwise it 
is said to be inessential. If there occurs in (31) at least one inessential member 
St^j, then we say (since S^+1 = 3ly) that (31) is a series with iteration. If all the 
members of (3t) are essential, then (31) is a series without iteration. The number oc' 
of the essential members of (31) is the reduced length of (ft). Obviously, there holds: 
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1 ^ a ^ (x, where a = a, characterizes the series without iteration. Analo­
gously as in case of series of decompositions (10.1). (3t) may be reduced by 
omitting all the inessential members (if there are any) or lengthened by inserting 
further subgroups. The notion of a partial series or a part of (3t) does not need any 
further explanation. 

By a refinement of (31) we mean a series of subgroups of ® containing (3t) as 
its own part. Every refinement of (3t) has therefore the following form: 

3ti,i =D • • - =3 %.fil-i =3 %,h =3 3t2,i => • • • 

. . . =3 3tMa_! ZD 3t2j/Sa ZD . . . 3 «.,,„ -3 3ta+14 =3 . . . =3 8 U M , + 1 - 1 , 

where %YtpY = fty, y = 1, . . . , <%, and the symbols /?l5 . . .?l3a + 1 stand for positive 
integers; if /?d == 1, then the members $ 3 j l =D ••• =3 Sta,^-! are not read. 

2. Associated series of left and right decompositions. Let 

( («)= - )« . = ... = « . 

be a series of subgroups of @. 
Associate, with (3t), the following series of left and right decompositions: 

[(®ll^)=)®li^l^.-^ &/,%,, 

((&!&) =)®lr'Hl^-^®lr%i. 

Then we speak about series of left or right decompositions associated with or 
corresponding to (3t). I t is obvious that the series (@/j3t) or (@/f3t) is obtained by 
replacing each member 3ty (y -= 1, . . . , <x) of (3t) by ©/*%, or ®jr%Y, respectively. 

Consider, for example, the series of left decompositions (®/i%). In the same way 
we could, of course, consider the series of right decompositions (@/f3t). 

First, the statements set out below are evidently correct: 

The series (3() and (®/M) have the same length a. 

The series (3t) and (@//3t) are simultaneously without or with iteration and have 
the same reduced length a ( ^ <%). 

o 

The series of left decompositions (<S$//3t) associated with an arbitrary refinement 

(«) of (3t) is a refinement of (®h%). 
By means of the notion of associated series of left and right decompo­

sitions we may study the properties of the series of subgroups on the basis of the 
theory of the series of decompositions. All we have to do is to apply the consi­
derations relative to the series of decompositions to the series of subgroups. But 
we must make sure to apply only those properties as are common to both the left 
and the right decompositions. The importance of this remark will be realized later. 



23. Special decompositions of groups, generated by subgroups 175 

3. The manifold of local chains. Consider an arbitrary series (21) of subgroups 
of<U: 

((U)=)%ZD---ZD%a ( * ^ 1) 

and, furthermore, the corresponding series of left and right decompositions on (U: 

( ( ® / , « ) = ) ® / . « i ^ - - ^ ® / . * - . 

((©/,«) = )av - * i^ - - -^®/ -« . . 

We know that to each element a of (@/i3ta) or (@/r$[a), respectively, there 
corresponds a local chain of the series (®ji%) or (®jr%) with the base.a. The set 
of the local chains belonging to the individual elements of @/j8la or @/r5ta, respec­
tively, is the left or the right manifold of local chains corresponding to (9C). Notation: 
A\, Ar. 

Our object now is to study the relationship between Ax and Ar. 

First, let us remark that to every left or right coset a with regard to a subgroup 
of % there exists an inverse right or left coset ar1, respectively; or1 consists of 
all the points inverse of the individual points lying in a (20.2.8). 

Now consider two mutually inverse cosets a £ @//2la, a-1 6 ®/f9t« and the 
corresponding local chains of (d$//2t), ((&/M) with the bases a, ar1: 

( [Ka ]= )K 1 a~> . . - ^>K a a , 

([jf a-1] = ) Kid-1 - > . . . - > Kjar1. 

In the above formulae we have denoted the local chains [Ka], [Kar1] and their 
members Kyd, Kyarx by the same symbol K although the local chains or the 
members of the series (®jt%), (&jr%) in question are generally different from one 
another. This simplification cannot cause any confusion, since the notation of 
the local chains and their members differs in the symbols of the bases a, ar1. 
A similar simplification will be employed even in the further considerations. 

Let dy be an element of the decomposition %jt%y whose subset is a (y = 1,. . . , oc). 
Then the inverse coset df1 is an element of ®lr%y whose subset is ar1. There evi­
dently holds : 

dx ZD • • • ZD da (= a), df1
 ZD • • • ZD a-1 (= a-1) 

and, furthermore, 

dy = d%y, Kyd = dy n &li%y+t, 

dy^ = Uyd^ , Kyd"1 = dy^ D S/ r8,+ 1 (fc^l = W«) . 

Either of the decompositions Kyd, Kyd-1 is mapped, under the extended inver­
sion n of ©, onto the other (21.8.5) and sonKya = Kyd-1, nKrd-x = K7d. With 
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regard to this, any two members Kya, Kyar1 with the same index y ( = 1, ...3 a) 
are called mutually inverse; the same term is employed for the local chains [Ka], 
[Kar1]. Two mutually inverse members of [Ka] and [Kar1] are equivalent sets 
(21.8.5). 

I t is easy to verify that the manifolds of local chains, At, Ar, are strongly equi­
valent. 

Indeed, associating with every local chain [Ka] £ At its inverse: [Kar1] 6 Ar, 
we obtain a simple mapping / of the manifold At onto Ar. The mapping / is a 
strong equivalence because every two mutually inverse members of [Ka] and 
f[Kd] = [Kar1] are equivalent sets. 

4. Pairs of series of subgroups. Consider a pair of series of subgroups of ®: 

((*)=)«.--> . . .--. at. (* .>i ) , 

((S3) =)»•.=> . . . : = » , 0 8 ^ 1 ) . 

To (91) and (93) there correspond the following series of left decompositions 
o f ® : 

( (©/ ,«)=) ©/,«., .£••• 2: ©/,«. , 

( ( @ / . 8 ) = ) @ / , ® i ^ - . . ^ @ / , S , , 

and the left manifolds of local chains: Ah St. 
Analogously, to (21), (93) there belong the series of right decompositions of &: 

( ( ® / r H ) = ) ® / , B . ^ . . . 2 = @ / f « . , 

( ( @ / f » ) = ) ® / f » 1 ^ . . . ^ @ / r ® , 

and the right manifolds of local chains: AT, Br. 

Under these circumstances there applies the theorem: 

If the series (1) or (2) are in any of the following four relations, then the series (2) 
or (t), respectively, are in the same relation: The series (1) or (2), respectively, are 
a) complementary, b) chain-equivalent, c) loosely joint or co-basally loosely joint, 
d) joint or co-basally joint. 

Proof. Suppose, for example, that the series (1) are complementary. 
In that case each member ®li%fJt, of (®I$L) is complementary to each member 

®li^v of (®//93) (10.8); ju — 1, ..., a; v = 1 , . . . , /5. Consequently, each member 
%* of (%) is interchangeable with each member $6„ of (S3) (21.6). Obviously, even 
each member ®jr%fJL of (®jr%) is complementary to each member ®jrSBv of (®/rW) 
(21.6) so that the series (2) are complementary. 

Let us now assume that the series (1), for example, are in one of the relations 
b), c), d). Then the series (1), (2) and therefore even the series (91), ($8) have the 
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same length oc = (3 and in each of the mentioned cases there exists a simple 
mapping ft (strong equivalence, equivalence connected with loose coupling, 
equivalence connected with coupling) of the manifolds At onto Bt which may be 
co-basal. By means of ft we define a simple mapping/,, of Ar onto Br by way of 
associating, with each element [Ka] € Ar, the inverse local chain [Kar1] 6 At 

and, with [Ka], the local chain fr[Kd] = [Kb-1] £ Br inverse of f^Kar1] = [Kb] eBh 

If the mapping // is co-basal, then b = a-1 and therefore b~x = a; consequently 
even fr is co-basal. 

Now let [Ka], fr[Ka] = [Kb-1] be arbitrary elements of the manifolds Ar, Br, 
representing the inverse image and the image under the mapping fr, respectively. 
Consider the corresponding inverse local chains [Ka-1] £ A^f&Kar1] = [Kb] £ Bt: 

([Kar1] =) K1a-1 ~> > KaeH, 

([Kb]=) E1b ~> >Kab. 

Since the series (1) are in one of the relations b), c), d), there exists a permuta­
tion p of the set {1, . . . , a] such that every two members Kydr1, Kdb of the local 
chains [Ka-1], [Kb] are equivalent or loosely coupled or coupled decompositions 
in ©; at the same time d = py. Let us apply the permutation p to the local 
chains [Ka] £ Ar, fr[Ka] = [Kb"1] € Br by associating, with each member Kya of 
the first local chain, the member K^b"1 of the second. Every pair of such members 
Kyd, Kjb~x represents decompositions in @ that are inverse of the equivalent or 
loosely coupled or coupled decompositions Kydr1, K&b. Hence even Kyd, Kdb~x are 
equivalent or loosely coupled or coupled (7.3.4) and the proof is complete. 

The symmetry we have just verified in the relations between the series of the 
left and the right decompositions corresponding to the series (91), (»), respectively, 
leads to the following definition: 

The series of subgroups, (21) and (»), are called: a) complementary or inter­
changeable, b) chain-equivalent or co-basally chain-equivalent, c) semi-joint or 
loosely joint, or co-basally semi-joint or co-basally loosely joint, d) joint or co-basally 
joint if the series of the left decompositions of ©, namely (@$/(2t), (($/*»), and 
therefore (by the above theorem) even the series of the right decompositions 
of ©, namely, (<U/f2t), (@/r») belonging to (%) and (»), have the corresponding 
property. 

5. Complementary series of subgroups. Consider two complementary series of 
subgroups of @$: 

( ( $ ) = ) $ , =3...=>9ta 0 * ^ 1 ) , 
( ( » ) = ) » , = 3 . . . = > » , {fi^l). 

To these series there belong the corresponding series of the left and the right 
decompositions of ©, namely, (@/|8l), (©//») and (@/r$l), (@/r»)5 respectively, 
which are more accurately described by the formulae (1), (2). 

12 Borirvka, Foundations 
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There holds the following theorem: 

The series (91), (») have co-basally joint refinements (%*), (»*) with coinciding 
initial and final members. The refinements are given by the construction described 
in part a) of the following proof. 

Proof, a) Under the above assumption, every two decompositions %ji%Y> 

@A»a (y = 1, ...,<%; d = 1, . . . , P) are complementary, hence every two sub­
groups Sty, » a are interchangeable (21.6). By 22.2.1 even the subgroups %Y> 
2ty„! n » y or »d, » 3 „! n % (% = » 0 = ®; p = 1, . . . , a; v = 1, . . . , 0) are inter­
changeable and there holds: 

(«,,, = ) «y(«.^i n »,) = ! , _ ! n « , » „ 

(»*,, = ) »a(»a i n «„) = » w n » ,«„ • ( 3 ) 

L e t us denote: 

«i»i==U, a.n», = », 

% = %0 = ®9 au1 = » w = ». 

Then the formulae (3) are true for y, JLI = 1,..., # + 1; d,v = 1, . . . , (i -f- 1. 
From the definition of the subgroups St,,,,, »5jiU there follows 

^ =>«,.„ l M + i = 9t„ 

»a_i => »*,.«- »a,«+i = »<$> 

moreover, for v ^ ^. /̂  ^ a. we have 

f [ y ^ ZD §t y j - . + i , »a,^ =3 »d,,+i» 

Thus we arrive at the following series of subgroups from %Ytl to %Y and from 

»a. i*o»a-

%Ytt =D •••=) 9 t , f j + i , 

» < U -=->•••=> »<5,a+l • 

Consequently, the series of the subgroups of & set below are refinements of 
the series (91), (») : 

• ZD 9f a + i^+i = » , 

•• ZD »^ + i , a + 1 = » . 

We observe that (91^), (»^) have the same length and that their initial and final 

((«*) = =)U = Я 1 . 1 = > . . . = D a 1 > / ř f l = ) 8 t ł . 1 : 

• • • = > « , , , + . = > •••=» « . + , . . . . : 

(08*) -=) U = ЗЗi.i =>•••=> Si,a +i => »-д 

••• =5 S32,к+1 = > " • = > 83/9+1,1 
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members coincide: 

(U = ) %til = » l f l , %>+ltfi+1 = » ,+ 1 . a + 1 ( = §8). 

The series (%%), (35*) a f e ^ e mentioned co-basally joint refinements of the series 
(21), (S3). 

b) Let us show tha t the series of the left decompositions, (©/jSC*), (©/(SB*), 
corresponding to (St*), (SB*) are co-basally joint. These series are obtained by 
way of replacing each member %yv of (%%) by the left decomposition &ji%y>v 

and each member §B5>jU of (SS^) by ®/j!-8afiu-
Denote: 

J , = ©/,«,, S,-=©/,»„ iy.,==@/i«y.,, A M = ®A»M-

Then, on taking account of the formulae (3) and in accordance with 21.4 and 
21.5, we have 

Ayv = [-4 y, (Ay-i, J5-,)J = (Ay^i, [Ay9 Bv]j9 

Bd,p = [5^ , (.Ba-i, -4^)] = (J?a-i? [Bb, -4M]). 

We see tha t the series of decompositions, (©//St*), (©/fSB*), corresponding to 
(8t*)> (33*) are formed from the complementary series (©/*$), (©//SB) by the con­
struction described in 10.7, par t a) of the proof. Hence, by 10.8, the series (©/iSl*), 
(©/t33#) a r e co-basally joint and the proof is complete. 

23.5* Exercises 

1. Apply the five-group theorem to subgroups of 3 (18.5.1). 

2. Let 91 =D $8, (E =3 % be subgroups of % and A. ZD B9 G ZD D their fields. Suppose the left 
decompositions (A -=)9t/j33, (G =)(£/j$) in @ are adjoint with regard to B9 D. Realize the 
construction described in 4.2 and leading to the coupled coverings A9 6 of the decompo­
sitions A x = c c «/z», G! = A c e/,s>. 

12* 


		webmaster@dml.cz
	2012-09-06T03:17:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




