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180 III. Groups 

24* Invariant (normal) subgroups 

24.1. Definition 

Let 3t ZD 93 be arbitrary subgroups of &. If the left and the right coset of every 
element a 6 31 with regard to 93 coincide, that is to say, if a93 = 93a, then 93 is 
said to be invariant or normal in St. The left decomposition of % generated by 93 
is, in that case, the same as the right decomposition; both decompositions therefore 
coincide and form a certain decomposition of 3(, called the decomposition generated 
by 93, hence « / , » = « / f » ( = 31/®). 

In the following study of invariant subgroups lying in the same subgroup %, 
we shall restrict our attention to the case % = @. If a subgroup 93 of d$ is in­
variant in @, then it is called, for convenience, an invariant subgroup of dJ. 

24.2. Basic properties of invariant subgroups 

In & there exist at least two (may be coinciding) invariant subgroups: the greatest 
subgroup, identical with & and the least subgroup {1} consisting of the single 
element 1 £ dK They are called the extreme invariant subgroups of ©. Groups may 
also contain subgroups that are not invariant, for example, the subgroup 3t of ©3 

consisting of the two permutations 1, / (notation as in 22.1) is not invariant 
in @3 because, as we have observed, there holds, e.g., a% = {a, c), %a = {a,d} 
and so «3t =-)= ^ a -

Let 31 ZD 93 be subgroups of @5. If 93 is invariant in @, then it naturally has the 
same property in 31. If, conversely, 93 is invariant in %, it is not necessarily in­
variant in ($, since the equality #93 = 93& may apply to all the elements x of 31 
without applying to all the elements of &. If, for instance, a subgroup 3C is not 
invariant in &, it is invariant in 31 but not in &. 

If a subgroup % is invariant in %, then it is interchangeable with every com­
plex C cz @. Indeed, in that case we have x% = %x for every x € @ and there­
fore even for every x 6 C. Consequently, 031 = %C. We observe, in particular, 
that any two subgroups 31, © cz @5 one of which is invariant in &, are inter­
changeable. 

If, vice versa, some subgroups 3t, © cz & are interchangeable, then neither of 
them is necessarily invariant in @. That occurs, for example, if 3tisnot invariant 
in % and 31 = ©. 

Moreover, there applies the following theorem: 
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If the subgroups %, % are invariant in &, then even the intersection 9t n (£ and 
the product 9t© are invariant subgroups of &. 

In fact, if the assumption is satisfied, then there hold, for any x 6 @? the 
equalities x% = %x, x% = fe. So we have, with respect to 20.2.6 and to an analo­
gous theorem for right cosets, 

x(% n$)==zx%nx$=z%xn&x = (%n ($)x; 

consequently, 91 n © is invariant in ©. Furthermore we have, with respect to 
12.9.8, 

z{W) = (a«)C = (9fe)© = «(a«) = «(©r) = («<£)&; 

consequently, 91© is invariant in 6$. 

The information that any two invariant subgroups of & are interchangeable and 
the properties of interchangeable subgroups (22.2) yield a number of results as 
to invariant subgroups. We shall introduce only the following two theorems: 

1. The Dedekind-Ore theorem. For any three invariant subgroups 9t -3 33, % of © 
there holds: 

9ln®$8 = (8Cn$)». 

2. The system of all invariant subgroups of & is closed with regard to the inter­
sections and the products and is, when completed by the multiplications defined by 
forming intersections and products, a modular lattice with extreme elements. 

24.3. Generating decompositions of groups 

1. First theorem. Let 91 be a subgroup of ®. As we have seen (21.1) 91 generates 
a left decomposition @$//9l and a right decomposition @/r9t of &. Let us find out 
whether, for example, the left decomposition @5/j9C can be generating. 

Suppose, first, that <$//9t is generating and consider two elements p%, g9t£ 6$/j9t, 
p, q being arbitrary elements of &. By the definition of a generating decomposi­
tion there exists an element r% t£ @$/j9t such that: 

p%.q%czr%. 

Hence, in particular, pq% = (pi) . q% a r%, thus pq% cz r% and, consequently, 
pq = pq . 1 € r% whence, by 20.2.1 and 20.2.4, there follows r% = pqU. So we 
have, first, p% . q%l cz pqU. Each element of the left coset pq% is the product 
pq . x of the element pq and some element x € 91. There obviously holds pqx 
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= (Pi) (<lx) ^ P^ * 9$l. hence p% . q% cz pq%. So we have 

p%.q% = pq%, (1) 

i.e., the product of the left cosets p% and g3l is the left coset pq%. 
The equality (1) yields, in particular, for q = p-1 the relations: 

pUp-1 = p%(p~1i) cz p% . p-W. = pp~m = St 

so that pUp"1 cz St. Since p is an arbitrary element of @, the same holds even for 
p-1 and we have p~x%p cz %. Consequently, 

% = (pp-^^pp-1) = p{p~1%p)p~1 cz pUp-1, 

i.e., pMp-1 ZD St. Hence 

p%p~i = 3( 

or, which is the same, ^3t = %p. Therefore the left coset of each element p 6 © 
with regard to St is, simultaneously, the right coset of p with regard to St. We 
see that 31 is invariant in ©. 

Now let us assume, conversely, that the subgroup St is invariant in ©. Then, by 
the definition, there first follows that the left coset p% of each element p 6 © 
with regard to 3t is, simultaneously, the right coset %p of p with regard to St. 
Then for any two left cosets pSt, gSt there holds 

p% . q% = 2>(3tg)3t = p(q%)% = pq(WH) = pq% 

which yields jpSt. q% = pq%* Hence, if our assumption is true, the product of 
p% and g3t is pq%. Thus we have verified that the decomposition %jt% of © which 
is, of course, equal to ©/r3t is generating and we may sum up the above results 
in the following theorem: 

The left as well as the right decomposition of @ generated by % is generating if 
and only if the subgroup 3t is invariant in ©. Then the product of any elements p% 
and q% of the decomposition generated by St is the element pq%. 

2. Second theorem. A remarkable property of the groups consists in that each 
generating decomposition of a group is generated by some of its invariant sub­
groups. 

Consider a generating decomposition G of @. Since each element of © is con­
tained in some element of G, there exists an element A (i G comprising the unit 1 
of @. We shall prove that A is the field of an invariant subgroup St of @ and G 
the decomposition of @ generated by St. 

To that end, let us first consider that, since G is generating, there exists an 
element a£ f f such that A A cz a. As there holds, on the one hand, 1 = 1 . 1 6 A A cz a 
and, on the other hand, 1 6 A, we have a = A. Consequently, A is groupoidal. 
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The corresponding subgroupoid $ comprises the unit 1 of & and, as we shall see, 
contains with each element a even its inverse a-1. 

Assuming a £ A, let b denote the element of G that includes ar1. Since 1 = aa~x 

£ Ab, the element 1 is contained in the product Ab and, of course, also in A. As 
G is generating and both subsets Ab and A comprise the element 1, we have Ab 
cz A. Hence: 1 . a-1 £ A, i.e., a-1 £ A which proves that 21 is a subgroup of &. 

It remains to be shown that 21 is invariant in & and that any element a £ G 
is the coset of an arbitrary element a £ a with regard to 21. Suppose a 6 © and 
let a denote the element of G containing a so that: a £ a £ G. If x £ a, then 
x = 1 . x £ Ad whence a cz Ad. As G is generating and both subsets Ad, a com­
prise the element a, there holds Ad cz a. So we have Ad = a and, analogously, 
dA = a. Consequently, 

a = Ad = dA. (2) 

There obviously holds aA czdA. Let us show that there simultaneously holds 
dA cz aA. Let b denote the element of G comprising a-1. As G is generating and 
both the subsets bd and A include the element 1, there holds bd cz A. Thus the 
product arxx of a-1 and an element x £ a is contained in A. Consequently, 
x == a(a~1x) £ aA and we have a cz aA. Hence aA cz aAA = aA. So we have 
dA = aA. Analogously we arrive at Ad = Aa. From that and from (2) there 
follows 

a = a% = %a. 

From these equalities we, first, see that the subgroup 21 is invariant in ($. 
Since they hold for every element a £ (& and the element a £ G comprising a, 
they also apply to any a £ G and a £ a; every element d £ G is the coset of an 
arbitrary element a £ a with regard to 21. 

Thus we have determined all the generating decompositions of &: 

All generating decompositions of & are precisely those decompositions of (U that 
are generated by the individual invariant subgroups of Q$. 

24.4. Properties of the generating decompositions of a group 

On (U there always exist two generating decompositions, namely, the two extreme 
decompositions C?max and Gmin (14.1) generated by the extreme invariant sub­
groups &,{i) of® (24.2). 

Let A, B stand for arbitrary generating decompositions on ©. By the above 
theorem, A and B are decompositions generated by appropriate subgroups % 
and 23 invariant in ($5, respectively. Consequently, 21 and $8 are interchangeable 
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From the results obtained in 21.3—6 we observe that A,B have the properties 
stated below: 

The decomposition A (B) is a covering (refinement) of B(A) if and only if the 
subgroup 9t is a supergroup of 33 5 i.e., %ZD B. 

The greatest common refinement (A, B) of A and B is generated by the invariant 
subgroup 9C n 33. 

The least common covering [A,B] of A,B is generated by the invariant subgroup 
« » . 

A and B are complementary. 

Furthermore, there holds: 

The system of all generating decompositions of @ is, with regard to the operations 
(), [], closed and is, together with the multiplications defined by the latter, a modular 
lattice with extreme elements. This lattice is isomorphic with the lattice consisting of 
invariant subgroups of & (24.2). 

24.5. Further properties of invariant subgroups 

The theorems (24.3) on generating decompositions in groups, together with the 
study of generating decompositions in groupoids and of decompositions of groups 
generated by subgroups, lead to fresh information about the properties of in­
variant subgroups. 

1. Let 9t ZD 33,6 stand for subgroups of @, the subgroup 93 being invariant in 91. 
Then 33 n © is invariant in 9t n S. Moreover, the subgroups 9t n 6, 33 are inter­
changeable and 33 is invariant in (9C n ©)93. 

Proof, a) Since 33 is invariant in %, the decomposition 91/*33 is generating 
(24.3.1). By 21.2 (1), we have 

I /^ng -= ( lng)Pn|) . 

Furthermore, from 14.3.2 we know that the left decomposition in question of 
9t n @ with regard to 33 n d is generating. Consequently, 33 n 6 is invariant in 
91 n S (24.3.1). 

b) By 19.5.1, % n © is a subgroup of % As 33 is invariant in %, the subgroups 
I n | , 8 are interchangeable (24.2). In accordance with 21.2 (2), we have 

C c ^ S ^ t S n «)»/,». 

Moreover, from 14.3.2 we know that the left decomposition in question of (6 n 91)33 
with regard to 33 is generating. Hence 33 is invariant in (91 n S)33 (24.3.1). 
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In particular, for % = @ we have the following theorem: 

/ / 93, (£ are subgroups of ® and » is invariant in (B, then » n © is invariant 
in ©. 

2. Let 3t =3 » , S => ® be subgroups of (& while » and 3) are invariant in 3t awe? ©, 
respectively. Then 3[ n ® and 33 n S are invariant in 31 n ©. £e£, furthermore, U be 
an invariant subgroup of 31 n © «ŝ c& £Aa£ 

( « n g ) D t t D ( « n $>)(<£ n 33). (1) 

Then 31 n S ami tt are interchangeable with both 33 and ® and tt33 or tt® is in­
variant in (31 n ©)93 or (31 n ©)®, respectively. Moreover, by 23.2.(1), £Aere Aolefe: 

(31 n <£)» n tt® = tt = ((£ n St)® n US. 

Proof. In accordance with 1, the subgroups 31 n ®, 33 n © are invariant in 
3C n (£. Since 31 n K and tt are subgroups of 31 and (£, respectively, and 33 and ® 
are invariant in 31 and (£, respectively, 31 n © and tt are interchangeable with both 
the subgroups 33 and ®. 

By 1., 33 is invariant in 3V = j3t n e)33 and ® in ©' = (<£ n 31)®. By 243.1, 
the decompositions .4 = ST/*93, 0 = ©7/® a r e generating and, by 14.3.2, the 
same applies to the decompositions 

l n g ' = ( Jn <£)/,(» n (£), 0 n 3V = (31 n <£)/,(« n ®). 

From (1) we conclude that the decomposition B = (31 n (£)/|tt is a common 
covering of 4 n S'. On 3V. Since tt is invariant in 3C n (£, B is generating. 
Consequently, the coverings 

i = ( « n S)33/tU33, O = (31 n g)®/*U® 

of the decompositions A, O, enforced by B, are generating (14.3.3). 
On taking account of 24.3.1, we observe that US or tt® is invariant in (3t ng)33 

or (31 n ©)®, respectively. 

In particular (for tt = (31 n ®)(33 n ©)), there holds the following theorem: 

Let 31 -3 33? (£ =5 ® be subgroups of @, 33 and ® invariant in % and S, respec­
tively. Then 3t n ®, 93 n © are invariant in 31 n 6. Moreover, 3t n ©, 31 n ® are inter -
changeable with 33 and, similarly, 31 n S, 33 n © with ®. The subgroup (31 n ®)33 
is invariant in (3C n ©)33 awd £Ae same holds for (33 n ©)® in (31 n (£)®. Furthermore 
(according to 23.2(2)), there holds: 

(« n S)S8 n (33 n g)® == (3t n ®)(93 n 6) = (31 n <£)© n (31 n ®)$ . 

13 Boruvka, Foundations 
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24.6* Series of invariant subgroups 

In the classical study of groups, the theory of series of invariant subgroups of @ 
is generally based on the assumption that each member of the series, except the 
first, is an invariant subgroup of the element immediately preceding it. The 
results are of local character in the sense that they concern only situations in the 
neighbourhood of the unit of &. The following study will be restricted, for 
simplicity, to the special case when each member of the series is an invariant 
subgroup of @L On the ground of previous results (23.4), we may immediately 
proceed to the main part of the theory. Contrary to the classical theory, we shall 
arrive at results of global character, informative about the situation in the 
neighbourhood of any point of @5. 

Consider two series of subgroups of @, namely: 

((«)==) « !=> . . . = «« (cc^l), 

( ( » ) = ) » !=> . . . -=>» , 0 8 ^ 1 ) 

and suppose that all the subgroups in question are invariant in @. 

Then the following theorem is true: 

The series (W), (») have co-basally joint refinements (St*), (»#) with coinciding 
initial and final members, all the subgroups of these refinements being invariant 
in @$. (%*), (»*) are *given by the construction described in part a) of the proof in 
23.4.5. 

Proof. Since the members of the series (91), ($8) are invariant in d$, the series 
(tl), (») are complementary (23.4.4; 24.4); we can apply to them the construction 
described in part a) of the proof in 23.4.5. That leads to co-basally joint refinements 
(21*)? (»*) oi (%), (SB); the refinements have the same initial and final members 
U — f[1581 and SS -==- SC« n 33 ,̂ respectively. In accordance with the construction 
in question, (31*), (»*) consist of the following subgroups of ©*. 

%.* = %(%~i n »,) = %-x n « , » „ 

»a., = »*(»*-i n %) = »5»! n %% 

{y,p = 1, 2, . . . , a + l;d,v=l, % ...,0 + 1; % = » 0 = 0 , 8 U = »„+1 = ») . 
From the results of 24.2 it is obvious that %YfV, »a#/4 are invariant in (S and the 
proof is complete. 

24.7. Exercises 

1. In the group @4 consisting of all permutations of the set {a, b, c, d}9 all the permutations 
mapping the element d onto itself form a subgroup ©/. The permutations which map the ele­
ments a, b,\ c in the same manner as e, a, b in 11.4.2 without changing the element d, form 
a subgroup of @4 which is invariant in <33' but not in ©4. 
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2. Let % be a subgroup of ®. The set of all elements p € © such that p% = %p is a subgroup 
$c of ©, the so-called normalizer of 91. The latter is the greatest supergroup of % in which % is 
invariant; that is to say, % is invariant in *$l and each subgroup of © in which % is invariant 
is a subgroup of 9£. 

3. The center of © is an invariant subgroup of ©. 

4. If there exists, in a finite group of order N ( ^ 2), a subgroup of order — N9 then the latter 
z 

is invariant in the former. For example, in the diedric permutation group of order 2n (n 2> 3) 
there is an invariant subgroup of order n consisting of all the elements of the group corre­
sponding to the rotations of the vertices of a regular n-gon about its center (19.7.2). 

5. Associating, with every element p € ©, any element x~xpx e © with x € © arbitrary, we ob­
tain a symmetric congruence on ©. The decomposition 0 corresponding to the latter is 
called the fundamental decomposition of ©. The field of each invariant subgroup of © is the 
sum of certain elements of G. G is complementary to every generating decomposition of ©. 

o 

6. Let p e © be an arbitrary point and © the (p)-group associated with © (19.7.11). Consider 
o o 

a subgroup % invariant in © and the subgroup % of @, lying on the field p% = %p (20.3.3; 
o o o 

21.8.7). Show that: a) % is invariant in ©; b) all generating decompositions of © coincide 
with the generating decompositions of ©. 

25. Factor groups 

25.1. Definition 

Let us now consider a factoroid % on %. According to the definition of a factoroid, 
the field of © is a generating decomposition of & and is therefore generated by a 
suitable subgroup 9t invariant in @5 (24.3.2). The product p% . q% of an element 
p% € & and an element q% £ % is, by the definition of multiplication in a fac­
toroid, the element of & that contains the set p% . q%. Since the latter coincides, 
as we know, with pq% € @, the multiplication in (3 is given by the following 
formula: 

p%oq% = pq%. (1) 

Now we shall show that % is a group whose unit is the field of the invariant 
subgroup 91 and the element inverse of an arbitrary element a% is a~x9l. 

In fact, first, by 15.6.3, @ is associative. Next, by 18.7.5, the field A of the in­
variant subgroup % is the unit of ©. Finally we have: 

P% o p-m = pp~m = m = A 

and so p~x% € © is the inverse element of p% £ @. 

13* 


		webmaster@dml.cz
	2012-09-06T03:18:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




