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198 III . Groups 

27. Cyclic groups 

27.1. Definition 

A group @ is called cyclic if it contains an element a, called generator of @, such 
that each element of @ is a power of a. If @ is a cyclic group and a its generator, 
then d$ is denoted by the symbol (a). From the first formula (1) in 19.3 it follows 
that every cyclic group is Abelian. 

27.2. The order of a cyclic group 

Consider a cyclic group (a). If the powers a% a*' of a with any two different expo­
nents t, / are different, then the group (a) has the order 0 because it contains an 
infinite number of elements 

..,, a-2, a"1, a0, a1, a2,... (1) 

As each element of (a) is a power of a, the group (a) does not include any other 
elements but these so that (a) consists of the elements (1). Now suppose that the 
powers of a with some different exponents i, j are equal and so ai = a?, i =j= j . 
Hence cH . a1 = a-?*. a?, i.e., a1-** = I. Since one of the numbers i — j , j — i is 
positive and the powers of a with these exponents equal 1, we observe that there 
exist positive integers x satisfying the equation ax = 1. One of them is the least; 
let us denote it n, thus an = 1. Now consider the following elements of (a): 

i a, a*,...,<*"-*. (2) 

First, it is easy to verify that every two of them are different: in fact, if for any of 
them there holds a* = a?, then one of the numbers* — j , j — i is a positive integer 
smaller than n and satisfies the equation a30 = 1; but that contradicts the defini­
tion of n. Consequently, the group (a) comprises at least n elements (2) and has 
therefore the order 0 or 2> n. Moreover, it is easy to show that (a) does not include 
any other elements, hence its order is n. To that purpose, consider an element ax 

of (a). Dividing x by n} we obtain a quotient q and a remainder r whence x = qn +r, 
0 fg r <; n — 1; consequently, ar is one of the elements (2). The formulae (1) in 19.3 
yield 

a* = a«»+r = a«» . ar = (aw)« . af = 1* . ar = 1 . ar = af 

and we have ax = af. Thus we have verified that the group (a) consists of the 
elements (2) and therefore has the order n. Furthermore, the product a1. aj of an 
element a* and an element B? of (a) is the element afc, k being the remainder of 
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the division of i + j by n because a1. a* = ai+K To sum up, we arrive at the fol­
lowing theorem: 

The order n of every cyclic group (a) is either 0, in whicJicase (a) consists of the ele­
ments (1), or n > 0, and then (a) consists of the elements (2). The product a1. a7 of 
the elements ai and a? of (a) is, in the first case, the element al+$ whereas, in the second 
case, it is a?, k being the remainder of the division of i + j by n. In the latter, n is the 
least positive integer such that an = 1. 

Note that in both cases an-i is the inverse of a1. 

27.3. Subgroups of cyclic groups 

Let us now consider a subgroup 31 of a cyclic group (a). If 3t consists of a single 
element 1, then it is cyclic and its generator is jL Suppose that 3t contains besides J. 
an element a1 where i + 0. As 31 comprises with a{ simultaneously its inverse cr* 
and as one of the numbers i, — i is positive, we see that 3t includes powers of a with 
positive exponents. One of the latter is the least; let us denote itm,henceam e 31. 
3t does not contain any powers of a with positive exponents smaller than m. Let 
ax be an arbitrary element of 31. Dividing x by m, we obtain a quotient q and a 
remainder r, hence x = qm -{- r, 0 <>r i^m — 1. In accordance with the formu­
lae (1) in 19.3, there follows: ax = aqm+r = aqm . ar. Consequently, ar is the product 
of arqm and ax. Since arqm is the inverse of the element (am)q which is, as the q®1 

power of the element am £ 3t, also included in 3t, we see that a~qm is an element of 
3t. As even ax is an element of 3t, the product q~qm . ax, namely, the element af 

is included in 3t. Consequently, with regard to the inequalities 0 ^ r :g m — 1 
and to the definition of m, there follows r = 0. So we have ax = (am)q. Every 
element of 31 is therefore a power of am, hence 3t is cyclic with the generator 
am. Thus we have arrived at the result that every subgroup of a cyclic group (a) is 
cyclic. 

Since the cyclic group (a) is Abelian, each of its subgroups is invariant in (a). 

27.4. Generators 

Do there exist, in the cyclic group (a), any other generators besides a% Let, again, 
n denote the order of (a) and suppose that some element av of (a) is a generator of 
(a). Then, in particular, the element a is a power of av, hence a = avq,q being an 
integer. If n = 0, then a = avq yields vq = 1 because, in that case, any two 
powers of a with different exponents are different; hence v = q=lorv = q 
= -—1. Consequently, besides a, only ar1 can be a generator of (a) and, in fact, 
each element ai of (a) is the —im power of a-1. 

If n = 0, then the group (a) has exactly two generators: a, or1. Note that they 
are the only two elements of (a) whose exponents are relatively prime to n ( = 0). 
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Let us now consider the case when n > 0. The cyclic group (a) consists of the 
elements 1, a, a2, . . . , a"-1. Iff is the remainder of the division of vq by n so that 
Vq = nqf + r where q* is the quotient and 0 ^ r <£ n —- 1, then we have av# = ar 

= a. Consequently, r = 1 because a, ar belong to the sequence 1, a, a%, . . . , a""1 

where any two elements with different exponents are different. So we have 
vq —• nqf = 1 and therefore v, n are prime to each other. If, conversely, v is an 
integer relatively prime to n, then there exist integers q, qf such that vq — nq' = 1 
and there follows, for every integer i, the relation i = v(qi) — n(qfi). Consequently, 
we have a* = (av)qi and so a* is a generator of the group (a). If % > 0, then the 
generators of (a) are the powers of q whose exponents are relatively prime to n. 
We saw that the same applies even if n = 0 and can therefore sum up the above 
results in the following theorem: 

The generators of the cyclic group (a) of order n ^ 0 are exactly the powers of a 
with exponents relatively prime to n. 

If % = 0, then (a) has precisely two generators whereas, if n > 0, then the 
number of the generators equals the number of the positive integers not greater 
than n and relatively prime to it. 

27.5* Determination of all cyclic groups 

1. An important example of a cyclic group of order 0 is the group 3* Evidently, 
3 = (1). All subgroups of 3 consist, as we know, of all multiples of a non-negative 
integer n, hence they are cyclic groups (n). Let n ^ 0 and consider the factor 
group Ql(n). We know that, for n = 0, $/(n) consists of the sets at- = {i} where 
i ==. . . , —2, — 1, 0, 1, 2 , . . . , and, for n > 0, it consists of the elements a0 , . . . , an„i 
where a;- denotes the set of all the elements of 3 that differ from ; only by a 
multiple of n\ the factor group 3 / W kas> *n both cases, the order n. I t is easy 
to show that the factor group Ql(n) is cyclic with the generator ax. In fact, by the 
definition of the multiplication in 3/(w)> a n y *th power of an element ak £ $l(n) 
is that element of $l(n) which contains the number ik; hence, in particular, 
a- = a^, which proves the above assertion. Thus we have simultaneously veri­
fied that there exist cyclic groups of an arbitrary order n ^ 0. 

Now we shall show that, conversely, every cyclic group is isomorphic with a 
factor group of 3- Consider a cyclic group (a). To each element x 6 (a) there exists 
at least one integer | such that a1 = % and, of course, vice versa, for every in­
teger | , a1 is an element of (a). Associating with each element I € 3 ^ e element 
af £ (a), we obtain a mapping d of 3 o n ^° (a)* If I and rj are arbitrary elements 
of 3 a n d if | = x, drj = y, then we have x = a1, y = â  and therefore xy = a%^ 
= al+tl

$ hence <f(f + tj) = xy = dgdrj. Consequently, the mapping d preserves 
the multiplications in both groups Q, (a) and therefore is a homomorphism. We 
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observe, first, that (a) is homomorphic with Q. By the first isomorphism theorem 
for groups (26.3.1), the set of all d-inverse images of the unit of (a) is an invariant 
subgroup U of 3 and the factor group on Q, generated by 9t, is isomorphic with 
(a), i. e., 3/91 cz (a). Let n (^0) be the order of the cyclic group (a). Then even 
3/91 has the order n and so 91 consists of all multiples of n. Consequently, the 
cyclic group (a) of order n is isomorphic with the factor group $/(n) generated by 
the subgroup (n) of 3« I n particular, every cyclic group of order 0 is isomorphic 
with Q/(0), hence even with 3-

I t is easy to see that any group isomorphic with a cyclic group of order n 
( ^ 0) is also cyclic and of order n. 

The result: 

All cyclic groups of order n ^ 0 are represented by the factor group Q/(n) on Q 
in the sense that any cyclic group of order n is isomorphic with Q/(n) and, conversely, 
any group isomorphic with 3/(^) ^s cyclic and of order n. 

2. Example . As an example of a cyclic group of order n > 0 we may intro­
duce the group consisting of the nih roots of unity with multiplication in the 
arithmetic sense. 

The roots in question are: 

s0 == 1, 6l = e%niln, e2 = e^iln, ..., en_t = e8(»-i)*</» 

and therefore form the cyclic group (e27tiln). The points whose coordinates are real 
and imaginary parts of these roots are the vertices of a regular %-gon. For n = 6, 
for example, we have the vertices of a regular hexagon. The generators of this 
group of order 6 are e27til&, e107ti,Q. 

27.6. Fermat's theorem for groups 

The notion of a cyclic group is important even for groups that are not necessarily 
cyclic. Consider a group &. Let a be an arbitrary element of &. The individual 
powers of a form a cyclic subgroup (a) of ($. 

By the order of the element a we mean the order of the cyclic subgroup (a). The 
order n of a is therefore either 0 or the least positive integer a: for which ax = 1; 
in any case there holds an = 1. 

Furthermore, it is easy to verify that the order n of each element a 6 & is a 
divisor of the order N of &, i.e., N = nd, d integer. For N = 0 this statement is 
obvious. In case of N > 0 it is true because the order of any subgroup of & is a 
divisor of the order of (&. From the equality N = nd there follows: aN = and 

= (an)d = ld = 1. Thus we have arrived at Fermat's theorem for groups: 

The Nth power of any element of a group of order N is the unit of the group. 

14 Bortivka, Foundations 
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27.7. The generating of translations on finite groups by pure cyclic permutations 

Le t us conclude our s tudy with a remark concerning the generating of, for example, 
the left translations of a finite group by pure cyclic permutations. 

Assume @ to be a finite group and a an element of @. As we saw in 26.2.1, 
the left translation at of % is a permutat ion of © and is therefore generated by a 
finite number of pure cyclic permutat ions; tha t is to say, there exists a decompo­
sition G = {a,..., m] of @ such t ha t each element a 5 . . , 5 I i s invariant under at 
and the partial permutations jtay..., 0 % are pure cyclic permutations of the 
elements a,..., m. Any element x of G consists of the elements of the cycle: 
x, at%> (aWx> * * • > {al)k~lxi w ^ h x denoting an arbi trary element of x and h being 
the least positive integer such tha t (at)

kx = x. Taking account of the definition of 
the left translation at, we have 

avx —— ax, wj*') x —— a x,»* • , (s^) x ~— ^ «̂  

and from (atfx = a%x = x there follows afe = 1. We observe tha t the cycle in 
question is x, ax, a%x,..., ak-xx and, furthermore., t ha t the set {1, a, a%,..., a^1} 
is the field of the cyclic subgroup (a) of @$. The element x is therefore the right 
coset of x with respect to (a). Consequently, G is the right decomposition of (B 
generated by (a). 

To sum u p : 

The cycles of pure cyclic permutations generating a left translation at of a finite 
group & consist of the same elements as the right cosets with regard to the cyclic sub­
group (a) of ©. 

27.8. Exercises 

i . An element a 4= 1 of a group © has the order 2 if and only if it is inverse of itself. 

2. In every finite group of an even order there exist elements of the order 2. 

3. If an element a of a group @ is of the order n, then the order of each element of the cyclic 
subgroup (a) of @ is a divisor of n. 

4. Every group whose order is a prime number is cyclic. 

5. The order of each element a of any factor group on a finite group @ is a divisor of the order 
of each element of @ contained in a. If the order of a is a power of a prime number p9 then 
there exists in a an element a whose order is also a power of p. 
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