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Phase theory of ordinary linear homogeneous 
differential equations of the second order 

In this chapter we shall develop the topic of phase theory of the differential equations 
to be considered; this provides the appropriate methodological basis for the transfor
mation theory which we shall build upon it. The reader may perhaps be surprised to 
discover the richness and breadth into which this phase theory, whose basis depends 
merely on the properties of a function q(t)9 can be expanded. 

5 Polar coordinates of bases 

5.1 ïйtřûđuction 

In this paragraph we start our development with a few elementary facts. 
Let (q) be a differential equation in the intervalj. We consider a basis (u9 v) of (q) 

and the corresponding integral curve Я with representation x(t) = [u(t)9 v(t)]9 relative 
to a rectangular coordinate system formed from the vectors xl9 x2 with origin O. 
As positíve sense of variation of angle we choose that which is given by the rotation 
from x2 to xг. 

Let x0 = x(to), to єj? be an arbitrary point of Я and r0 ( > 0), a 0 be its polar co« 
ordinates with respect to the pole O and the polar axis OX2. Then r0 represents the 
modulus of the vector x09 while the number a0, which we specify to lie in the interval 
[0, 27ľ)? is the value of the angle (x2ђ x0). Obviously we have u(t0) -= r0 sin a0, v(t0) = 
r0 cos a0. Now we define, in the intervalj, the function r(t) by means of the formula 

r(t) = Vu2(t) + v2(t). (5.1) 

Moreover we let a(t) be the (unique) continuous function, defined in the interval/, 
which takes the value a 0 at the point t0 and in the interval j satisfies the equation* 

u(t) 
tan a(0 = - ^ (5.2) 

v(t) 

except, of course, at the zeros of v. 
Then we have, for all t ej, 

u(t) = r(t) sin a(t), v(t) = r(t) cos a(t). (5.3) 

Besides the function a, there are obviously other continuous functions in the interval 
j which satisfy the equation (2) everywhere inj apart from the zeros of v. Every such 
function has the form an = a + mr9 n being an integer; consequently their totality 
forms a countable system. Each member is uniquely determined by its initial value 
an(to) = oc0 + nrr. For n even the functions r, an satisfy the formulae (3), while for n 
odd the right side of (3) gives the basis (—u9 —v)9 which is proportional to (u9 v). 

The functions r and an constitute the polar coordinates of the basis (u, v). In special 
cases these ideas can be taken over to the ordered pair (u'9 v') formed from the 
derivatives u\ v' of the functions u9 v. 

* This change to polar coordinates is commonly known as the Prufer substitution (Trans.) 
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Now we wish to consider the information given here in full detail. We denote the 
Wronskian of the basis (u9 v) by w. 

5.2 Amplitudes 

The functions r, s defined by the formulae 

r = ViF+y, s = V^+V2 (5.4) 

in the interval j will be called the first and second amplitudes of the basis (u9 v) re
spectively. These functions are obviously always positive and belong to the classes 
C2, Ci respectively. 

Clearly, the amplitudes of the inverse basis (v, u) are also r and s9 we can thus refer 
more briefly to the amplitudes of the (independent) integrals u, v or, if we are con
cerned with their values, to the amplitudes of the point x(t) = [u(t)9 v(t)]. 

We now show that the amplitudes r, s satisfy the following non-linear differential 
equations of the second order 

// w 

r = qr + — 
2 2 . . <5-5) 

w2q2 a , 
s» ^ q s + ^JL + LS>9 

s q j 

the first in the interval j , and the second in every sub-interval / <= j in which the func
tion q is differentiable and non-zero. 

Starting from the formulae 

r2 = u2 + v2

9 rr' = uuf + vv'9 w = uv' — ufv9 s2 = u'2 + i/2 (5.6) 

there follows the relation 

r2(82 — r'2) = (uvf — ufv)2 = w2, 

and the further relation 

wл 

s* -r'2 = - (5.7) 
r* 

The second formula (6) leads to the equation 

rr" = s2 — r'2 + qr2, 

and from the last two relations there follows the first of the differential equations (5). 
To obtain the second, we differentiate the equation (7), use the first equation (5) and 
so obtain the relation 

ssf = qrr'. (5.8) 

Then, assuming the differentiability of a, we get 

ss" + s'2 = qs2 + qfrrf + q2r2, 
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then (8) gives 

q(ssff + s'2) = q2s2 + q'ss' + q3r2. (5.9) 

Eliminating r, r' between the formulae (7), (8), (9) we obtain the second equation (5), 
for q ?- 0. 

5.3 First phases of a basis 

By a first phase of the basis (u, v) we mean any function a, continuous in the interval j , 
which satisfies in this interval the relationship 

u(t) 
t a n a ( t ) = ~ (5.10) 

v(t) 

except at the zeros of v. When convenient we refer to "phases" instead of "first 
phases" of the basis (u, v). 

We note that there is precisely one countable system of phases of the basis (w, v). 
This system we call the first phase system of the basis (u, v)9 or more briefly the phase 
system of the basis (u, v). The individual phases of this system differ from each other 
by integral multiples of TT. 

Let (a) denote the phase system of (u, v). Let us choose an arbitrary phase a e (a), 
then the phase system (a) is composed of the set of functions 

av(t) = a(t) + VTT (v = 0, ± 1 , ± 2 , . . . ; a0 = a) (5.11) 

and these can clearly be ordered as follows: 

• • * < a^2 < <*-i < a0 < ax < a2 < * • \ (5.12) 

The value of each phase av e (a) at a zero of u or v is respectively an even or odd 
multiple of \TT\ conversely every point inj, at which a phase av e (a) takes the value 
of an even or odd multiple of \n9 is a zero of u or v respectively. 

If the integral u does not vanish in j , then there is precisely one phase av e (a), 
whose values lie entirely between 0 and TT. If, however, u possesses zeros in j , then 
corresponding to each of these zeros there is precisely one phase in (a) which vanishes 
there. 

From the first formula (2.1) we deduce that each phase av e (a) increases or de
creases inj, according as — w > 0 or — w < 0. The integrals u, v are expressed in 
terms of the amplitude r, and an arbitrary phase av e (a) of the basis (u9 v), as follows: 

u(t) = evr(t) • sin av(l), v(t) = evr(t) • cos av(t) (t ej); (5.13) 

in which sV9 the so-called signature of the phase av, takes the value + 1 or — 1. The 
phase av is called proper or improper (with respect to the basis (u9 v)9 according as 
sv = 1 or ev = —-1. 

Two phases av, au e (a), for which the difference v — ft is even, are both proper or 
both improper, while if v —• fi is odd, then one of them is proper and the other im
proper. If av, a^ are both proper or both improper they are said to be of the same kind; 
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otherwise we describe them as of different kind. Clearly, in the ordering (12) of the 
phase system (a) the individual phases are alternately proper and improper: the 
successor of a proper phase is improper and conversely. 

Let t0 and n be arbitrary numbers, with t0 ej and n an integer; then there is pre
cisely one proper and one improper phase whose values at the point t0 lie in the interval 
[2nrr3 (2n + 2)TT). Every proper (improper) phase with respect to the basis (w, v) is 
improper (proper) with respect to the basis (—u, —v). 

The geometrical significance of first phases of the basis (u, v) is as follows:— 
Let a be a first phase of the basis (u, v), and let Wa(l) be the (unique) number in the 

interval [0, 2rr) which is congruent to a(t) modulo 2-n; that is to say a(t) = Wa(l) + 
2nn9 n ( = n(t)) integral, 0 < Wa(/) < 2?r, t e j 

We consider the integral curve $\ with the vector representation x(t) = [u(t)y v(t)]. 
Then Wa(l) is the angle formed between the vector x(t) or the vector —x(t) and the 
co-ordinate vector x2> according as a is proper or improper. In other words a(l) is 
congruent modulo 27r to that angle in the range 0 to 27r which lies between x(t) or —x(t) 
and the co-ordinate vector x2. 

5,4 Boundedness of a first phase 

Let a be a phase of the basis (w, v); the range of a in the interval j obviously forms an 
open interval. 

We have the following theorem: 

Theorem. The phase a is hounded in the interval] if and only if the differential equation 
(q) is of finite type. 

Proof Let / be the range of a in the interval j ; in this interval j there hold formulae 
ofthetype(13). 

(a) Assume that a is bounded inj, then the interval / contains only a finite number, 
say m ( > 0), of distinct multiples of the number IT. From that it follows, using (13), 
that the integral u vanishes precisely m times in the interval j. Now let u be an arbitrary 
integral of (q). If u is linearly dependent upon u9 then u has precisely m zeros in the 
interval j , (the same zeros as u). If, however, the integrals u, u are linearly independent, 
then u has m - l o r m o r m + 1 zeros inj, for between every two neighbouring zeros 
of u there is precisely one zero of u and conversely (§ 2.3). Thus the differential equa
tion (q) is of finite type m or m + 1. 

(b) Let the differential equation (q) be of finite type m ( > 0). Then the integral u 
has at most m zeros in the interval j . Consequently, from (13), the interval / contains 
at most m distinct integral multiples of TT9 SO the phase a is bounded, and the proof is 
complete. 

By similar reasoning we can obtain the following result: 
If the phase a is increasing (decreasing), then it is unbounded below and bounded 

above in the interval j if and only if the differential equation (q) is left (right) oscilla
tory; similarly a is bounded below and unbounded above in the interval j if and only 
if the differential equation (q) is right (left) oscillatory while a is unbounded both 
below and above in the intervaljif and only if the differential equation (q) is oscillatory. 
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The theorem of § 3.12 can be supplemented by the following remark: 
The values a(l), a(x) of the phase a at two distinct points t, x e j differ by an integral 

multiple of TT if and only if the numbers t, x are 1-conjugate. 

5.5 Continuity property of a first phase 

The phase a belongs to the class C3. To show this we take an arbitrary number x ej, 
not a zero of v, and form, in the interval/*, the function 

a(0 = a(x) + — - da. 
Jx r2 

Obviously a e C3. 
Now we consider the function F(t) = a(t) — a(t). From the definitions of a and a 

it follows that 

1. F(x) = 0, 
2. F e C 0 , 
3. In every interval i <= j , in which v does not vanish, the derivative of F vanishes 

identically so that F takes a constant value. 

(a) Let there be no zero of v in the interval j , then from 1, 3 we have F(t) == 0 
and consequently a(t) = a(t) e C3. 

(b) Let to e j be a zero of v. This is an isolated zero of v, consequently there are 
maximal open intervals i± c j and i2 <= j , with right and left end point t0 respectively, 
in which v is non-zero. From 3° it follows that F(t) = k± for t e il9 F(t) = k2 for 
t e i29 kl9 k2 being constants, and from 2° we obtain k± = F(t0) = k2. There exists 
therefore a constant k such that F(t) = k for all r ej. Now 1° shows that k = 0; it 
follows that a(t) = f5c(t) e C3, and the proof is complete. 

It is easy to establish the validity of the following formulae in the interval/*: 

— w rr' la S2 W2\ 

—, a" = 2 w - , « - B , 2 w ( i - 3 - + 4 - ) ; (5.14) 

in which naturally r, s denote the first and second amplitudes of the basis (w, v). We 
easily deduce that in the interval/', 

<x '#0, (5.15) 

and the phase a satisfies the non-linear differential equation of the third order 

^ { a , r } ^ a ^ 2 ( 0 = ^ ( t ) (5.16) 

where the symbol {a, t) denotes the Schwarzian derivative of a at the point t (ej) 
(§1.7). 

Then a brief calculation gives the relation 

{a, t} + a'2(0 = {tan a, t}; (5.17) 
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in this relationship, if the function on the right has any singularities we assign to it at 
such points the corresponding values taken by the left hand side. Hence the non-linear 
differential equation (16) can be more briefly written as 

- { t a n a , t} = q(t). (5.18) 

We see that the phase a serves to determine the carrier q of the differential equation (q) 
uniquely, through the formulae (16) and (IS). 

Finally, we note the important first formula (14) which expresses the relation 
between the phase a and the first amplitude of the basis (u, v). 

5.6 First phases of the differential equation (q) 

By a first phase of the differential equation (q) we mean a first phase of an arbitrary 
basis of the differential equation (q). Obviously, the above results are valid for all first 
phases of the differential equation (q) and for the corresponding bases (u, v). 

5.7 Phase functions 

In the course of our study we shall frequently encounter functions known as "phase 
functions". By a phase function we mean a function a defined in an open interval j 
with the following properties: 

1. a e Cx; 

2. a' -^ 0 for all t ej. 

The following theorem can be established without difficulty: 
Each phase function a e C3 represents, in its interval of definition j , a first phase of 

the differential equation (q) constructed by formula (16), and the functions 

u = |a'|~* sin a, v = |a' |"^cos a 

are independent integrals of this differential equation (q), a being a first phase of the 
basis (w, v). 

5.8 Second phases of a basis 

We now wish to define second phases of the basis (u, v) in a manner analogous to that 
for first phases. In order to achieve this we assume that the zeros of the first derivative 
vr of v9 in so far as they exist, are isolated. We shall always make this assumption in 
what follows, when we are concerned with second phases of a basis (w, v) of the 
differential equation (q). It holds for instance if the carrier q is non-zero inj (§ 2.1). 
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By a second phase of the basis (u9 v) we mean any continuous function /3 in the 
interval j , which satisfies the relation 

uf(t) 
t a n / ? ( t ) = ^ (5.19) 

at every point of this interval with the exception of the zeros of v\ 
The second phases of the basis (u9 v) have, in general, similar properties to those of 

first phases; we shall therefore only recount them briefly. 
The countable system of second phases associated with the basis (u9 v) we shall call 

the second phase system of the basis (u9 v) and denote it by (/?). 
If we choose a second phase ft e (/?), then the system (/?) comprises the functions 

ft(0 = 0(0 + V7T (v = 0, ± 1 , ± 2 , . . .; 0O = 0), (5 20) 

and they can clearly be ordered as follows: 

•-•<P-2<P-i<Po<Pi<p2<-'. (5.21) 

From the second formula (2.1) we deduce that each second phase 0V e (0) is increasing 
or decreasing inj according as wq > 0 or < 0. 

The derivatives u\ vr of the integrals u9 v may be expressed in terms of the second 
amplitude s and an arbitrary second phase 0V e (0) of the basis (u9 v) as follows: 

u'(t) = er
vs(t) • sin 0V(O, v'(t) = s'vs(t) • cos 0v(f) (t ej)9 (5,22) 

in which ev9 the so-called signature of the second phase 0V, takes the value + 1 or — 1. 
The second phase 0V is called proper or improper (with respect to the basis (u9 v)) 
according as sv = 1 or ev = — 1. By means of the ordering (21) of the second phase 
system (0) the individual second phases are alternately proper and improper: the 
successor of a proper second phase is improper and conversely. Every proper (im
proper) second phase of a basis (w, v) is improper (proper) with respect to the basis 
(--*#, - 0 -

The geometrical significance of second phases of the basis (u9 v) is as follows: 
Let 0 be a second phase of the basis (u9 v). Moreover let W0(O be that value lying 

in the interval [0, 2TT) which is congruent to (i(t) modulo 2TT: that is 0(t) = W0(t) + 
277ri, n ( = n(t)) integral, 0 < W/?(0 < 2TT; t ej. 

We consider the integral curve R with the vectorial representation x(t) = [u(t)9 v(t)]. 
Then x'(t) = [u'(t)9 v'(t)] is the tangent vector to the curve K at the point P[u(t)9 v(t)]9 

and WP(t) is the angle between the tangent vector x '(0 or the opposite vector —x'(t) 
and the co-ordinate vector x29 according as 0 is proper or improper. In other words 
/3(f) is congruent modulo 2TT to that angle in the range [0,27r) between the vector x(t) or 
—x(t) and the coordinate vector x2-

5.9 Bowndedness of a second phase 

Let p be a second phase of the basis (u9 v). If the carrier q of (q) is non-zero in the 
interval j , then the second phase ft is bounded or not according to the type of the 
differential equation (q) in the interval j , and similar statements can be made as for a 
first phase (§ 5.4). The theorem of § 3.12 can be extended as follows: the values /3(r), 
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fi(x) of the phase /? at two distinct points t, x ej differ by an integral multiple of w if 
and only if the numbers t, x are 2-conjugate. 

5.10 Continuity property of a second phase 

The second phase /? belongs to the class C±. The proof of this statement follows the 
lines of that in § 5.5 for the first phase. In this case we consider the function 

І7" 0(0 =/?(*)+ -±do. 
Jx S 

Assuming the existence of the appropriate derivatives of a, /? belongs to a higher class 
than C± and we have the formulae 

, _ „ i r = ,($- 2 f). 
(5.23) 

qs zx 

\s2 s3 
S4 

The first formula shows that the zeros of the function /3' coincide with those of the 
carrier q. 

5.11 Connection of a second phase with the associated differential equation 

Now we assume that the carrier q of (q) does not vanish inj, and that q e C2. Then 
the functions 

u' v' 

V|a | V |a | 

form a basis of the differential equation (qx), the associated differential equation of (q) 
(§ 1.9). From the relation u'jv' = ujv1 we see that the second phase system of the 
basis (u, v) coincides with the first phase system of the basis (ul9 vx). There follows 
the relationship, valid for t ej, 

-tan{/?,f} = &(0. (5.24) 

Moreover 

The differential equation (q) and the associated differential equation (q±) have the same 
oscillatory character; that isy both are simultaneously of finite type or are oscillatory of 
the same kind. 

For, let /3 be an increasing second phase of the basis (u, v) and consequently also an 
increasing first phase ax of (w1? vx): /J = a-.. If the differential equation (q) is of finite 
type, then (by § 5.9) the function /? i.e. ax is bounded; § 5.4 then shows that the differ
ential equation (qx) is of finite type. If the differential equation (q) is of infinite type 
and is left or right oscillatory or oscillatory, then by § 5.9 the function /? is respectively 
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unbounded below and bounded above, or bounded below and unbounded above, or 
unbounded on both sides, and the phase ax naturally has the same properties. Then 
from § 5.4 we conclude that the differential equation (qx) is of infinite type, and 
respectively left oscillatory, or right oscillatory, or oscillatory. 

By a similar argument, a given oscillatory character of (qx) implies the same charac
ter of (q). 

5.12 Second phases of the differential equation (q) 

By a second phase of the differential equation (q) we mean a second phase of any basis 
of (q). Obviously the results obtained in §§ 5.8-5.10 are valid for any second phase 
of the differential equation (q) and the corresponding basis (u9 v). We observe that the 
problem of determining the differential equation (q) with a non-vanishing carrier 
q e C2, when given one of its second phases /? is equivalent to the problem of integrat
ing the non-linear second-order differential equation 

JT = -{tmfl,t}-X + ^ ( £ = ±1). 

This may be seen when we write the formula (1.18) in the following way: 

„ , 1 SgtlcXO / i \ " 
-{tan0,t}-7== =-2-?^+[-==) • 

V|a(oi __L_ V|a(o|/ V\q{t)\ 

5.13 Integrals of the differential equation (q) and their derivatives expressed in polar 
coordinates 

Let (u, v) be a basis of the differential equation (q), r, s be its amplitudes and a, j8 a 
first and second phase of the basis (w, v). We have already seen ((13), (22)) that the 
integrals u, v and their derivatives u\ v' can be represented in the interval j by the 
formulae 

u(t) = sr(t) * sin a(t), v(t) = er(t) • cos a(t)-l 
u'(t) = e's(t) • sin /3(l), v'(t) = es(t) - cos P(t)i 

(e,e' = ±l) (5.25) 

in which the values of e9 e' depend on the choice of the phases oc, /?. 
Making use of (14), (23) we can also write 

/-—7 sin a ( 0 , x m c o s a ( 0 
U(t) = 8 V\W\ —=zz=> V(t) = 6 V\w\ - — = 

1 V | a ' ( 0 l V | a ' ( 0 l 
VW¥) W(t) = e' V\^q(t)\ sin £(*), VWU)\ *>'(0 = *' VJ^(t)\ cos 0(t).) 

(5.26) 
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Consequently we have, for the general integral y of the differential equation (q) and 
its derivative y\ the expressions 

sin [a(ř) + k. 
y(t) = kг т=--—^— 

vУíOI 
y/\F(t)\yV) = ±fri V\q(t)\ sin \p{t) + k2],) 

(5.27) 

in which kl9 k2 are arbitrary constants. In the second formula (27) we take the sign + 
or — according as the signatures e9 e' of the phases a, /? are the same or different. 

If k2 = mr + k2, 0 < k2 < 7T, /t being an integer, then the value of the right hand 
side of (27) is not changed if we replace kx by k[ = (—l)nki and k2 by k2. Conse
quently, in the formula (27) we can assume without loss of generality that 0 < k2 < IT. 

5.14 Ordering relations between first and second phases of the same basis 

We consider an arbitrary basis (u9 v) of the differential equation (q) with the Wronskian 
w ( = uvf — u'v). Let a e (a), (3 e (/3) be respectively a first and second phase of the 
basis (u9 v) and e, e' be the corresponding signatures. 

From the definition of w and the formula (25) there follows (for t ej) the relation 

r • s • sin (0 - a) = _e'(-w). (5.28) 

Since the right side of this equation is everywhere non-zero, there is an integer n 
such that the difference /? — a lies between mr and (n + 1)TT V t ej, 

nir<P-<x.<(n+ 1)TT. (5.29) 

We set a0 = a + WTT, /?0 = /? and define the phases av e (a), fiv e ((}) as in the formulae 
(11), (20). It is clear that the system formed from all first and second phases of the 
basis (u, v)9 which we call the mixed phase system of the basis (u, v), can be ordered 
in the following way: 

• • • < a_x < /?_i < a0 < j80 < ax < / ? ! < • • •. (5.30) 

This ordering is obviously such that in the interval j two neighbouring phases av, /?v 

or (iV9 av+1 satisfy respectively the relations 

0 < ^v — av < 7r, — TT < (5V — av+1 < 0. 

It follows from (28) that, respectively, 

sgn eve'v(—w) = 1, sgn evev+1(-w) = - 1 . 

We have, clearly, to consider two cases, according as — w > 0 or — w < 0; corre
spondingly, the first phase av is increasing or decreasing. 

In the case — w > 0 we have 

sgn evsv = 1; sgn e^v+ -. = -1. 

Then the ordering (30) of the mixed phase system of the basis (u9 v) has the effect that 
each proper (improper) first phase ay is followed by a proper (improper) second phase 
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PV9 while after each proper (improper) second phase pv there follows an improper 
(proper) first phase av+1. 

In the case — w < 0 we have 

sgn sv£v = — 1, sgn e'vev+1 = 1, 

and then each proper (improper) first phase av is followed by an improper (proper) 
second phase /5V, while each proper (improper) second phase /?v is followed by a proper 
(improper) first phase av+1. 

This provides a relationship between first and second phases of the same basis of 
the differential equation (q). 

5.15 Some consequences 

We now wish to develop some further relations. First, from (28), (14) and (23) there 
follows: 

OL'B' 1 = -q. (5.31) 
sin2 (p - a) 

Moreover from the first formulae (14), (23) we obtain 

P'-s-
oc' -r2 -q. (5.32) 

If at a point t ej, we have —q > 0, or — q < 0, then the functions a', ft' have the same 
or opposite signs at this point respectively. Hence if the function q is everywhere non
zero in the interval j , the phases a, P have the property that in the case — q > 0 both 
phases a, p increase or decrease together, while in the case — q < 0 one increases 
while the other decreases. 

Consequently if the function q is everywhere non-zero in the interval j , then the 
mixed phase system (30) behaves as follows: in the case — q > 0 both phases av, pv 

increase or decrease together, while in the case —q < 0 one of the phases aV3 pv in
creases while the other decreases. 

We can supplement the theorem of § 3.12 as follows: the values a(r), P(x) of the 
phases a, fi at two points t, x e j differ by an integral multiple of w if and only if x is 
3-conjugate with t and consequently t is 4-conjugate with x. 

5.16 Explicit connection between first and second phases of the same basis 

By §§ 5.5, 5.10, arbitrary phases a, /? of the basis (u, v) are such that, in the intervalj 

a e C3? Pe Cu a' =£ 0. (5.33) 

Now we prove the following theorem: 



Polar coordinates of bases 45 

Theorem. Two functions a, /? in an open intervalj, with the properties (33), represent 
a first and second phase of a basis (u, v) of a differential equation (q) if and only if 

1 / I Y jS = a + Arccot - ( - : ) • 
2 \ a / 

(5.34) 

IJere Arccot denotes a particular or an arbitrary branch of the function. 
If the relation (34) is satisfied then the functions defined in] by the following relations 

u = | a ' | - * sin a, v = |a'|~* cos a (5.35) 

have the desired property and the corresponding carrier q is determined by the formula 
(16). 

Proof (a) Let (u, v) be a basis of a differential equation (q) and a, /S a first and second 
phase respectively of (w, v). The functions a, /? have the properties (33) and they 
satisfy formulae such as (10), (19), (29). From the relation 

cot (j8 — a) = — -
sin a sin ß + cos a cos ß 

sin a cos ß — sin ß cos a 
uu + vv 1 

, .— .—. — _ _ rr 

uv — ufv w 

and the first formula (14), there follows the relation (34). 
(b) Let a, /? be arbitrary functions in an open interval j with the properties (33), 

(34). Inj we define the functions q, u, v by means of formulae (16) and (35). Obviously 
the functions w, v e C2 and at every point t ej there hold the formulae 

u = Ela 

v = e a 

COS a + \ ( 1 ) sin « 

in a + I ( I ) cos a 

(є == sgn a'). (5.36) 

Moreover, 

H» = [-{a, 0 - a ' ^ l a ' l ^ s i n a , 

v* z= [-{a, ř } - a ' 2 ] | a ' | - J c o s a . 

The functions u, v thus form a basis of the differential equation (q) with the Wronskian 
W = —-£. 

From (35), w/y = tan a throughout the interval j , except for zeros of v, while (36) 
and (34) give 

1 / 1 V 
cos a + -

u 2 

( I ) sin a 

-sm 
1 / l V 

a + - 1 -7 I cos a 
2 \a / 

except at the zeros of v\ 

cos a + sin a * cos (ß — a) 

—sin a + cos a * cot (/î — a) 
tan/І 
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Clearly, a is a first and ft a second phase of the basis (u, v) and the proof is complete. 
Finally we remark that arbitrary phases a, ft of the basis (u, ^) in the interval j are 

related by means of the following "bracket formula" 

{tan a, /} - {tan ft, t} + j J q da, t\ = 0 (t0 e j), (5.37) 

this relation being obtained from (18), (24) and (1.20). 

5.17 Phases of different bases of the differential equation (q) 

We now wish to study relationships between the first and second phases of two 
different bases of the differential equation (q). 

Let (u, v), (u, v) be bases of the differential equation (q) and w, w their Wronskians; 
moreover let a, a and ft, ft be first and second phases of these bases and cix, c12, c2l9 c22 

be constants such that the determinant A = \cik\ is not zero. Then we have the fol
lowing theorem 

Theorem. If 
ů = clxu + c12v, 
v = c21u + c22v 

(5.38) 

then 
_ ctl tan a + c12 r cxl tan ft + c12 

t a n a = ^ _ _ _ ^ ^ __s tan ft = — — — — (5.39) 
c21 tan a + c22 c21 tan ft + c22 

Conversely, from the first relation (39), or from the second relation if q £ 0 in f it 
follows that 

\ w 
— (сг1и + c12v% 
wA 

w 
v = ±J—т (c2iu + c22v). 

wA 

(5.40) 

The relations (39) are understood to hold throughout j except for singular points of 
the functions involved. 

Proof The first part of the theorem is obviously valid. We assume therefore that the 
first relation (39) holds; then ujv = (clxu + c12v)\(c21u + c22v) and moreover, on 
taking account of (2.1) we have also w\v2 = wA\(c21u + c22v)2. Then (40) follows 
immediately. 

Now we assume that the second relation (39) holds, and that q =£ 0 for all t ej. 
We then have u\v = (ctlu

9 + c12v')j(c21u' + c22v'), then (2.1) and the hypothesis 
q T^ 0 yield the relation w\v'2 = wA\(c21u' + c22v')2. From this we obtain the formulae 
(40). 

We now have the following corollaries: 

1. The first phase systems of two proportional bases of the differential equation (q) 
coincide; the second phase systems also coincide. Conversely, if two bases of (q) have 
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a common first or second phase, and q is non-zero in the interval j , then these bases 
are proportional. 

2, If oc(/3) is a first (second) phase of the basis (u9 v)9 then \n — a (\ir — /?) is a first 
(second) phase for the inverse basis (v9 u) of (u9 v). 

That is to say, one obtains the elements of the first or second phase system of the 
inverse basis (v9 u) by multiplying the corresponding elements of the basis (w, v) by 
—-1 and increasing by \TT. 

3. If a(j8) is a first (second) phase of the basis (w, v) and A is arbitrary then oc + A, 
(/? + A) is a first (second) phase of the basis (u, v) transformed by the orthogonal 
substitution 

cos A sinA\ 
-sm A COS A! 

that is to say the basis 

ü — u - cos A + v - sin A, 
č = — u • sin A + ť • cos X. 

When we have a first (second) phase a (/}) of the differential equation (q) then the 
system formed from this by means of the formula a = a + X (/i = /i + X) with 
arbitrary A, we call the complete phase system of the phase oc(/3). For this we use the 
notation [a], ([/?]). Obviously, given any number t0 e j there is precisely one first 
(second) phase of the differential equation (q) in the system [a] ([/?]), which vanishes 
at the point t0. 

4. Two first or second phases a, a or /?, (1 of the differential equation (q) are con
nected by means of the formulae (39). If conversely a(/?) is a first (second) phase of (q) 
and there holds a formula similar to (39) for a function a (fi) defined in the interval 

j , then a ((1) is also a first (second) phase of (q). 

5.18 Calculation of the integrals g(a)da9 h(o)do in the neighbourhood of 
JxQ JXQ 

singular points 

As an application of the concept of phases, and of their properties obtained so far, 
we show how to evaluate the integrals considered in § 2.4. 

We revert to the situation described there, using the same notation. In particular y 
denotes an integral of the differential equation (q) with a zero c;j_i or j 0 denotes a 
left or right neighbourhood of c, in which the integral y does not vanish, and g(o) for 
a ej-! or a ej0 denotes the function 

- M - * ' ' y\a) y'\c) (o-cf 

We know that for x0 ej_ l 5 xx ej0 the integral g(o) do exists. We now wish to 
JXQ 

determine its value. 
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Let t e (x0, c) be arbitrary. Then we have 

Г1 / w Г i o i г i 
C xQ ~~" C_ 

Let a be the first phase, vanishing at c, of that basis (u, v) of the differential equation 
(q) determined by the initial values u(c) = 0, u'(c) = 1; v(c) = 1, vr(c) = 0. Then we 
have 

a(c) = 0, a'(c) = 1, a ^ ) = 0, 

and the first formula (27) gives 

y(a) -= j (c) - = = • 
Va'(ff) 

Thus 

,„, X P do n a'(a) do fa(t) do 
y2(c) ^ ^ — = — — = - c o t a(l) + cot a(x0), 

Jx0y (o) Jx0 sm 2 a(ct) Ja(x0) sin2 a 

and consequently 

}>'2(c) ľg(o 
JXQ 

) d(j = —cot a(ł) + 
t — c 

On account of the fact that 

lim -cot a(ł) + 
t — c 

+ cot a(x0) 

= 0 

xo — C 

we have 

y'2(c) [g(a. 
Jx0 

Similarly we obtain, for arbitrary xx ej0 

y 

) do = cot a(x0) — — —-
x0 XQ —• C 

v'2(c) g(®) do = —cot a(xi) + Xл — c 

(5.42) 

(5 43) 

Clearly therefore, for arbitrary numbers x0 ej_l9 xt ej0 we have 

i i 

ў(a) y'Ңc) (a - c)aJ 

1 

da 

ўҢc) 
—cot a(xг) + cot a(x0) + - — — + 

C — xo 
(5 44) 

If the numbers x0, xx are 1-conjugate, then the quantities a(x0), a(xi) differ by an 
integral multiple of TT (§ 5.4) In this case we have 

f 
Ji0 

1 1 1 

_y\a) y'2(c) (a - cf 
da 

1 

У2(c) 

1 + 1 

Lc - xo x! - cj 
(5.45) 
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CXm 

If we apply these results to the calculation of the integral gm(a) da considered in 
Jx0 

§ 2.4, then we first obtain the formula 

rxm m i 
gm(<y) do = _£ — y y [ - c o t a v (x v ) + co t a v (x v _;,.)] 

Jx0 v = l j \CV) 

+ 2 -v=x/Vv) 
1 1 

+ Lcv XQ xm cv 

(5.46) 

in which av is naturally the first phase, vanishing at the point cv, of that basis (u, v) 
of the differential equation (q) determined by the initial values u(cv) = 0, u'(cv) = 1; 
v(cv) = 1, v'(cv) = 0; v = 1, . . ., m. 

If, in particular, the numbers x0, xm are 1-conjugate, then 

J*0 
gm(a) da = 2 — 

v= i y'\cv) 
1 1 

+ [_Cv XQ Xm CVJ 
(5.47) 

Similarly, we can express the values of the integrals h(a) da, hm(a) da con-
Jx0 Jx0 

sidered in § 2.5, in terms of appropriate second phases /?, /3V of the differential 
equation (q), as follows: 

1 1 f11 [j__ 
.L ly'2(o. y'2(a) q(e)y2(e) (a - ef_\ 

1 

da 

q{e)f(e) 
1 1 

-cot ß(xл) + cot ß(x0) + — + 

Çxm 

JXQ 
hm(a) da = 2 

1 

\q(ev)y\ev) 

1 
+ 2 - I Î Í ^ / W 

e — x0 лx — e*. 

[-cot /?„(*„) + cot /5v(л-v__)] 

1 1 "1 

— + • 
— XQ xm evj 

(5.48) 

(5.49) 

If the numbers x0, x_ or x0, xm are 2-conjugate, then there hold the simpler for
mulae (§ 5.9). 

Г 
JX0 

q(a) 1 1 

xo L / V ) ^ ( Ф V ) (a - ef 
da = 

1 nxm m 
hm(a) da = 2 

J*o v - i ^ ( c v ) y 2 ( c v ) 

1 Г i 1 1 + 
_Є — Л"0 Л-! — e_ a(e)j2(e) 

Г i 1 1 + 
_Є — Л"0 Л-! — e_ 

5 

(5.50) 

" 1 1 1 
f — _ _ 

xm Cv_ 

(5.51) 
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