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24 Existence and uniqueness problems for solutions 
of the differential equation (Qq) 

24.1 The existence and uniqueness theorem for solutions of the differential equation (Qq) 

At the basis of general transformation theory lies the following theorem: 
Theorem. Let t0ej, X0eJ, X0 (^ 0), X0 be arbitrary. Then there is precisely one 

"broadest" solution Z(t) of the differential equation (Qq) in a certain interval k ( c y ) 
with the Cauchy initial conditions 

Z(I0) = X0, Z'(to) = * 0 , Z"(t0) = ^ o ; (24.1) 

where "broadest" is used in the sense that every solution of (Qq) satisfying the same 
initial conditions is a portion ofZ(t). 

Let a, A be arbitrary phases of the differential equations (q), (Q), whose values at the 
points t0, X0 are linked as follows: 

a(l0) = A(X0); a'(t0) = A(X0)X0; a"(t0) = A(X0)X;2 + A(X0)X
ff. (24,2) 

Then Z(t) is the solution of the differential equation (Qq) generated by the linked 
phases a, A; 

Z(t) = A-xa(t). (24.3) 
Proof We choose one of the phases a, A, for instance the phase a, arbitrarily; then 
the other, A, is determined uniquely as in § 7.1 by the values A(X0), A(X0), A(X0) 
given by the formulae (2), (§7.1). 

The solution Z(t) generated by the phases a, A obviously satisfies the initial condi
tions (1). We have therefore to show that every solution X(l) of (Qq) defined in an 
interval / (<= j) with the initial values (1) is a portion of Z(t). From § 23.4, 1, the func
tion a(t) = A[X(l)], which is defined in the interval i, is a portion of a phase a0 of 
(q); more precisely, of that phase a0 which is determined by the same initial values (2) 
as for a. It follows that a0(l) = a(l) for t e j and further that a(t) = A[X(l)] for 
t e /, thus X(t) is the portion of Z(t) which exists in the interval /". This completes the 
proof. 

From § 23.4, 2 the curve defined by the function Z(t) passes from boundary to 
boundary of the rectangular region j x J. 

24.2 Transformations of given integrals of the differential equations (q), (Q) into each 
other 

We now concern ourselves with the following question; if two integrals y, Y of the 
differential equations (q), (Q) are given arbitrarily, can we transform one of them 
(say, Y) into a portion y of the other integral y, by means of (23.7), using a suitable 
solution X(t) of the differential equation (Qq), t e i (<= y)? If the answer is yes, then 
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naturally the integral y is transformed by the solution x of the differential equation 
(qQ), inverse to X, into a portion Fof Fas in (23.10). 

The answer to this question is in the affirmative, provided only that we be allowed, 
if necessary, to change the sign of one of the two integrals y9 Y. We can even prescribe 
arbitrarily the value X0 taken by the function X at an arbitrary point t0 ej, X0 = 
X(t0). However, it must be emphasized that the data mentioned above cannot be 
chosen completely arbitrarily, since at two homologous points T = X(t) (e I = X(i)), 
and t = x(T) (e i) the transformation formulae (23.7), (23.10) show that the two 
integrals y, Y must have the same sign or must both vanish. 

We set out the principal result more precisely in the following theorem: 

Theorem. Let y, Y be arbitrary integrals of the differential equations (q), (Q). More
over, let t0 ej\ X0eJ be arbitrary numbers, which satisfy one or other of the following 
conditions (a), (b): 

(a) y(t0) ^ 0 ^ F(X0), (b) y(t0) = 0 = F(X0). 
Then there exist broadest solutions X of the differential equation (Qq), which take 

the value X0 at the point t0, i.e. X0 = X(t0), and in their intervals of definition transform 
the integral Y into a portion y of y: 

*.>-, .H™L (24.4, 
V|r(0| 

In case (a) there is precisely one increasing and precisely one decreasing broadest 
solution X of the differential equation (Qq); in the case (b) there are GO1 increasing and 
the same number of decreasing broadest solutions X. 

In both cases (a), (b) the symbol r\ denotes the number ± 1 , as follows: 
(a) ^ = sgnj(r0)F(X0) 

sgny 'Oo)-^^) for increasing solutions, 
-sgny(t0)F(X0) for decreasing solutions. 

Proof We first assume that there is a solution X of the differential equation (Qq) 
defined in an interval k ( c j) and which is broadest in the sense of this theorem. Then 
the following relations hold in the interval k 

Y[X(t)] 

(b) v = 

y(t) = n 

ӯ'(t) = r, 

V\xxt)\ 
~ Y[X(t)] 

-ViTíoT 
x'(t) -

1 Y[X(t)] X"(t) 

2V\XV)\' X'(t)j 

(24.5) 

It is easy to verify that the functions X, X\ Xn take the following values at the 
point to in the two cases (a), (b): 

(a) X(t0)=X0, — - * 2 ( Z o ) 
X'(t0) )'2(to) 

X'Vo) = 2 Щ^[Y(X0)Ý(X0) - ey(t0)y'(t0)]: 
)Ңto) 

(b) X(t0) = X0, X'(t0) = e / 2 ( ! o ) • 

f2(x0) 

(24.6) 
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where e = ± 1 . In case (b) the value X"(t0) is not determined by the conditions (5). 
Obviously, e = 1 or s = — 1 according as Xis increasing or decreasing in the interval k. 

In case (a), therefore, the initial values X(t0) = X0, X'(^o) ( # 0) and X"(t0) are 
uniquely determined by (i) the integrals y, Y (ii) the choice of the values t0 ej\ X0eJ 
and (iii) whether the function X is increasing or decreasing. In case (b) this holds only 
for the initial values X(t0), X'(^o)- From the theorem of §24.1, it follows that the 
number of broadest solutions X of the differential equation (Qq) satisfying the condi
tion of the theorem cannot exceed the number stated in this theorem. 

Now let Xbe the broadest solution of the differential equation (Qq) determined by 
the initial conditions (6) (a) or (b); in the case (b) let X0 be arbitrary. The existence 
of this solution X is ensured by the theorem of § 24.1; let the interval of definition of 
Xbek(crj). 

According to § 23.2, 1, the function 

*>--m P4.7) 
V\x\t)\ 

which is defined in the interval k, is a solution of the differential equation (q) and it 
is in fact the portion contained in k of the integral y of (q) determined by the Cauchy 
initial conditions 

Я'o) = 
ү(Xo) 

V\xӯõj\ 

y(to)-V\xVo)\ ( o ) 2 V P T M xXt0) 

If we replace X'(t0)9 Xf,(t0) by the values given in the formulae (6), then in both 
cases (a), (b) we have 

K'o) = vy(to)i y(tQ) = ny\h% 

and it follows that for t e k 
y(t) = ny(t). 

Consequently the solution X of the differential equation (Qq) transforms (by (7)) 
the integral r\ Y into the portion of the integral y defined in the interval k. This com
pletes the proof. 

One remark needs to be added. The formula (7) can also be expressed as: 

«\ Y{X{t)] (1A <K\ 
y(t) = 7] - (24.8) 

ViXxoi 
where, however, validity is limited to the interval k ( c j). In special cases it can 
happen that (8) is valid in the whole interval j and at the same time the range of the 
function X coincides with the interval / . Then the function X transforms (by (8)) the 
integral r\ Y in its whole domain into the integral j . Naturally, this situation only 
occurs if the interval of definition k of X is identical with j and also the interval of 
definition, K, of the function x inverse to Xis identical with J. This occurs, in particu
lar, if the differential equations (q), (Q) are oscillatory. Then any two arbitrary phases 
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oc, A of these differential equations are similar to each other; consequently the 
intervals k and j coincide and the intervals K, / coincide also (§ 9.2). 

For example, the function sin t (arising from the carrier q = — 1), is transformed 
into the integral \/TJv(T) of the Bessel differential equation (L24) over the whole 
range te(—co, GO), by means of a suitable increasing function xv(T) (e C3), Te 
(0, oo). Hence we have the following representation of the Bessel function JV(T): 

j { T ) = sinxv(T) 

Vт-xv(T) 
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