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SOME RECENT EXTENSIONS OF JARNÍK’S WORK IN
DIOPHANTINE APPROXIMATION

M.M. Dodson

The contribution Jarník made to mathematics has perhaps not been recog-
nised fully and he has been rather overshadowed by better known mathematicians.
This article begins with an outline of some of his remarkable and highly original
work in number theory and then shows that the ideas he introduced are still flour-
ishing.

Jarník was the first to use Hausdorff measure and dimension in the study
of sets of measure zero which arise in the theory of Diophantine approximation
and his paper “Zur metrischen Theorie der diophantischen Approximationen” [16]
written around 1928 was rightly referred to by Rogers ([23], p. 135) as “pioneering”.
In it Jarník proved the interesting result that the Hausdorff dimension of the set
(M∞ in his notation) of badly approximable numbers is 1. Badly approximable
numbers are also referred to as numbers of constant type and are numbers x for
which there exists a positive constant c depending only on x such that

‖qx‖ > c|q|−1

for all non-negative integers q (‖t‖ = inf{|t − k| : k ∈ Z} for all real t). Some 40
years later, this result was extended by W. M. Schmidt [24] to systems of linear
forms and it is still attracting attention. S. J. Patterson has extended Jarník’s
theorem in considering Diophantine approximation in Fuchsian groups ([21], §10)
and recently has extended it to quadratic forms ([22], Theorems 4 and 7). S. G. Dani
([9], [10]) has generalised these ideas still further to bounded orbits of flows on
manifolds.

Jarník was also interested in the set W (τ) of real numbers x for which the
inequality

‖qx‖ < |q|−τ ,
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where τ > 1, holds for infinitely many integers q. (Instead of (1), Jarník used the
different but equivalent form ∣∣∣x− p

q

∣∣∣ < |q|−α
where α > 2 and called the set Pα). This set is a refinement of the complementary
notion of well approximable numbers and in [17] Jarník showed that the Hausdorff
dimension of W (τ) is 2/(τ + 1). His proof is based on arithmetic ideas and relies
heavily on the properties of continued fractions and on a result from analysis,
namely Cantor’s intersection theorem. Shortly afterwards Jarník [18] extended
this result to simultaneous Diophantine approximation by showing that rational
approximations to x2, . . . , xn with common denominator q can be found without
affecting the approximation to x1 significantly. He proved that the dimension of
the set W (τ ;n) (or M(x−τ ;n) in his notation) of points (x1, . . . , xn) in Rn for
which the system of inequalities

(1) ‖qxi‖ < |q|−τ , i = 1, . . . , n,

where τ > 1/n, holds for infinitely many integers q, pi, i = 1, . . . , n, is
(n+ 1)/(τ + 1).

A few years later and apparently unaware of Jarník’s work, Besicovitch [4]
also determined dimW (τ). Besicovitch used more geometric ideas than Jarník,
as did Eggleston [14] who in a general paper on sets of number theoretic interest,
also obtained the Hausdorff dimension in the n-dimensional case. Eggleston’s more
geometric approach enabled him to obtain more general, though less precise results
than Jarník, in which the denominators q lay in sequences, such as the primes, that
were not too sparse.

Jarník’s and Besicovitch’s result was extended in a different direction by Baker
and Schmidt [1] to sets defined more widely in terms of approximation by algebraic
numbers of bounded degree. More recently, Kaufman [19] has shown that there is a
positive measure µ supported on a compact subset of W (τ) with Fourier-Stieltjes
transform µ̂ satisfying

µ̂(u) = o(|u|−1/(τ+1) log |u|)

as |u| → ∞.

I will discuss briefly Jarník’s papers of 1929 and 1931 on the Hausdorff di-
mension of subsets of well-approximable numbers and then outline some recent
extensions of his ideas. Jarník’s starting point is the set of measure 0 which arises
in the easy half of Khintchine’s theorem ([6], [25]). Suppose ψ(k), k = 1, 2, . . ., is
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a sequence of positive numbers such that

(2)
∞∑
k=1

ψ(k)n

converges. Then the system of inequalities

‖qxi‖ < ψ(|q|), i = 1, . . . , n,

holds for infinitely many integers q for almost no x in Rn. Thus the set of points
which allow very good simultaneous rational approximations (in the sense that
ψ(k) decreases fast enough to ensure that the sum (2) is finite), is of measure zero.
(The converse result that if the sum (2) diverges, almost no points x satisfy the
system of inequalities for only finitely many q holds when ψ(k) is monotonic.) In
particular, when τ > 1/n, the set W (n; τ) of points x ∈ Rn which satisfy (1) for
infinitely many integers q has Lebesgue measure zero. Such sets can be considered
thin or negligible and are sometimes referred to as exceptional. They can however
be very different. For example the set of badly approximable numbers M∞ and
the set W (τ) (= W (1; τ)) when τ > 1 both have Lebesgue measure 0 but have
different Hausdorff dimension.

Hausdorff dimension is a generalisation of the familiar notion of dimension
and the two dimensions coincide for sets such as the line or the plane or more
generally for finite dimensional smooth manifolds such as the circle. Sets whose
Hausdorff dimension exceeds their topological dimension are called fractals [20].
The fundamental difference between the two ideas is that any subset of finite
dimensional Euclidean space can be assigned a Hausdorff dimension. The price of
this generality is a somewhat complicated definition (see [15]).

Let Γ be a finite or countable collection of open hypercubes C in the k-
dimensional Euclidean space Rk and let the length of the sides of a hypercube
C be denoted by `(C). For each real number s > 0, the s-volume V s(Γ) of the
collection Γ is defined by

V s(Γ) =
∑
C∈Γ

`(C)s.

Given any set X ∈ Rk and any positive number σ, let mσ(s,X) = inf V s(Γσ),
where the infimum is taken over all covers Γσ of X with `(C) < σ for each C ∈ Γσ.
The s-dimensional outer Hausdorff measure m(s,X) of X is given by m(s,X) =
sup{mσ(s,X) : σ > 0}. The Hausdorff dimension dimX of X is defined by

dimX = inf{s ∈ R : m(s,X) = 0}
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and is the unique value of s such that

m(s,X) =

{
∞, 0 6 s < dimX,

0, dimX < s <∞.

The Lebesgue measure m(k,X) of X will be denoted by |X|.
It follows that if X can be covered by a collection Γ% with arbitrarily small

s-volume V s(Γ%), then dimX 6 s. On the other hand, if for each positive ε, there
exists a positive number % = %(ε) such that every cover Γ% of X with `(C) 6 %

satisfies V s(Γ%) > ε, then dimX > s; roughly speaking if the s-volume of covers
consisting of small hypercubes of X is large, then dimX > s.

Clearly a cover Γ of X will be a cover for any subset X ′ of X and it follows
from the definition that if X ′ ⊂ X ⊂ Rn, then

dimX ′ 6 dimX 6 n.

The determination of Hausdorff dimension can often be simplified by the observa-
tion that when

X =
∞⋃
j=1

Xj ,

then

(3) dimX = sup{dimXj : j = 1, 2, . . .}.

Determining the dimension h say of a set X is usually done in two separate
stages. The upward inequality dimX 6 h is established by constructing for any
positive ε and any s > h, a cover Γ with s-volume V s(Γ) < ε. This is often
straightforward (though not always; see for example [2], [3]). Unless there is some
general lower bound for dimX that happens to coincide with h (as for example in
[6], [11], [26]), the complementary inequality dimX > h is usually much harder,
and the cases considered here are no exception. It has to be shown that for any
s < h, any cover Γ consisting of arbitrarily small hypercubes of the set X has
s-volume V s(Γ) > ε for some positive ε. Jarník chose, as most workers have done
since, to use the technically more convenient contrapositive form of the definition
for the Hausdorff dimension: Let s be any positive number with s < h. If any
collection Γ of arbitrarily small hypercubes with V s(Γ) < 1 cannot cover the set
X, then dimX > h.

To illustrate these ideas, we shall follow Jarník’s proof [17] that

dimW (τ) 6 2/(τ + 1).
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First in view of (3), we need only consider numbers in the unit interval I = (− 1
2 ,

1
2 ]

instead of R. The collection

ΓN =
⋃
|q|>N

⋃
p∈qI

(p
q
− |q|−τ−1,

p

q
+ |q|−τ−1

)
is a cover by intervals for W (τ) for each N = 1, 2, . . . since if x ∈ W (τ), then
|qx − p| < |q|−τ for infinitely many integers p, q and we may choose |q| > N .
Also the s-volume V s(ΓN ) (or more appropriately in this case, the s-length) of ΓN
satisfies

V s(ΓN )�
∑
q>N

∑
|p|<q

2q−(τ+1)s

�
∑
q>N

q1−(τ+1)s � N2−(τ+1)s.

Thus when s > 2/(τ + 1), V s(ΓN ) → 0 as N → ∞ and for each C ∈ ΓN ,
`(C) 6 2N−(τ+1). Hence by definition it follows that dimW (τ) 6 2/(τ + 1).
Jarník [18] obtained the upper bound (n+ 1)/(τ + 1), τ > 1/n, for the Hausdorff
dimension of W (τ ;n) in a similar way.

Jarník’s results can be extended to systems of n linear forms

m∑
i=1

θiaij , j = 1, . . . , n

in m real variables, which we will write more concisely as

θA,

where A is an m× n real matrix and θ = (θ1, . . . , θm) ∈ Rm. If the sum

(4)
∞∑
k=1

km−1ψ(k)n

converges, then by Groshev’s extension of Khintchine’s theorem ([25], pp. 33–34),
the system of inequalities

(5)

∥∥∥∥ m∑
i=1

qiaij

∥∥∥∥ < ψ(|q|), 1 6 j 6 n,

where for each x ∈ Rm, |x| = max{x1, . . . , xm}, holds for infinitely many q ∈ Zm

for almost no matrices A ∈ Rmn. (The complementary result that when the sum
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(4) diverges, almost all systems of linear forms satisfy (5) for infinitely many integer
vectors q holds under natural monotonicity conditions.) Thus when τ > m/n and
ψ(k) = k−τ , the set W (m,n; τ) of matrices (or systems of linear forms) satisfying
(5) has Lebesgue measure 0 in Rmn (note that W (n; τ) = W (1, n; τ)).

When τ > m/n, the Hausdorff dimension of W (m,n; τ) is (m − 1)n + (n +
1)/(τ + 1) [7]. The upper bound

(6) dimW (m,n; τ) 6 (m− 1)n+ (n+ 1)/(τ + 1)

is obtained in a similar way to that of W (τ).

The proof that the Hausdorff dimension of W (m,n; τ) is at least (m− 1)n+
(n+ 1)/(τ + 1) is much harder and has features in common with those of Jarník,
Besicovitch and Eggleston. All these proofs rely on the zero sets of the associated
system of Diophantine equations or “resonant” planes being regularly distributed
in some way. In [7] and [13] this regularity is made explicit through a “second mo-
ment” argument which will now be sketched. This and the subsequent arguments
are somewhat intricate, relying on a variance associated with the distribution of
certain resonant planes not being too large and involving repeated subdivision.
Some of the ideas resemble those arising in the study of iteration and self-similar
sets, such as the Mandelbrot set, which reproduce themselves in some sense at
certain scales and which are currently attracting considerable attention (see for
example [5], [20]). When m > 2, more geometrical ideas can be used to obtain
the fundamental “invariance of measure” and “independence” results (7) and (8)
below ([13], (8.4) and (8.5)). The “independence” result is sharper than the cor-
responding one in [7], Lemma 3 and leads to the sharper second moment estimate
(10) below. Incidentally, since the “invariance of measure” and “independence”
results (7) and (8) correspond to Lemmas 8 and 9 respectively in [25], they pro-
vide a different proof of the version of Groshev’s theorem given above. In view of
this and of the results of Jarník [18] and Eggleston [14] which deal with the case
m = 1, we shall take m > 2.

Some notation and definitions are needed. Let I = (− 1
2 ,

1
2 ] and for each x =

(x1, . . . , xn) in Rn, let
kx

be the unique integer vector (symmetrised fractional part) such that x− kx ∈ In.
Write

〈x〉 = x− kx.

The map 〈. 〉 : Rn → In : x 7→ 〈x〉 projects each x ∈ Rn to the cube In; note too
that |〈u〉| = ‖u‖ for u ∈ R. For each q ∈ Zm, define the function Φq : Imn → In
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(where we can regard Imn ∼= Rmn/Zmn ∼= Tmn, the n-dimensional torus) by

Φq(A) = 〈qA〉.

Let χ be the characteristic function of the n-dimensional cube B(%) = {x ∈ Rn :
|x| < %}. Then

χ(qA− p) =
∑
p

χU (A),

where the sum is over all vectors p ∈ Zn with p ∈ |q|In and where the set
U = Φ−1

q (B(%)). When n > 2, the measure of the inverse image under Φq of any
hypercube C in In is preserved, i.e.,

(7) |Φ−1
q (C)| = |C|

and the sets Φ−1
q (C) and Φ−1

q′ (C ′) are “independent” in the sense that for any
linearly independent q, q′,

(8) |Φ−1
q (C) ∩ Φ−1

q′ (C ′)| = |Φ−1
q (C)| · |Φ−1

q′ (C ′)| = |C||C ′|.

These equations follow from the geometry of the torus Rmn/Zmn and require only
translation invariance (see [13], (8.4) and (8.5)). The proof given there is for the
case m > 2, n = 1 but it can be extended to general n. Sprindžuk ([25], Chapter I,
Lemmas 8 and 9) proves a more general result, although linearity is needed.

The “resonant” planes

Π(q,p) = {A ∈ Imn : qA = p} ⊂W (m,n; τ),

where q ∈ Zm and p ∈ Zn, play a fundamental role and form a kind of “skeleton”
for W (m,n; τ). For technical reasons the integer vectors q ∈ Zm are taken to be
primitive, i.e., the components q1, . . . , qm have no common factors. Two distinct
primitive (integer) vectors cannot be collinear with the origin and so are linearly
independent. Let

SN = {Π(q,p) : p ∈ qImn, q primitive, N < |q| < 2N}.

From now on q will be a primitive vector in Zm with N < |q| < 2N and p will be
a vector in Zn satisfying p ∈ qImn. The function νN : Imn → Z given by

νN (A) =
∑
q

∑
p

χ(qA− p) =
∑
q

χU (A)



30 M.M. Dodson

is the number of p,q such that |qA− p| < % or, roughly speaking, the number of
planes Π(q,p) ∈ SN within about %/N of A. The mean µN of νN is by definition

µN =
∫
Imn

νN (A) dA =
∫
Imn

∑
χU (A) dA(9)

=
∑
q

|Φ−1
q (B(%))| = 2n%n

∑
q

1

by (7). The sum
∑
q

1 can be estimated when m > 2 is ∼ Nm−1 and when m = 2

is ∼ Nϕ(N) where ϕ(N) is the Euler divisor function (a ∼ b means that a � b

and b� a). Next we estimate the second moment of νN :∫
Imn

ν2
N (A) dA =

∫
Imn

∑
q

∑
q′

χU (A)χU ′(A) dA,

where U ′ = Φ−1
q′ B(%). Hence∫

Imn
ν2
N (A) dA =

∑
q

∫
Imn

χU (A) dA+
∑
q 6=q′

∫
Imn

χU (A)χU ′(A) dA

= µN +
∑
q6=q′

|Φ−1
q (−%, %) ∩ Φ−1

q′ (−%, %)|

= µN +
∑
q6=q′

|Φ−1
q (−%, %)||Φ−1

q′ (−%, %)|

by (8). Therefore by (7),∫
Imn

ν2
N (A) dA = µN +

∑
p6=p′

(2%)2n 6 µN + µ2
N

by (9). It follows immediately that

(10) σ2
N 6 µN .

Thus in a sense the resonant hyperplanes in SN are regularly distributed and we
will show that they are well enough distributed to construct a “sampling” set T (N)
which “measures” the volume of a set and which tends to a subset of W (m,n; τ)
as N →∞. Volume considerations can then be used to show that Γ cannot cover
W (m,n; τ) (in fact Γ fails to cover one point in a particular subset of W (m,n; τ)).

By Tchebycheff’s inequality, the Lebesgue measure of the set {A ∈ Imn :
|νN (A)− µN | > µN} satisfies

(11) |{A ∈ Imn : |νN (A)− µN | > σ2
N/µN}| 6 1/µN .
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Now choose % = N−m/n+η, where 0 < η < min{m/n, τ −m/n, (1 + τ)δ/n}. Then
%n → 0 and µN → ∞ as N → ∞. It follows from (11) that the measure of the
set of points (matrices) A for which νN (A) = 0, i.e., which are not within %/N of
a resonant plane Π(q,p) ∈ SN (more precisely the measure of the set of points
A ∈ Imn not satisfying |qA− p| < % for some p, q) tends to 0 as N →∞.

We are now in a position to construct the “sampling” set T (N) by select-
ing well distributed resonant planes in SN and then thickening them slightly. In
addition, as N →∞, T (N) tends to a subset of W (m,n; τ) ∩ Imn.

Dissect Imn into [N/(16%)]mn ∼ Nm(n−m+nη) congruent hypercubes H with
length of side `(H) = [N/(16%)]−1 ∼ N1−(m/n)+η. By volume considerations and
(11), a plane Π(q,p) passes through � `(H)−mn ∼ Nm(n−m+nη) of these hyper-
cubes H within %/N of its centre. Choose one such “slice” S say from each such
hypercube H and let

V = V (S) =
{
A ∈ cl

(1
2
H
)

: |A−R| 6 m−1(2N)−τ−1 for some R ∈ S
}

( 1
2H is the hypercube of half the length of H and the same centre) so that V =
V (S) is a closed neighbourhood of a contracted slice S. Let T (N) be the collection
of such V ’s. The mn-dimensional volume |T (N)| of T (N) satisfies

|T (N)| ∼
∑

V ∈T (N)

|V | ∼ Nm+n−(τ+1)n−nη,

where the implied constants do not depend on N . It follows from volume consid-
erations and a counting argument that the set T (N) is sufficiently regular and
numerous to “measure” in a rough sense the volume of a set (see [7], Lemmas 5
and 6; [13], Lemmas 8.4 and 8.5). Indeed for any set X ∈ Imn with boundary of
measure 0, the measure of the intersection of X and T (N) satisfies

(12) |X ∩ T (N)| ∼ |X||T (N)|.

When the set X depends on N , i.e., when X = X(N), the result breaks down
but a similar counting argument gives the estimate

(13) |C ∩ T (N)| � |C||T (N)|+ `(C)(m−1)nN−(τ+1)n

for hypercubes C with `(C) > N−τ−1.

To establish the lower bound for the Hausdorff dimension, let δ be any positive
number and put s = (m− 1)n+ (n+ 1)/(τ + 1)− δ. Suppose that the countable
collection Γ of sufficiently small hypercubes C satisfies

(14) V s(Γ) =
∑
C∈Γ

`(C)s < ε
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for some positive ε. The bound (14) for the s-volume V s(Γ) restricts the Lebesgue
measure V mn(Γ) of Γ and the extent to which it can cover T (N). It turns out that
no such collection Γ can cover W (m,n; τ) and hence that

dimW (m,n; τ) > (m− 1)n+ (n+ 1)/(τ + 1).

The argument uses repeated subdivision. Dissect Imn into [N1/16%1]mn ∼
N
m(n−m+nη)
1 congruent hypercubes as above. The volume estimates (12), (13)

and (14) imply that the hypercubes C in Γ with N−τ−1
1 6 `(C) < N−τ−1

0 , where
N0,N1 are suitably large (in particular so that N−τ−1

0 is sufficiently small), cannot
cover T (N1). Indeed the closed set

G1 = T (N1) \ {C ∈ Γ: N−τ−1
1 6 `(C) < N−τ−1

0 }

has positive measure. Dissect Imn into [N2/16%2]mn congruent hypercubes where
N2 is sufficently large and construct T (N2). The set

G2 = T (N2) \ {C ∈ Γ: N−τ−1
2 6 `(C) < N−τ−1

1 } ⊂ G1

also has positive measure. Repeated application with a suitably rapid increasing se-
quence Nr : r = 1, 2, . . . yields a decreasing sequence of non-empty closed bounded
sets Gr, r = 1, 2, . . ., with Gr+1 ⊃ Gr (for a detailed proof see [7], Lemma 8). Thus
by Cantor’s finite intersection theorem,

G∞ =
∞⋂
r=1

Gr 6= ∅.

Now each C ∈ Γ does not meet G∞, since every C in Γ is in some range N−τ−1
r 6

`(C) < N−τ−1
r−1 , r > 1, and hence cannot be in

Gr = T (Nr) \ {C ∈ Γ: N−τ−1
r 6 `(C) < N−τ−1

r−1 } ⊃ G∞.

Hence the collection Γ cannot cover G∞. But G∞ ⊂ W (m,n; τ). For suppose
A ∈ G∞. Then A ∈ Gr for r = 1, 2, . . ., and hence A ∈ T (Nr) for r = 1, 2, . . . Thus
for each r = 1, 2, . . ., there is a point R in some Π(q,p) ∈ SNr with

|A−R| 6 n−1 · (2Nr)−(τ+1),

and therefore since R ∈ Π(q,p) and |q| < 2Nr,

|qA− p| = |q(A−R)| 6 m|q||A−R| 6 |q|(2Nr)−(τ+1) < |q|−τ .
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And since |q| > Nr, for each A ∈ G∞ there are infinitely many (q,p) ∈ Zm+n

such that |qA−p| < |q|−τ , i.e., |〈qA〉| < |q|−τ holds for infinitely many q in Zm.
Therefore if A ∈ G∞, then A ∈ W (m,n; τ), i.e., G∞ ⊂ W (m,n; τ). Because it is
not a cover of G∞, Γ certainly cannot cover W (m,n; τ) and it follows from the
definition of dimension that

dimW (m,n; τ) > (m− 1)n+
n+ 1
τ + 1

, τ >
m

n
,

which together with the complementary inequality (6) proves that when τ > m/n,

dimW (m,n; τ) = (m− 1)n+
n+ 1
τ + 1

.

By Groshev’s extension of Khintchine’s theorem [25], when τ > m/n, almost all
matrices A in Imn are in W (m,n; τ) because then the sum

∑
|q|−τ , where the

summation is over all non-zero q in Zn, diverges.

Just as the geometric arguments of Eggleston [14] permitted the extension to
integers q lying in sequences which were not too sparse, the fairly general geometric
and statistical character of the above arguments allows the vectors q to lie in
subsets of Zn which are not too irregular or sparse. For instance each coordinate
of q can be taken to be a prime in arithmetic progression ([7], p. 353).

So far we have looked at metric Diophantine approximation and Hausdorff
dimension for points in Euclidean space. The extension to points lying on manifolds
M such as curves or surfaces embedded in Euclidean space and which are extremal
(i.e. almost all points in the induced measure on M are not well approximable)
is a natural but difficult question. Resonant planes which are tangent or near-
tangent to M are hard to handle but R. C. Baker [2] has shown that the Hausdorff
dimension of the set of points x on a C3 (three times differentiable) curve in R2

with non-zero curvature everywhere except on a set of zero Hausdorff dimension
such that

(15) ‖q · x‖ < |q|−τ

for infinitely many q in Z2 has Hausdorff dimension 3/(τ + 1) when τ > 2. In a
recent joint work with Bryan Rynne and James Vickers of Southampton University,
this result has been extended to smooth manifolds of dimensionm and codimension
n in Rm+n which satisfy a certain curvature condition [12]. For such manifolds the
Hausdorff dimension of the set of points x in M for which (15) holds for infinitely
many q ∈ Zm is m − 1 + (m + n + 1)/(τ + 1) when τ > m + n. The methods
used differ in some important respects from those used in the Euclidean case.
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In particular they are less statistical and rely on the geometry of numbers to
supply the well-distributed sets T (N). Other applications of these ideas include
determining the Hausdorff dimension of the set of points (x,y) ∈ R2n satisfying
the pair of Diophantine inequalities

|q · x| < |q|−τ , ‖q · y‖ < |q|−τ

for infinitely many q ∈ Zn. These inequalities arise in connection with Schröder’s
functional equation and with normal forms for periodic holomorphic vector fields
and indeed the number theoretic sets discussed here are closely related to excep-
tional sets associated with a variety of results in analysis and dynamical systems,
e.g. the Kolmogorov-Arnol’d-Moser theorem (see [13]).

Thus the ideas and research begun by Jarník nearly 60 years ago still flourish
and promise to yield more interesting developments and results in the future.
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