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THE WORK OF PROFESSOR JARNÍK IN REAL ANALYSIS

David Preiss

Ladies and gentlemen,

first, let me thank Professor Novák for entrusting me with the pleasant task of
discussing Professor Jarník’s contribution to Real Analysis at this meeting. I would
also like to thank Professor Zajíček for helping me with preparation for this talk, in
particular for explanation of his recent results continuing some of Professor Jarník’s
work. Indeed, much of the work of Prague school of Real Analysis, including my
own, has its roots, directly or indirectly, in Jarník’s research, and all members of
this school have been deeply influenced by the approach to analysis stemming from
Jarník’s teaching and from his textbooks.

Let me also recall that, as a beginning student, I had an opportunity to attend
Professor Jarník’s lecture on simultaneous diofantine approximations. For a few
months, we could follow an excellent lecture, an interesting subject, and a detailed
and very technical analysis of problems, which I found highly interesting both in
itself and in the results it led to. I thoroughly enjoyed the precise style, in which
every little piece had to fit exactly in its place, and which in analysis leads to
preferring ε/2 to ε, a trick much hated by some, but much admired but others
(including myself). This lecture series turned out to be the last given by Professor
Jarník; his health did not allow him to finish it, even though, when it became clear
that he would not be able to continue it at the university, he tried to do it at his
home.

Let me come back to Professor Jarník’s papers in Real Analysis, or as some
prefer to say, in Theory of Real Functions. Of course, this subject is not very
precisely defined, as can be clearly seen by a casual perusal of a few recent articles
in the current leading journal in this field, Real Analysis Exchange. However, even
the purest real analysts would agree that more than twenty of Professor Jarník’s
papers belong to their field; others might count another ten as belonging there as
well.
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It seems that Professor Jarník’s interest in the theory of functions of real vari-
able started with his study of the so-called Bolzano’s function (2). This function
was constructed by Bernard Bolzano about 1830 to show that there are functions
disagreeing with the naive concept of continuity: He argues that his function is con-
tinuous in an interval [a, b] (interestingly enough, although Bolzano understood the
need for uniform convergence to preserve continuity, he argues incorrectly using
pointwise convergence only; but that is another story) and yet has not a finite
derivative at any point of a certain set dense in [a, b]. Jarník in (2) proves not only
that Bolzano’s function is actually an example of a continuous nowhere differen-
tiable (finitely or infinitely) function, but he also studies in great detail its Dini
derivatives. Since the Dini derivatives (and their generalizations) will be important
later, let us recall that the upper right Dini derivative (or derived number) of a
function f at a point x is defined by

D+f(x) = lim sup
y→x+

f(y)− f(x)
y − x

;

the other three Dini derivatives (denoted by D−, D+, and D−) are defined in an
obvious way.

It was probably his study of Dini derivatives of one particular function that
led Professor Jarník in (4) to a very interesting result:

If f : [a, b] → R has unbounded variation in each interval then at each point
of a set dense in [a, b] at least one of the four Dini derivatives equals +∞.

As Professor Jarník remarks, this result is applicable to every nowhere differ-
entiable function. The reason why I find this statement remarkable is that it seems
to be very close to the way in which K. M. Garg started in 1970 the new wave of
interest in typical functions! (I will return to this later.)

For the next ten years Professor Jarník worked on different questions (some
of them also in Real Analysis; see later), but he returned to nowhere differentiable
functions after he learned about the famous result proved independently by Banach
and Mazurkiewicz in 1931:

Typical continuous function f : [a, b]→ R is nowhere differentiable.
(Following the “modern” terminology, I use the phrase “typical continuous

function f : [a, b] → R has property P” to replace the statement “the set of all
continuous functions f : [a, b] → R not having the property P is a first category
subset of the space of all continuous functions on [a, b]”.)

Professor Jarník immediately recognized the importance of this theorem. (For
Czech readers he gave an account of its proof as a part of (42).) Indeed, Professor
Jarník’s investigation of typical continuous functions belongs to his most referred-
to works from real analysis. (I do not dare to say ‘the most referred-to’, not so
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much because I have not attempted to count the references, but mainly because
of the recent popularity of Jarník points, to which we will come in a short while.)
Let us look first at the results about Dini derivatives of typical functions known
after the publication of (39) in 1933:

For a typical continuous function f ,

(a) [D−f(t), D−f(t)] ∪ [D+f(t), D+f(t)] = [−∞,+∞] for every t (Jarník (39)),

(b) max(|D+f(t)|, |D+f(t)|) = max(|D−f(t)|, |D−f(t)|) =∞ for every t (Banach
(1931), Mazurkiewicz (1931)),

(c) there are uncountable sets M−, M−, M+, and M+ such that

D−f(t) = +∞ for every t ∈M−,
D−f(t) = −∞ for every t ∈M−,
D+f(t) = +∞ for every t ∈M+, and

D+f(t) = −∞ for every t ∈M+ (Saks (1952), and

(d) D−f(t) = D+f(t) = −∞ and D−f(t) = D+f(t) = +∞ for almost every t

(Jarník (39)).

(One should recall that A. S. Besicovitch (1925) constructed a continuous
function without unilateral derivatives (finite or infinite) at any point and that
the Banach-Mazurkiewicz result seemed to suggest that typical (“most”) functions
have the worst possible behaviour. For this reason the “Saks’ rarity theorem” (c)
has always been considered as very surprising.)

In a different direction the result of (a) was generalized by Marcinkiewicz
(1935), whose work has been continued more recently by Schultz (1972). But it was
only in 1970 when the next significant contribution to the study of Dini derivatives
of typical continuous functions appeared. In that year K. M. Garg improved (d)
by showing that for a typical continuous function the set of non-knot points is also
of the first category. (Further results in this direction were proved by G. Petruska
(1985) and by L. Zajíček (1989); for related results see also Wos (1986), Kozyrev
(1992) and Zajíček (1987).) An interesting feature of Garg’s work is that his proofs
of the statements about typical functions are based upon general theorems about
the behaviour of nowhere monotone functions (compare with Jarník’s paper (4)!)
which are then combined with Jarník’s results. As an example I may give a simple
argument (belonging essentially to Garg) showing that (c) follows from (d). First,
let us recall a (rather easy) monotonicity theorem: If f : (a, b) → R is continu-
ous, D+f > 0 almost everywhere and D+f > −∞ for all but countably many
points, then f is non-decreasing. From this, since (d) implies that a typical f ful-
fils D+f > 0 a.e. but is not non-decreasing, we infer that D+f(t) = −∞ for t
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belonging to an uncountable set. (It should be noted that the original proof of the
“Saks’ rarity theorem” is considered to be considerably more complicated than
Jarník’s proof of (d).) Garg in 1970 also gives a partial answer to the natural
problem whether “Jarník’s relations” (i.e. (a) and (b)) are all relations among
Dini derivatives of typical functions holding at every point.

I would also like to point out that (39) (supplemented by (55)) also contains
results about the “typical” behaviour of “generalized Dini derivatives” defined by

D+
γ f(t) = lim sup

h→0+

f(t+ h)− f(t)
γ(h)

.

The statements corresponding to (a), (b) and (d) again hold, but there is a small
surprise connected with (c): If lim

h↘0
γ(h)/h = ∞, then for a typical continuous

function D+
γ f(t) > 0 > Dγ+f(t) for every t. This implies, for example, that, even

though there are points at which, say

lim
h↘0

(f(t+ h)− f(t)) /h = +∞,

there are no points at which

lim
h↘0

(f(t+ h)− f(t)) /
√
h = +∞.

The next huge group of Jarník’s results about typical functions is concerned
with approximate derivatives, approximate Dini derivatives, etc. To explain them,
let us recall that the upper right density of a measurable set E ⊂ R at a point x
is defined by

d+(E, x) = lim sup
h↘0

meas (E ∩ (x, x+ h))
h

.

(Other kinds of densities are defined and denoted similarly.) The most important
“approximate notion” is that of approximate derivative: A function f is said to
have an approximate derivative at a point x if there is a measurable set E with
d−(E, x) = d+(E, x) = 1 such that

f
′

E(x) = lim
y→x,y∈E

f(y)− f(x)
y − x

exists. (This limit is, of course, called the approximate derivative of f at x.) Mo-
tivated by this, let us call a number c (possibly +∞ or −∞) a right approximate
derived number of a function f with upper density α if there is a set E such that
d+(E, x) = α and f

′

E(x) = c.
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The usual knowledge about Jarník’s “approximate results” for typical func-
tions seems to be restricted to the statement that typical continuous functions do
not have approximative derivative at any point. But Jarník (44, 46, 48) proves
much more! Indeed: Typical continuous function has the following properties:

(I) For every t,

(1) +∞ or −∞ is an approximate right derived number of f with upper
density one,

(2) +∞ or −∞ is an approximate left derived number of f with upper density
one,

(3) both +∞ or −∞ are approximate derived numbers of f with upper sym-
metric density 1

2 each, and

(4) at least two of the numbers −∞, 0, +∞ are approximate right derived
numbers of f at t, with upper density 1

4 , or at least two of these numbers
are approximate left derived numbers of f at t, with upper density 1

4 .

(II) For almost every t each number is a bilateral derived number with upper
density one.

As an example of corollaries let us just note that a typical continuous function
cannot have both unilateral approximate derivatives at any point (though it has
one unilateral ordinary derivative at some points!).

This research has been very recently continued by J. Malý and L. Zajíček,
who found both valid (Zajíček (1993)) and invalid (Malý and L. Zajíček (1991))
analogues of (a) for approximate derivatives. Moreover, Zajíček (1996) proved that
for certain further weakening of the notion of the approximate derivative (called
weak preponderant derivative) a result as surprising as Saks’ rarity theorem holds:
Typical function has this (bilateral) derivative at some points.

I cannot forget at least to mention also Jarník’s papers about typical functions
in other function spaces. In (47) he studies typical continuous functions from [a, b]
to Rk (a similar study has been done independently by W. Hurewicz (1933)) and in
(52) he proves an unexpected statement about Dini derivatives of typical functions
of Baire class α. The questions similar to those asked in (52) have been considered
again only very recently (see, e.g., Ceder and Pearson (1983) and Mustafa (1983)).
In his last paper about typical functions Jarník answers a problem of Mikusinski
by showing that for typical pairs of continuous functions f and g the convolution
f ∗ g is nowhere differentiable.

However, the interest of Professor Jarník in real analysis was far from being
confined to the behaviour of typical functions. Even in the papers mentioned above
one can find many “non-typical” statements and/or proofs. For example, we should
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not forget that (46) contains also a construction of a continuous functions for which

aplim
y→x

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ =∞

almost everywhere. Points at which this equation holds are called Jarník points
of f ; they seem to be hard to come by, since from (II) we know that typical
functions cannot have many of them (but they do have some, see Malý and Zajíček
(1991)). Something so rare, and so difficult to imagine, may seem to be just one
of those strange mathematical curiosities that do not have any “real existence”;
but no, it turned out much later that it is exactly this type of behaviour that is
typical for trajectories of one-dimensional Brownian motion: Every point of such a
trajectory is its Jarník point! This phenomenon has deserved much attention, see,
for example, Geman and Horowitz (1980), Bertoin (1988), or Anderson, Horowitz
and Pitt (1991). (For a deterministic improvement of Jarník’s example see Malý
and Zajíček (1991).)

At this moment, I would like to come to three papers concerned not with non-
differentiability but rather with differentiability. The first of them, (5), published in
1923, proves considerably more than that if a function f is differentiable (possibly
to +∞ or −∞) everywhere on an interval, then f ′ is a function of the first class
(i.e., it is a pointwise limit of a sequence of continuous functions). (One should
note that the result is obvious only if f ′ is finite.) If you ask a real analyst when
this statement was proved, he would probably say that sometime in the years
1941–1950 when the fundamental Zahorski’s papers appeared. (As far as I know,
the first other reference is Gleyzal in 1941.) Since the extension to approximate
derivatives was proved by myself in 1971, to symmetric derivatives by L. Larson
in 1984, and since this kind of questions became important only after Zahorski’s
1950 paper, I can only admire Jarník’s intuition.

The fate of the second paper from this group (6) which appeared in the
same year is similar. Here Professor Jarník asks the question whether there is an
extension of a function defined on a closed set to the whole line such that at the
points of the original set the Dini derivatives of the function and of the extension
coincide. There are several ways how one should consider this coincidence at the
end points of the contiguous intervals. Jarník considers several problems of this
sort and gives a complete solution. (A small question left open was settled in one
of my very first papers.) However, even for the simplest case of Jarník’s results,
namely for the statement that a differentiable function on a perfect set has an
extension to a differentiable function on the line, the usual (and only) reference is
to Petruska and Laczkovich (1972)! On the other hand, Jarník’s result has been
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partly extended by V. Aversa, M. Laczkovich, and myself to higher dimensions in
1986.

The third and last paper from this group is (41). Compared to the previous
two, this was a lucky paper since it influenced the most important development in
modern real analysis, namely the work of Z. Zahorski. Let us consider an every-
where differentiable function f . From (6) and from a result of S. Banach (1921) we
see that the set {x : f ′(x) = +∞} is of type Gδ and has measure zero. Conversely,
assume that E is a Gδ set of measure zero. Is there an everywhere differentiable
function f such that E = {x : f ′(x) = +∞}? This was the question asked by
Professor Jarník (41) in 1933. He did not succeed in giving a complete answer,
but he constructed a function f for which E = {x : f ′(x) = +∞} and such that
all the Dini derivatives at all points outside E are finite. Jarník’s proof is very
close to the later Zahorski’s (1941) and Choquet’s (1946) complete affirmative so-
lution; the main difference seems to be that Jarník proved only a weaker version of
the so-called Luzin-Menchoff lemma. (Interestingly enough, the first proof of this
lemma appeared already in 1924 in a paper by V. S. Bogomolova, who attributes
its statement to Luzin and Menchoff. Its use in a way similar to that used later
by Zahorski and Choquet appears in Ward (1933).) It was also the further devel-
opment of Zahorski’s solution of Jarník’s problem which led in Zahorski’s (1950)
paper to results which are influencing the field of real analysis till now.

The next two papers I want to speak about also belong among the well known
achievements of Professor Jarník. Let us consider a differentiable function ϕ : R→
R, and let us denote f = ϕ′ and

F (x, y) =
ϕ(x)− ϕ(y)

x− y
.

Then an easy exercise shows that

(∗) f(t) = lim
(x,y)→(t,t)

x6=y,(x−t)(y−t)60

F (x, y)

for each t ∈ R. We know already from (5) that f is a function of the first class.
Hence for this special choice of f the formula (∗) gives a function of the first
class. The problem Jarník asked and answered in (10) was to which extent the
special conditions upon F are necessary. The answer might seem to be surprising: A
function f : R→ R is of the first class if and only if there is a function F : R2 → R
such that (∗) holds.

This is obviously a result about the boundary behaviour of functions of two
variables. However, it can be used to deduce information about functions of one
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variable (namely that derivatives are of the first class). This type of argument is
nowadays usually called the Jarník-Blumberg method.

I will come to the Blumberg’s and further Jarník’s contributions in a short
while. Before that, let me just mention that Jarník proves in (10) much more
than only the above result: He gives a similar statement for real-valued functions
on perfect subsets of Rk and considers in (∗) also limits with other restrictions
on (x, y). There is also a well known generalization of Jarník’s result given in
a series of papers by Snyder, who extended Jarník’s theorem to more general
spaces, showed that, if f is of the first class, F can be chosen to be continuous on
R2 \ {(x, x) : x ∈ R}, and, probably most importantly, extended Jarník’s result to
the approximate case.

The next significant contribution to the Jarník-Blumberg method came from
H. Blumberg and from his student M. Schmeisser. Using the boundary behaviour
of functions of two variables, they proved that for an arbitrary function f : R→ R
all t ∈ R but countably many have the property that D+f(t) > D−f(t). Jarník
in (57) proved a stronger theorem about boundary behaviour of functions of two
variables: If F : R2 → R and S is a line in R2 then all but countably many t ∈ S
have the property that for any two half-lines starting from t to the same component
of R2\S the cluster sets of F at t along these half-lines have non-empty intersection.

Jarník also gives the corresponding improvement of the results of Blumberg
and Schmeisser for functions of one variable and he notes that the statement does
not hold if two half-lines are replaced by three half-lines. Improvements of this
example showing that in this case all t ∈ S might be “exceptional” were given
by Bagemihl, Piranian, and Young (1959) and by Erdös and Piranian (1960). In
this connection one should notice that such counterexamples to the “three half-
lines” version of the problem are obviously impossible if the real-valued function
F is continuous on R2 \ S but that the situation is far from being clear, say, for
bounded R2-valued continuous maps on R2 \S. In fact, the question if in this case
the exceptional set may have positive measure is one of the forms of the famous
still open “three segment problem”.

Among the continuations of Jarník’s work (57) let me mention a generalization
from straight lines to curves due to Bagemihl (1955) and Layek’s (1988) discussion
of direct essential analogues of Jarník’s results.

There remains quite a number of Jarník’s papers in real analysis which I
cannot consider here in much detail. However, I simply have to say at least a few
words on the existence of a dense semigroup of continuous functions generated by
finitely many functions.

In 1934 Schreier and Ulam proved that there are five continuous functions
g1, . . . , g5 : [0, 1]→ [0, 1] such that the set of all functions obtained by their com-
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positions is dense in C([0, 1], [0, 1]). In the same year W. Sierpiński improved the
result by showing that: For every sequence f1, f2, . . . ∈ C ([0, 1], [0, 1]) there are
four functions g1, . . . , g4 (from the same set) such that each of the functions fi can
be obtained from them by compositions.

In (50) Jarník and Knichal reduced four to two (which is surely the smallest
possible) and in (51) they obtained very interesting results for monotonic functions
from [0, 1] to [0, 1], where the optimal number is three! Their method was further
used by W. Sierpiński (1935) to solve a more general question. For a recent analogue
for non-compact intervals see S. Subbiah (1983).

Clearly, I did not even mention several papers of Professor Jarník in real
analysis that might be considered as more interesting and/or important. Except
for Jarník’s contribution to the questions of Hausdorff dimension explained in the
excellent talk by Professor Dodson one should mention Jarník’s contribution to the
general theory of Hausdorff measures (28), his papers about Riemann integral (15),
(25), and his excellent detailed study of rearrangements of non-absolutely conver-
gent series. I find very interesting also the papers (61) (which belongs to general
topology) and (85), also because they are results of the interaction of two of the
greatest men in our mathematics, Professor Vojtěch Jarník and Professor Eduard
Čech.
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