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CHAPTER VII

GENERATION OF UNIFORM
AND PROXIMITY SPACES

(Sections 36 —40)

The development of projective and inductive generation for semi-uniform spaces
parallels that for closure spaces; for this reason, many details are left to the reader.
While the projective and inductive generation for closure spaces were developed
separately in two different sections, projective and inductive generation for semi-
uniform spaces as well as for proximity spaces will be given a parallel development,
so that a certain duality between the projective generation and the inductive genera-
tion, which is not formulated precisely, will be pointed out. The last section concerns
projective and inductive limits of presheaves of sets, closure spaces, semi-uniform
spaces and proximity spaces. The results obtained are not applied to topologized
algebraic structs.

Particular attention is given to the interrelations between generations for closure
spaces, semi-uniform spaces and proximity spaces. If f is a uniformly continuous
mapping, then the transpose of f to a mapping for closure space, denoted by vy fs
is continuous. It turns out that if {f,} is a projective generating family for semi-uni-
form spaces, then {ycyf,} is a projective generating family for closure spaces. On the
other hand, if {f,} is an inductive generating family for semi-uniform spaces, then
the transposed family {yc,,f,} need not be an inductive generating family for closure
spaces, and moreover (cf. 37 A.8) every semi-uniform space is 2 uniform quotient of
a discrete uniform space while each quotient of a discrete space is a discrete space.
We have known that the transpose of a uniformly continuous mapping f to a mapping
for proximity spaces, denoted by ¥, f, is proximally continuous. It turns out that
if {f,} is an inductive generating family for semi-uniform spaces then the family
{Ypufa} is an inductive generating family for proximity spaces; on the other hand,
if {f,} is a projective generating family for semi-uniform spaces then the transposed
family {yp,f,} need not be a projective generating family for proximity spaces
(e-g. if {#,} is a family of semi-uniformities for a set P, each inducing a proximity p,
then {J : <P, inf {@l,,}) — {P, %,) is a projective generating family for semi-uniform
spaces but inf {%,} need not induce p, and therefore the induced family need not be
a projective generating family for proximity spaces).
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36. ORDERED SETS OF SEMI-UNIFORMITIES

The present section is devoted to an investigation of the class U of all semi-
uniformities ordered by the relation {# —» ¥ | % is uniformly finer than ¥7}. The
section follows the same pattern as 31 A, B and similarly it is preparatory in char-
acter. The results obtained will be applied to projective and inductive generation for
semi-uniform spaces (37).

It may be appropriate to recall that semi-uniformities were first studied in 23,
followed by the study of uniformities in 24, proximally coarse semi-uniformities in 25
and the introduction of some extreme semi-uniformities (the Cech uniformity of
a space and the fine uniformity of a space in 28, the Wallman proximity of a space in
29); besides in a few places some other special semi-uniformities were considered.

For convenience we shall review earlier material and often try to make the older
notation, terminology and results more clear and more precise.

In subsection A we shall prove that U is boundedly order-complete, and the canon-
ical mapping of U into € (which assigns to each % the closure operation induced by
) is completely lattice-preserving. The proof is based on a description of suprema
and infima in U. In this connection the definition of fine semi-uniformities and coarse
semi-uniformities are introduced.

Subsection B concerns the ordered class vU of all uniformities. We shall prove that
vU is completely meet-stable in U (but not completely join-stable), and the canonical
mapping of vU into vC is completely meet-preserving (but not join-preserving). We
shall introduce the definition of a coarse uniformity (a fine uniformity was defined in
28) although we are not able to prove anything about it here. Coarse uniformities will
be studied in 41 D.

A. ORDERED CLASS U

By definition 23 A.3, a semi-uniformity for a set P is a filter % on P x P each ele-
ment of which contains the diagonal and if U € % then also U~! € %. By definition
23 C.1, a mapping f of a semi-uniform space (P, %) into another one {Q,7") is
uniformly continuous if (f x f)™' [V] e % for each Vin 7. If ¥ is a sub-base
for ¥~ (i.e. a sub-base for the filter ¥7), then (f x f)™' [V] e # for each V in ¥,
implies that (f x f)~' [V] € % for each Vin ¥", and hence f is uniformly continuous
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(23 C.2); this very important criterion of uniform continuity will be used without
any reference. A semi-uniformity % is uniformly finer than a semi-uniformity ¥~,
and ¥ is uniformly coarser than %, if both % and ¥~ are for the same set, say P, and
the mapping ] : (P, %) — {P,¥") is uniformly continuous, i.e. if ¥ <« %. The re-
lation {% — ¥ |V is uniformly coarser than %} is an order for the class U of all
semi-uniformities. We shall use the ‘“upward” terminology, e.g. we shall speak about
lower bounds. If P is a set then the symbol U(P) denotes the ordered subset of U
consisting of all semi-uniformities for P (23 C.11). The letter U also denotes the class
of all semi-uniform spaces ordered by the relation {#? — 2 | the uniform structure
of 2 is uniformly finer than that of 2} (23 C.11).

36 A.1. Theorem. Let P be a set. The ordered set U(P) of all semi-uniformities
for P is order-complete; the filter (P x P) (consisting of exactly one element, P x P)
is the uniformly coarsest semi-uniformity for P (i.e., the greatest element of U(P)),
and (}p) is a base for the uniformly finest semi-uniformity for P (i.e., the least
element of U(P)). If {#«, | a € A} is a non-void family in U(P), then

(*) sup {%,|ae A} = N{#%,|ae A}
and

(+*) U{%, | a € A} is a sub-base for inf {#, | a € A}.

Proof. I. Obviously (P x P) is a semi-uniformity for P which is contained in each
semi-uniformity for P, and hence it is the uniformly coarsest semi-uniformity for P (note
that (P x P)is a filter on P x P contained in each filter in P x P). Next, (Jp) is
a base for a semi-uniformity for P which contains each filter in P x P whose inter-
section contains |, and hence (Jp) is a base for the uniformly finest uniformity for P.

II. According to I, to prove that U(P) is order-complete it is sufficient to show,
for instance, that each non-void family {#,} in U(P) possesses a least upper bound.
We shall prove that % = N{#%,} is the least upper bound of a non-void family
{%, | a € A}. First we must show that % is a semi-uniformity. Since each %, s a filter,
necessarily % is a filter, and %, = Jp for each a implies that % = Jp. Finally,
if Ue#, then Ue %, for each a in A, and hence, %, being semi-uniformities,
U~ ! e, for each a; it follows that U~ e %. Thus % is indeed a semi-uniformity.
Since % < %, for each a, % is uniformly coarser than each %,, i.e. % is an upper bound
of {#,}.If ¥ is any upper bound of {%,}, then ¥" = %, for each a in 4 and hence
¥ < N{%,} = %, which shows that ¥~ is uniformly coarser than %. Thus % is the
least upper bound, which concludes the proof of order-completeness of U(P) and of
formula ().

III. It remains to verify (). By the corollary to 23 A.4, the union %, of the
family {#%,} is a sub-base of a semi-uniformity %. Since %, = %, = % for each a
in A, % is a lower bound of {%,}. If ¥" is any lower bound of {#,}, then ¥ contains
each %, and hence, also the union %, of %. Therefore, since %, is a sub-base of
%, % is uniformly coarser than ¥"; this shows that % is the greatest lower bound
of {#,}.
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Remark. Sometimes it is convenient to know that the collection (\{%,}, where
%, are semi-uniformities for a set P, consists of all sets of the form J{U,}, where
U,e%, for each a. This is an immediate consequence of the fact that Ue %,,
UcVcP x Pimply Ve%,.

Recall that each semi-uniformity % for a set P induces a closure operation u such
that [%] [x] is the neighborhood system at x in (P, u) for each x in P (23 A.3);
we have

uX = N[#%] [X](= N{U[X]|Uea})

for each X = P (by 23 B.5). By 23 B.3 a closure operation u is semi-uniformizable
(i.e. it is induced by a semi-uniformity) if and only if x € u(y) implies y € u(x).

36 A.2. Definition. The symbol y,,, abbreviated to y, denotes the single-valued
relation which assigns to each semi-uniformity % the closure induced by %. The
mapping ¥ : U — C is called the canonical mapping of U into C, and if P is a set
then the mapping y : U(P) — C€(P) is called the canonical mapping of U(P) into
C(P). If u is a closure operation for a set P, then U(P, u) denotes the set of all semi-
uniformities which induce u, i.e. U(P, ) = y~*[(u)]. Thus u is semi-uniformizable if
and only if U(P, u) # 0. The symbol y¢, also denotes the relation {<P, %) —
— (P, YUy | % € U}.

By 23C7,if f: 2 — 2 is a uniformly continuous mapping then f :y? — v2 is
a continuous mapping; in particular, if % is uniformly finer than ¥, then Y% is finer
than y7 . It follows that the mapping v : U — C is order-preserving. Now we shall
prove essentially more.

36 A.3. Theorem. The canonical mapping of U into € is completely lattice-
preserving. In particular, if P is a set, then the canonical mapping of U(P) into
C(P) is completely lattice-preserving; moreover

(*) vinf {#,} = inf {y%,}

(*+) v sup {%,} = sup {y%,}
for each family {#,} in U(P) (not necessarily non-void).

Proof. Clearly it is sufficient to prove formulae (*) and (x*). If {%, } is empty, then inf
{#,} = (P x P), inf {y%,}is the accrete closure for P and the accrete closure for P is the
greatest lower bound of each empty family in C(P), in particular, of {y%,}. Similarly,
if {%,} isempty, then sup {%,} and sup {y%,} are the finest elements of U(P)and C(P)
respectively, and the finest element of U(P) induces the finest closure for P. — I. Now
let the index set be non-void. By 36 A.1 the union % of {%,} is a sub-base for inf {%,},
and hence [#%] [x] is a local sub-base at x in {P, y inf {#,}) for each x in P. On the
other hand, [%,] [x] being a local base at x in (P, y%,) for each x in P and a in 4,
by 31 A5 the collection ¥, = U{[#%,] [x]|ae A4} is a local sub-base at x in
P, inf {y%,}>. But obviously 7", = [%] [x] for each x in P, which establishes ().
The proof of (x+) is quite similar. By 36 A.1 the intersection of {#,} is sup {#,} and
hence the collection [{#%,}][x] is the neighborhood system at x in v sup {%,}.
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On the other hand, [%,] [x] being the neighborhood system at x in (P, %,), by
31 A4 the collection N{[%,][x]|aec A} is the neighborhood system at x in
P, sup Y%,}». But obviously

[N{Z.}] [x] = N{[#%] [¥] | a € 4}

for each x, which establishes (x+). — IL. An alternate proof of formula (**) may also
be obtained from the following description of induced closures: Y#X = N[%] [X].

Corollary (a). If P, u) is a semi-uniformizable space, that is U(P, u) % 0, then
U(P, u) is order-complete, in particular, there exist the uniformly finest and coar-
sest semi-uniformities inducing the closure u.

Proof. If {#%,} is a non-void family in U(P, u), then sup {%,} and inf {#,}, both
taken in U(P), belong to U(P, u) by the theorem, and hence they coincide with
sup {%,} and inf {#%,} (taken in U(P, u)).

It may be noted that we proved essentially more than Corollary (a), namely

Corollary (b). If {#,} is a non-void family in U(P, u) then the greatest lower
bounds (least upper bounds) taken in U(P) and U(P, u) coincide, i.e. U(P, u) is
completely lattice-preserving in U(P).

Remark. Notice that U(P, u) is a closed interval in U(P).

Corollary (c). If u is any closure for P then there exists a finest semi-uniformizable
closure coarser than u as well as a coarsest semi-uniformizable closure finer than u.
In other words, for each u in C(P) there exist both upper and lower modifications
of u in the set YU(P) of all semi-uniformizable closures for P.

Proof. Let %, = inf {¥" |'y"//' is coarser than u}, and %, = sup {¥" | y¥ is finer
than u}. By the theorem the closures Y%, and Y%, possess the required properties.

Remark. Notice that U is an ordered subclass of the class of all sets ordered by>;
by 36 A.1 U is completely join-preserving (but not meet-preserving) in this ordered
class.

36 A.4. Definition. A semi-uniformity % for a set P is said to be fine or to be coarse
if % is, respectively, the uniformly finest or coarsest semi-uniformity from U(P, y%),
that is, if % is the uniformly finest or coarsest semi-uniformity inducing the closure y%.

It follows from Corollary (a) that, for each semi-uniformity %, there exists exactly
one fine semi-uniformity and exactly one coarse semi-uniformity inducing the same
closure as %. Now we shall describe them directly.

36 A.5. Let % be a semi-uniformity for a set P. The coarse semi-uniformity %,
inducing the same closure as % consists of all relations U U (P — X) x (P — X)),
where U € % and X < P is finite. The fine semi-uniformity %; inducing the same
closure as % consists of all V.« P x P such that, for each x in P, there exists a U
in U such that U [x] =« (Va V™) [x].

Proof. I. It is easily seen that %, and %, are semi-uniformities inducing the same
closure as %. — II. Let ¥~ be any semi-uniformity inducing the same closure as %.
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We must show that %, ¢ ¥ < %,. The inclusion ¥" < %, if almost self-evident.
Indeed, if V¥, then we can choose a family {#, | x € P} in % such that U [x] <
c (V n V™) [x] for each x € P (because ¥~ induces the same closure as %), and hence
Ved,. To prove %, = ¥, suppose that U is any symmetric element of # and X is
any finite subset of P (thus U; = Uu ((P — X) x (P — X)) is symmetric); it is
to be proved that U, e ¥". If X = @ then U, = P x P and hence U, € ¥". Assuming
X # 0 we shall find an element V of ¥ such that V < U,. Since % induces the same
closure as ¥~ we can choose a family {V, | x € X} in ¥ such that V,[x] = U[x] for
each x in X. We may and shall assume that each V, is symmetric. Since X is finite,
the intersection ¥V of {V, | x € X} belongs to ¥~ and obviously Vis symmetric. We shall
show that ¥V < U;. If xe X then V[x] = V,[x] c U[x]. f xe(P — X) and ye
e V[x] — (P — X), then ye X, {y,x) e V (V is symmetric) and hence (y, x) € U;
since U is symmetric, {x, y) € U as well. Thus V[x] < U,[x] for each x, which proves
that V < U,.

Corollary (a). If P is a semi-uniformizable space, then the fine semi-uniformity
of P consists of all semi-neighborhoods of the diagonal of the product space P x P,
and the coarse semi-uniformity of P consists of all semi-neighborhoods of the diagonal
containing a set of the form (P — X) x (P — X) where X is a finite subset of P.

Proof. Recall that a semi-neighborhood of the diagonal of the product space
P x Pisasubset U of P x P such that (U n U™!) [x] is a neighborhood of x for
each x in P (or equivalently, if U is a neighborhood of the diagonal in ind (P x P)).
Notice that if % is a semi-uniformity inducing the closure of P, then U is a semi-
neighborhood of the diagonal if and only if for each x in P there exists a U, in %
such that U,[x] = (U n U™} [x] and then apply the theorem.

Corollary (b). The uniformly finest coarse semi-uniformity for a set P consists of
all sets of the form

Jp v (P — X) x (P - X))

where X varies over all finite subsets X of P. This semi-uniformity induces the dis-
crete closure. (Notice that this semi-uniformity is a uniformity.)

Corollary (c). If % is any semi-uniformity for a set P then the coarse semi-uni-
Sormity % inducing the same closure as % is the intersection (i.e. the least upper
bound) of U and of the uniformly finest coarse semi-uniformity for P (i.e. the
discrete coarse semi-uniformity for the set P).

Corollary (d) A semi-uniformity U for a set P is coarse if and only if each element
of % contains a set of the form (P — X) x (P — X) with X finite.

Proof. Let %, be the coarse semi-uniformity inducing the same closure as %.
By 36 A.5 the condition is necessary and sufficient for %, = %.

Let us recall that a closure space (P, u) is said to be quasi-discrete if uX =
= U{u(x) ] x € X} for each subset X of P. By our convention a semi-uniform space
P, U is said to be quasi-discrete if the induced space (P, y%) is quasi-discrete.
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36 A.6. Definition. A semi-uniformity % for a set P will be called uniformly
quasi-discrete if % possesses a base consisting of one element, that is, if % be-
longs to %.

For example, the uniformly finest and the uniformly coarsest semi-uniformities for
a set P are uniformly quasi-discrete.

36 A.7. Every uniformly quasi-discrete semi-uniformity is quasi-discrete. If P
is a quasi-discrete semi-uniformizable space then the fine semi-uniformity of P
is the only uniformly quasi-discrete semi-uniformity inducing the closure structure
of P.

Proof. Recall that by Theorem 26 A.9 a closure space is quasi-discrete if and only if
at each point there exists a one-element local base. Now the first statement is obvious
and the second one is proved as follows: let P be a quasi-discrete semi-uniformizable
space and let U, be the smallest neighborhood of x in P for each x in P; the set
I {U, | x € P} is evidently the smallest element of the fine semi-uniformity of P, and
clearly the fine semi-uniformity for P is the only uniformly quasi-discrete semi-
uniformity unducing the closure structure of P.

Corollary A semi-uniformity % is a uniformly quasi-discrete uniformity if and
only if N is an equivalence belonging to %.

36 A.8. Theorem. Every semi-uniformity % for a set P is the greatest lower
bound of a family of uniformly quasi-discrete semi-uniformities for P; furthermore,
if & is a sub-base for % and, for each B in B, Uy is the semi-uniformity E{V| Bn
AB ' cV< P x P}, then # = inf {Uy| Be B} and if B is a base, then U =
= {5z | Be #}. — Obvious.

Remark. A uniformity need not be the greatest lower bound of a family of uni-
formly quasi-discrete uniformities. One can prove that a uniformity % is the greatest
lower bound of uniformly quasi-discrete uniformities if and only if % is uniformly
totally disconnected, that is, if the equivalences form a base for %.

36 A9. Theorem. If {f: (P, %,) — {Q, ¥ ,>} is a family of uniformly conti-
nuous mappings, then the mappings f:{P,sup {#,}> — {Q,sup {¥,})> and f:
1 (P, inf {#,}) — £Q, inf {¥,}> are also uniformly continuous.

B. UNIFORMITIES

Recall that a uniformity is a semi-uniformity % such that each element of % con-
tains U » U for some U in %. By 24 B.2, for each semi-uniformity % there exists a uni-
formly finest uniformity uniformly coarser than %; this uniformity is called the uni-
form modification of % (24 B.1). Using this result we shall derive some results con-
cerning the ordered set of all uniformities. First we shall introduce some terminology
and notation.
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36 B.1. Definition. Denote by vU the ordered subclass of U which consists of all
uniformities. Let v be the single-valued relation which assigns to each semi-uniformity
9 the uniform modification of. %; this relation is called the uniform modification.
If P is a set then vU(P) denotes the ordered set vU n U(P). If 2 is a closure space
then vU(2) denotes the ordered set vU N U(#) (thus vU(#) may be void, and it is
non-void if and only if £ is uniformizable). The letter v also denotes the relation
{(P, %) - (P,v%)}, and hence we can write v(P, ) = (P, v%). We write
U(P, u) instead of U({P, u)). The subscripts U, C or P to v will be used to specify
the notation for semi-uniform, closure or proximity spaces, respectively.

It is evident that the uniform modification of a semi-uniformity % is the upper
modification of % in the ordered class vU; thus Lemma 31 B.2 applies and we obtain
the following theorem. )

36 B.2. Theorem. Let P be a set. The ordered set vU(P) is completely meet-stable
and completely meet-preserving in U(P); the uniformly finest and uniformly coar-
sest semi-uniformities for P are uniformities, and hence they are the uniformly finest
and uniformly coarsest uniformities for P. Furthermore, vU(P) is order-complete
and vU(P) = o[ U(P)]. The mapping v : U(P) - vU(P) is completely meet-preser-
ving,v o v = v and v¥ is uniformly coarser than % for each % in U(P). If {%,} is
any family in U(P) then

v sup {%,} = v sup {v%,} = sup {v%,}
where the last supremum is taken in vU(P).

Corollary. The class vU is completely meet-stable and completely meet-preserving
in U, and vU = Ev. The class vU is boundedly order-complete and contains each
uniformly discrete or uniformly accrete semi-uniformity. We have v o v = v, v% is
uniformly coarser than % for each % in U and the mapping v : U — vU is sur-
Jjective and completely meet-preserving.

Proof. As noted above, for each % in U(P) there exists an upper modification
of % in vU(P). Since U(P) is order-complete, from lemma 31 B.2 we obtain all the
statements of the theorem with the exception of one, namely that the finest semi-
uniformity is a uniformity; but this is obvious because (Jp) is its base and Jp o Jp =
= Jp.

According to 36 B.2 the greatest lower bounds of a family {%,} of uniformities
taken in vU(P) and in U(P) coincide. By virtue of 36 A.1 we obtain that J{%,} is
a sub-base for inf {%,} taken in vU(P). On the other hand, sup {#,} taken in U(P)
is N{%,} by 36 A1, and it is easily seen that (\{%,} need not be a uniformity (see
24 ex. 6 ); therefore N{%,} is not sup {#%,} taken in vU(P). Of course, by the fore-
going theorem, v(({%,}) is sup {%,} taken in vU(P). Thus we have proved

36 B.3. Let {#,} be a family in vU(P). The union of {#,} is a sub-base for the
greatest lower bound of {%,} in vU(P), and o(N{%,}) is the least upper bound of
{,} in vU(P).
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The uniformly finest uniformity uniformly coarser than each member of a given
family of uniformities can be described simply in terms of a uniform collection of
pseudometrics. Recall that (by 24 B.8) a uniform collection of pseudometrics for a
set P is a non-void collection .# of pseudometrics for the set P such that each pseudo-
metric d for P belongs to .# whenever either d = d; + d, with d, and d, in .# or
for each positive real r there exists a d, in .# and a positive real s such that d,(x, y) < s
implies d(x, y) < r. For each % in U(P) the collection p% of all uniformly continuous
pseudometrics for (P, %) is a uniform collection of pseudometrics.

36 B.4. Theorem. Let M be the class of all uniform collections of pseudometrics
ordered by the inverse inclusion > and let p be the single-valued relation which
assigns to each % € U the collection of all uniformly continuous pseudometrics
(with respect to %). Then pw% e M for each % in U, the mapping p: U — M is
completely join-preserving (in particular, order-preserving) and surjective, the
mapping p:vU — M is an order-isomorphism, in particular, M is boundedly
order-complete. For each # in M the set p~'[(#)] contains exactly one uniformity
U, and p'[(M)] consists of those semi-uniformities ¥~ such that v¥" = U. If
{#,} is any family in M such that sup {#,} exists, then inf {#,} exists and

(x) sup {4} = N{A};
(%) inf {#,} is the smallest uniform collection of pseudometrics containing
U4,
The proof, which follows from results of 24 B, is left to the reader as a useful exer-
cise,
By 36 A.3 the canonical mapping of U into C is completely lattice-preserving.
The following result concerns the mappings v : vU — C and y : vU — vC. Recall

that vC is the class of all uniformizable closures, and vC is completely meet-stable
in C by 31 B.4.

36 B.5. Theorem. The canonical mappings v:oU — € and v :vU - oC are
completely meet-preserving. If % is a uniformly accrete or a uniformly discrete
uniformity, then Y% is, respectively, an accrete or a discrete closure.

Proof. Themappingy : vU — Cisthe composite of two completely meet-preserving
mappings, namely ] : vU — U (by 36 B.2) followed by y : U — C (by 36 A.3). Thus
v :vU > C is completely meet-preserving. The range vC of the completely meet-
preserving mapping vy : vU — C is completely meet-stable in C (by 31 B.2) and hence
the range-restriction y : vU — vC is completely meet-preserving. The proof of the
remaining statements is evident.

Corollary. If P is a set then vy inf {%,} with the infimum taken in v\, inf {y%,}
taken in C(P), and inf {y%,} taken in vC(P) coincide for each family {%,} in vU
(not necessarily non-void).

36 B.6. Remark. It should be noted that the canonical mappings y : vU — C and
¥ : vU — vC are not completely join-preserving. In the former case it is sufficient to
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keep in mind that the least upper bound in € of a family of uniformizable closures
need not be uniformizable (if u = sup {u,} is not uniformizable and if % = sup {%,}
in vV such that Y%, = u, for each a, then y% is strictly coarser than u because y%
is uniformizable and coarser than u). In the latter case consider a uniformizable clo-
sure operation u for a set P and the set vU n U(P, u). This set has no greatest
element if (P, u) is not locally compact (41 D.6) and hence the supremum of this
set in vU induces a closure strictly coarser than u.

36 B.7. For each % in U the closure yo% (i.e., the closure induced by the uniform
modification of %) is coarser than the closure vy% (i.e., the uniformizable modifica-
tion of the closure induced by %). In fact, yo% is a uniformizable closure coarser than
the closure Y%. We shall show that yo% may be strictly coarser than vy% (and hence
the mappings v .y : U — Cand vy~ v: U— Cdo notcoincide); in addition, the closure
v % may be uniformizable. Let (P, u) be an infinite separated uniformizable space such
that each neighborhood of any point is infinite (e.g. the space of reals) and consider the
coarse semi-uniformity % of (P, u). By 36 A.5 each element of % contains a set
(P — X) x (P — X) with X finite. We shall prove that v% is uniformly accrete (and hence
yv% is accrete). It is sufficient to show that the complement of any neighborhood of
any point of (P, yo%) is finite. Let W be a neighborhood of x in (P, yo%) and
choose 2 U in v% such that U o U[x] = W. The set U[x] is a neighborhood of x in
{P, yo% and so certainly in (P, u); thus U[x] is infinite. If X is a finite set such that
(P—X)x (P—X) < U,thenUoU[x] = U[U[x]] > P — X because (P — X) n
A U[x] £ 0. Thus W> P — X.

36 B.8. The example in 36 B.7 makes it possible to show that the canonical mappings
y:vU > C and y:vU - vC are not join-preserving (also see 36B.6). The
semi-uniformity % (in the example of 36 B.7) is the supremum in U of any uniformity
¥ inducing u and of the coarse semi-uniformity ¥~ of P endowed with the discrete
closure (by Corollary (c) of 36 A.5). It follows from Corollary (b) of 36 A.5 that #~
is a uniformity. The supremum of ¥~ and #” in vU is the uniform modification of the
supremum taken in U, and hence is v%. We have proved (in 36 B.7) that v# is the
uniformly accrete uniformity for P. Thus yo% is the accrete closure for P. On the
other hand the supremum of y¥” and y#” in C as well as in vCis u = y7".

In 28 A.1 the definition of a fine uniformity and a fine uniformity of a space was
introduced. In 36 A.4 the definitions of a fine semi-uniformity and a coarse semi-
uniformity were introduced.

36 B.9. Definition. A coarse uniformity is a uniformity % with the following pro-
perty: if a uniformity ¥~ induces the same closure as % then ¥ is uniformly finer
than %.

36 B.10. If % is a fine semi-uniformity, then the uniform modification v¥% of U
is a fine uniformity and every fine uniformity is the uniform modification of a fine
semi-uniformity (namely, of the fine semi-uniformity inducing the same closure).



36. ORDERED SETS OF SEMI-UNIFORMITIES 689

In particular, if a fine semi-uniformity is a uniformity, then it is a fine uniformity.
— Almost evident.

36 B.11. If % is a coarse semi-uniformity, then the uniform modification v of U
is a coarse uniformity, in particular, if a coarse semi-uniformity is a uniformity,
then it is a coarse uniformity.

Proof. I. By the Corollary (d) of 36 A.5 a semi-uniformity % is coarse if and
only if each element of % contains a set (P — X) x (P — X) with X finite. It follows
that if % is a coarse semi-uniformity, then each semi-uniformity uniformly coarser
than % is also coarse. Thus, if % is a coarse semi-uniformity, then the uniform modific-
ation v% of % is also a coarse semi-uniformity. Obviously, if a coarse semi-uniformity
9 is a uniformity, then % is a coarse uniformity. The assertion follows.

II. The second statement is obvious, as stated in I, but it may be useful to notice
that it is a consequence of the first statement.

While every fine uniformity is the uniform modification of some fine semi-uni-
formity, with some trivial exceptions a coarse uniformity is not the uniform modifica-
tion of any coarse semi-uniformity. As noted in the proof of the foregoing proposi-
tion, a semi-uniformity uniformly coarser than a coarse semi-uniformity is a coarse
semi-uniformity, and hence, if a coarse uniformity % is the uniform modification
of a coarse semi-uniformity, then necessarily % is a coarse semi-uniformity. Since
by the foregoing proposition any uniformity which is a coarse semi-uniformity is
then a coarse uniformity, we obtain that a coarse uniformity % is the uniform modific-
tion of a coarse semi-uniformity if and only if % is a coarse semi-uniformity, Coarse
semi-uniformities were described in 36 A.5. A similar characterization of coarse uni-
formities will be given in the exercises to 41. In the concluding theorem of this section
all the separated closures induced by a uniformity which is a coarse semi-uniformity
will be described. A similar description of closures induced by a coarse uniformity
will be given in 41 D.

36 B.12. Theorem. The closure structure of a separated space is induced by a
coarse semi-uniformity which is a uniformity if and only if the following condition
is fulfilled: either 2 is discrete, or 2 has exactly one accumulation point, say x,
and the complements of neighborhoods of x are finite.

Proof. L. If 2 is a discrete space, then the coarse semi-uniformity % inducing the
closure structure of 2 has the collection of all relations Vy = J,5 U ((l.@l X) x
x (|?| — X)), X finite, for a base(Corollary (b) of 36 A.5), and hence % is a uniform-
ity (Vx o Vx = Vy). If 2 is a space with exactly one accumulation point, say x, and
all the complements of neighborhoods of x are finite, and if % is the semi-uniformity
having the collection of allrelations V; = (U x U) U J,4,, U varying over all neighbor-
hoods of x, for a base, then clearly % is a uniformity, % induces the closure structure
of 2, and % is a coarse semi-uniformity because each element of % contains a set
(|9"| - X) x (|9| — X) with X finite. — II. To prove “only if”, suppose that the
closure structure of a separated non-discrete space £ is induced by a coarse semi-

44—Topological Spaces
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uniformity % which is a uniformity. We have proved in 36 B.7 that if each neighbor-
hood of a point x is infinite, then the complement of each neighborhood of x is finite.
Since 2 is semi-separated, if a point x is not isolated, then each neighborhood of x is
infinite and the complement of each neighborhood of x is finite. It follows that there
exists at most one point of 2 which is nof isolated (2 is separated). On the other hand,
by our assumption there exists at least one point which is not isolated.

Remark. In the exercises we shall describe all spaces whose closure structure is
induced by a coarse semi-uniformity which is a uniformity.
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37. PROJECTIVE AND INDUCTIVE GENERATION
FOR SEMI-UNIFORM SPACES

In 32 we investigated closure spaces projectively generated by a family of mappings
ranging in closure spaces, and in 33 we investigated closure spaces inductively gener-
ated by a family of mappings the domain carriers of which were closure spaces. In
the present section we shall do the same for semi-uniform spaces. Although projective
and inductive constructions for. closure spaces were studied separately, the projective
and inductive construction for semi-uniform spaces will be treated in a parallel manner
as far as possible, and moreover, corresponding results for projective and inductive
constructions will be similarly labelled. !

As in the case of closure spaces, projectively generated semi-uniform spaces inherit
many properties of the range carriers of generating mappings, in particular the property
of being a uniform space. Further, if a semi-uniform space {P, %) is projectively
generated by a family {f, : (P, %> — {Q,, ¥ .}, then the induced closure space
{P, Y%} is projectively generated by the family {f, : (P,Y%) — {Q,, ¥¥ .>}. On the
other hand, inductively generated semi-uniformities inherit very few properties of the
domain carriers of generating mappings. It will be shown (37 A.8) that every semi-
uniform space is inductively generated by a mapping the domain carrier of which
is a discrete uniform space. It follows that the property of being a uniform space is
not inherited, and if a semi-uniformity % is inductively generated by a mapping f,
then the induced closure y% need not be inductively generated by f transposed to
a mapping of induced closure spaces. The points in which the projective and inductive
constructions differ will be discussed separately. Because of the importance of uniform
spaces we shall introduce the notion of a uniformity inductively generated in the
uniform sense by a family of mappings; this is defined to be the finest uniformity
making all given mappings uniformly continuous, and this is easily seen to be the
uniform modification of the semi-uniformity inductively generated by the same family
of mappings. In 33 D we defined the inductive product and topological inductive
product of closure spaces. The corresponding concepts for semi-uniform spaces will
be introduced in the exercises only.

44+



692 VII. GENERATION IN U AND P

A. GENERALITIES

37 A.1. Definition. A semi-uniformity % for a set P is said to be projectively
generated by a family of mappings {f,}, and {f,} is said to be a projective generating
family for semi-uniform spaces with domain carrier P,if P isthe common domain
carrier of all f, and % is the uniformly coarsest semi-uniformity for P such that all
mappings f, : <P, q)) — E*f, are uniformly continuous. Similarly, a semi-uniformity
% for a set P is said to be inductively generated by a family of mappings {f,} and
{f.} is said to be an inductive generating family for semi-uniform spaces with
common range carrier P, if P is the common range carrier of all f, and % is the
uniformly finest semi-uniformity such that all mappings f, : D*f, — (P, %) are uni-
formly continuous. A semi-uniform space (P, %) is said to be projectively (in-
ductively) generated by a family of mappings {f,}, and {f,} is said to be a projective
(induvctive) generating family for (P, U), if (P, %) is the common domain carrier
(range carrier) of all f, and % is the semi-uniformity for P projectively generated (in-
ductively generated) by the family {gr f, : P - E*f,} ({gr f, : D*f, — P}). Finally,
a projective (inductive) generating family of mappings for semi-uniform spaces is
a family {f,} with a common domain carrier (range carrier) which is projectively
(inductively) generated by the family {f,}. The definitions just stated are carried over
‘to collections of mappings and single mappings in such a way that a collection &
has a property 9 if and only if the family {f | f € #} has the property B and a map-
ping f has a property P if and only if the singleton (f) has the property B.

We begin with existence, uniqueness and a description of generated semi-uni-
formities.

37 A.2 proj. Theorem. Any projective family of mappings for semi-uniform spaces
projectively generates exactly one semi-uniformity. If a semi-uniformity % is pro-
Jectively generated by a non-void family {f.} and each %, is projectively generated
by f,, then % = inf {%,}, that is, N{%,} is a sub-base for . If a semi-uniformity U
is generated by a mapping f:P — (Q,¥"), then the set of all (f x f)"'[V],
VeV, is a base for U.It follows that if a semi-uniformity % is projectively generated
‘by a non-void family of mappings {f,: P = {Qa ¥ ) | a € A}, then the set of all
(fa x f)"'[V]), ae A, Ve¥,, is a sub-base for %.

37 A.2 ind. Theorem. Any inductive family of mappings for semi-uniform spaces
inductively generates exactly one semi-uniformity. If a semi-uniformity U is
.inductively generated by a family {f,} and %, is the semi-uniformity inductively
generated by f,, then % = sup {U,} (= N{%.}).If a semi-uniformity % is inductive-
ly generated by a mapping f : {Q,?") — P, then % is the collection of all vicinities
U of the diagonal Jp such that (f x f)"' [U] € ¥, that is,

()% =E{U|lpcUcPxP, (fxf)'[Uler}.
It follows that if a semi-uniformity % is inductively generated by a family of map-
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pings {f,:{Qq ¥ a) — P| a € A}, then % consists of all vicinities U of the diagonal
Jp such that (f, x f,)"' [U] € ¥, for each a in A, that is,

(2) % =E{U|JpcUcPxP,(f, xf) ' [Ue¥, for each ac A}.

Proof of 37 A2 proj. I. Uniqueness is self-evident.

II. Existence: Let {f, : P — {Q,, ¥ ) | ae A} be a projective family for semi-
uniform spaces and let us consider the set ¥ of all # € U(P) such that each map-
ping f,:{P,# ) — (Q,, ¥ ,> is uniformly continuous. By 36 A9 sup ¥ € ¥ and
by definition obvicusly sup ¥ is the projectively generated semi-uniformity.

III. Now let ¥,, a € A, be the set of all # e U(P) such that the mapping f, :
P, W) = (Q,, ¥, is uniformly continuous. By II sup ¥, is the semi-uniformity
projectively generated by f, and obviously ¥ = N{¥, | ae A}. It follows that sup ¥ =
= inf {sup ¥,} and this is the required formula % = inf {%,}. The fact that
WH{%, | a € A} is a sub-base of % follows from 36 A.1.

IV. It remains to verify the description of the semi-uniformity projectively generated
by a single mapping f : P — <{Q, ¥ ) in terms of ¥". Let %, be the collection of all
(f x f)~"[V], Ve¥ . It is easily proved that %, is a base of a semi-uniformity %;
clearly %, is a filter base and each element of %, contains the diagonal }p, and finally,
if Ve is symmetric then the set (f x f)™'[V] is also symmetric. The mapping
[P, %> > {Q,7> is uniformly continuous and if f:<{P, ¥ ) — (Q,¥ ) is uni-
formly continuous, then each (f x f)™' [V], Ve ¥, must belongto #',i.e. ¥ > %,;
this shows that the semi-uniformity % with the base %, is the uniformly coarsest
semi-uniformity making f continuous.

Proof of 37 A2 ind. I. Uniqueness is again clear and the existence and the formula
« = sup {%,} is similar to the corresponding proofs for the projective construction;
if @ and ¢, are sets of all semi-uniformities making respectively all f,, a € 4, or f,
continuous, then inf @ = %, inf ¢, = %, and = N{P,} which gives the formula.

II. By 36 A1 sup {#,} = N{%,} and consequently formula (1) implies (2).

III. It remains to prove (1); we shall show that % given by (1) is inductively gener-
ated by f : (@, ¥ ) — P. The reader will find no difficulty in showing that % is a semi-
uniformity and that the mapping f:<{Q,% > - (P, %) is uniformly continuous.
If # is any semi-uniformity for P such that the mapping f:{Q,¥ > — (P, # ) is
uniformly continuous, then (f x f)™! [W]e? for each W in # and thus each
element of %~ belongs to %;i.e. W < 4%, thatis, %" is uniformly coarser than %.

Corollaries proj.: (a) A semi-uniformity for a set P projectively generated by an
empty family is the uniformly coarsest semi-uniformity for P, that is, the unifor-
mly accrete semi-uniformity for P.

(b) Let {f,|ae A} be P family of mappings of a semi-uniform space 2 into
semi-uniform spaces and let A, be a subset of A such that the range carrier of each
fawithain A — Ay is a uniformly accrete space. Then P is projectively generated
by the family {f, I a € A} if and only if it is projectively generated by the family
{fu]ae A}
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(c) Let {f, | ae€ A}, A+ 0, be a family of mappings of a semi-uniform space
{P, %) into semi-uniform spaces. and {¥",} be a family such that V" is a sub-base
for the semi-uniformity of E*f,. Then (P, %) is projectively generated by the family
{f.} if and only if the set of all (f, x f,)"' [V], Ve ¥, a€ A, is a sub-base for %.

(d) The product of a family of semi-uniform spaces is projectively genérated by
the family of all projections.

(€) If 2 is a subspace of a semi-uniform space P, then | : 2 —> P is a projective
generating mapping.

Proof. Corollary (a) is evident and Corollary (b) follows from the fact that every
mapping of a semi-uniform space into a uniformly accrete semi-uniform space is
uniformly continuous. Corollary (c) is a straightforward consequence of the de-
scription of projectively generated semi-uniformities. Finally, the product semi-
uniformity was defined (23 D.10) to be the semi-uniformity whose sub-base is the
collection of all (m, x m,)~' [V], where =, is a projection into the a-th-coordinate
space and V is any element of the semi-uniform structure of the a-th-coordinate
space; according to the description of projectively generated semi-uniformities, this
collection is a sub-base of the semi-uniformity projectively generated by the family
of all projections. It is to be noted that proposition 23 D.11 states explicitly that the
product semi-uniformity is the uniformly coarsest semi-uniformity for the product
of the underlying sets making all projections uniformly continuous; hence Corollary (d)
has already been proved. Statement (e) is evident.

Corollaries ind.: (a) A semi-uniformity for a set P inductively generated by an
empty family is the uniformly finest semi-uniformity for P, that is, the uni-
formly discrete semi-uniformity (in fact, uniformity) for P.

(b) Let {f,| a € A} be a family of mappings of semi-uniform spaces into a semi-
uniform space P and let A, be a subset of A such that the domain carrier of each
f. with ain A — Ay is a uniformly discrete semi-uniform space (in fact, uniform
space). Then the space 2 is inductively generated by the family {f,| a € A} if and
only if P is inductively generated by the family {f,, I ae Al}.

(c) The sum of a family of semi-uniform spaces (Definition 23 D.8) is in-
ductively generated by the family of all canonical embeddings.

Proof. Corollary (a) is obvious and Corollary (b) follows from the fact that every
mapping of a uniformly discrete semi-uniform space into any semi-uniform space is
uniformly continuous. Finally, Corollary (c) is obtained by comparing the definition
of the sum semi-uniformity (23 D.8) with the description of inductively generated
semi-uniformities. It may be noted that, in fact, Corollary (¢) has already been proved
in 23 D.9.

Let {f,} be a family of uniformly continuous mappings with a common domain
carrier {P, %) and let us consider the semi-uniformity ¥~ for P projectively generated
by a family of mappings {grf,: P — E*f,}. (The existence of 7" follows from
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37 A2 proj.) Let h be the identity mapping of (P, %) onto {P,¥") and for each a
let g, be the mapping {gr f,, (P, ¥"), E*f,>. Clearly h is a one-to-one uniformly con-
tinuous surjective mapping, {g,} is a projective generating family for semi-uniform spa-
cesand f, = g, o hfor each a. In particular, every uniformly continuous mapping ad-
mits of a factorization f = g o h where h is a one-to-one uniformly continuous
surjective mapping and g is a projective generating mapping for semi-uniform spaces.
It may be in place to note that, in accordance with the general rule for the use of
square parentheses, the family {g, o h} can be written as [{g,}] - h and hence, as in the
case of a single mapping, we obtain formally that every projective family { f,,} of uni-
formly continuous mappings admits a factorization {f,} = [{g.}] o b where {g,} is
a projective generating family for semi-uniform spacesand h is a one-to-one uniformly
continuous surjective mapping; such a decomposition will be called a projective de-
composition of {f,}. Similarly, we shall show that every inductive family {f,} of
uniformly continuous mappings with a common range carrier (P, %) admits an
inductive factorization {f,} = h o [{g,}], where h is a one-to-one uniformly continu-
ous surjective mapping and {g,} is an inductive generating family for semi-uniform
spaces. The existence of an inductive factorization is proved as follows: let ¥~ be the
semi-uniformity for P inductively generated by the family {gr fa : D*f, = P} and put

h = <JP3 <P, 'V>s <Pa %>>! 9a = <gl'fa, D*fa’ <P: ’V>> .
Clearly h and {g,} possess the required properties. Thus we have proved:

37 A.3. Theorem.Projective factorization: Every projective family {f, | a € A}
of uniformly continuous mappings admits a projective factorization, that is,
there exists a uniformly continuous bijective mapping h and a projective
generating family for semi-uniform spaces {g,} such that g,. h = f, for each a
in A; this can be written as {f,} = [{g,}] < h. If h is an identity mapping then this
factorization is called the canonical projective factorization.

Inductive factorization: For every inductive family {f,} of uniformly con-
tinuous mappings there exists an inductive factorization of {f,}, that is, a uniformly
continuous bijective mapping h and an inductive generating family {ga} for semi-
uniform spaces such that f, = hog, for each a in A, that is, {f,} = ho[{g.|ae A}];
if h is an identity mapping then this factorization is called the canonical inductive
factorization.

37 A4 proj. Theorem. Suppose that {f,|ae A} is a family of mappings of
a semi-uniform space P into semi-uniform spaces and the range carrier of each
fais projectively generated by a family of mappings {g., l be Ba}. Then the space P
is projectively generated by the family {f,,} if and bnly if it is projectively gener-
ated by the family {g,, -f.| a€ 4, beB,}.

37 A4 ind. Theorem. Suppose that {f,|ae A} is a family of mappings into
a semi-uniform space P and the domain carrier of each f,is a semi-uniform space
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inductively generated by a family of mappings {g,, | b e B,}. Then the space 2 is
inductively generated by the family {f, | ae A} if and only if P is inductively
generated by the family {f, o gn, | a€ A, be B,}.

The proof of both theorems is a matter of a simple calculation based on the de-
scription of generated semi-uniformities and therefore the details will be left to the
reader. '

Proof of 37 A.4 proj.: I. First suppose that the set 4 and also all sets B,, a € A4,
are non-void. For brevity denote by %, ¥", and # ", the semi-uniform structures of
2, E*f, (= D*g,,) and E*g,, respectively. By 37 A.2 proj., it follows from our as-
sumptions that

(3) for each a the set ¥, of all (g, X ga)~ ' [W], WeW# s, beB,, is a sub-
base for ¥7,.

Now, again by 37 A.2 proj., the fact that % is projectively generated by the family
{gas o fa} is equivalent to the following assertion:

(4) the set of all (g, 0 fs X gapofa) ' [W], We# o, be B, ac A, is a sub-base
for %.

By corollary (c) of 37 A.2 proj., the fact that % is projectively generated by {f,} is
equivalent to the assertion (keep in mind that each ¥ is a sub-base of ¥, by (3)):

(5) theset of all (f, x f,)™' [V], Ve ¥, a € 4, is a sub-base for %.

Since (g o fa X Gapofa) P [X] = (fa X f2) ' [(9ap % )~ [X]] for each X, the
equivalence of (4) and (5) follows from (3).

II. If A = @ then the families {f,} and {g, - f,} are both empty and the statement
follows from corollary (a) of 37 A.2 proj.

III. The general case will be reduced to cases I and II. Let 4, be the subset of A
consisting of all a such that B, # 0. By corollary (a) of 37 A.2 proj. the range space
of each f, with a in A — A, is uniformly accrete and consequently, by corollary (b),
2 is projectively generated by the family {f, | a € A} if and only if it is projectively
generated by {f, | a € 4,}. However, the families {g,, o f, | b € B,, a € A} and {g, o
ofa | be B, ae A,} coincide. As a consequence, if A; & @ then the statement
follows from I and in the other case from II

Proof of 37 A.4 ind. The proof is simpler than that of 37 A.4 proj. because we
need not examine separately the case where A or some B, are empty. By our assump-
tion and 37 A.2 ind., for each a in A, a vicinity U of the diagonal in D*f, belongs to
the semi-uniformity of D*f, if and only if (g,, X g.)~" [U] belongs to the semi-
uniformity of D*g,, for each b € B,. Now again by 37 A.2 ind., stating in symbols
that & is inductively generated by {f,} or {f,o g}, we obtain the theorem im-
mediately. -

From the theorems 37 A.4 proj. and ind. we can show that a semi-uniform space
projectively or inductively generated by a non-void family of mappings is projectively
or inductively generated by a single mapping, namely by the reduced product or the
reduced sum of the family in question. Clearly also every empty generating family
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may be replaced by any constant mapping. As a consequence, projective and inductive
constructions can be reduced to the corresponding construction for a single mapping
and to the construction of the reduced product of mappings or the reduced sum of
mappings respectively.

Corollary proj. Let f be the reduced product of a non-void projective family
{fa | a € A} of mappings for semi-uniform spaces with a common domain carrier &
which is a space, i.e. D*f = D*f, = 2, E*f = II{E*f,} and fx = {f,x|a e 4}.
Then 2 is projectively generated by {f,} if and only if @ is projectively generated
by f.

Corollary ind. Let f be the reduced sum of a non-void inductive family {f,} of
mappings for semi-uniform spaces such that the common range carrier is a space
P, i.e. D*f = £{D*f,}, E¥f = E*f, = 2 and f{a, x) = f,x. Then 2 is inductively
generated by {f,} if and only if 2 is inductively generated by f.

Proof of Corollary proj. According to Corollary (d) of 37 A.2 proj. the family
{pr, : E*f > E*f,} is a projective generating family. Since

fa = (pra : E*f_’ E*fa) °f
for each a, 37 A.4 proj. applies.

Proof of Corollary ind. According to Corollary (c) of 37 A.2ind. the family
{inj, : D*f, > D*f} is an inductive generating family. Since

fa = £+ (inj, : D*f, - D¥)
for each a, 37 A.4 ind. applies.

37 A.S proj. Theorem. A semi-uniform space P is projectively generated by a
family of mappings {f, | a € A} of P into semi-uniform spaces if and only if the
Sfollowing condition is fulfilled:

A mapping f of a semi-uniformspace 2 into 2 isuniformly continuous if and only
if all composites f, - f, a € A, are uniformly continuous.

37 A5 ind. Theorem. A semi-uniform space & is inductively generated by a
family of mappings {f, | a € A} of semi-uniform spaces into ? if and only if the
following condition is fulfilled:

A mapping f of P into a semi-uniform space 2 is uniformly continuous if and
only if all composites f - f,, a € A, are uniformly continuous.

The proof is again a matter of a simple calculation based on the description of
generated semi-uniformities and therefore the details will be left to the reader.

Proofof 37 A.5 proj. I. The statement is trivial if 4 is empty. — II. Suppose that #
is projectively generated by the family {f,} and 4 + @. If f is uniformly continuous
then all the mappings f, - f are uniformly continuous as composites of uniformly
continuous mappings. Conversely, let all compositions f, - f be uniformly continuous.
If U is any element of the semi-uniform structure of 2, then we can choose a finite
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subset A’ of 4 and a family {V, | a € 4’} such that N{(f, x £,)"* [V.]|ae 4} cU
and each V, is an element of the semi-uniform structure of the range carrier of f,
(by 37 A2). Clearly

(fx N UI= N{(faof x foof)H [V]|aea}.

Since the composites f, o f, a € A’, are uniformly continuous, the right side belongs
to the semi-uniform structure of D*f, and consequently, the left side also belongs
to the semi-uniform structure of D*f. Since U was chosen arbitrarily in the semi-
uniform structure of 2, f is uniformly continuous. — III. Now suppose that the con-
dition is fulfilled. If f is the identity mapping of & onto £, then f is a uniformly con-
tinuous mapping and hence, according to the condition, all composites f, o f are uni-
formly continuous; but f, - f = f, for each a and hence each f, is uniformly continu-
ous. Let [{g,}] - h be the canonical projective factorization of {f,}. It is enough to
prove that h is a uniform homeomorphism. Since 4 is a one-to-one uniformly con-
tinuous mapping onto, it remains to show that A~! is uniformly continuous. Put
f = k™! in the condition. Since f, o h™! = g, for each a and all g, are uniformly
continuous, k! is necessarily uniformly continuous by the condition; this concludes
the proof.

Proof of 37 A.5ind. I. The statement is trivial if 4 = @. — IL. Suppose that 2 is
inductively generated by a non-void family {f,}. If f is uniformly continuous then
all the mappings f o f, are continuous as composites of uniformly continuous map-
pings. Conversely, if all composites f . f, are uniformly continuous, then from the
description 37 A.2 of inductively generated semi-uniformities it follows at once that f
is uniformly continuous (compare with the corresponding fact in the proof in 37 A.5
proj.). — III. Now assume the condition. Substituting f = {Jp, 2, ) we obtain
from the condition that all f . f,, and hence all f, = f . f,, are uniformly continuous.
Consider the canonical inductive factorization ho[{g,}] of {f,}. Substituting
f=h"! we find that h~! is uniformly continuous because all h~!.f, = g, are
uniformly continuous. It follows that h is a uniform homeomorphism and hence
fa= 4. for each a; this concludes the proof.

The next pair of theorems corresponds to theorems 32 A.13 and 33 A.7 for closure
spaces.

37 A.6 proj. Theorem on commutativity. If a semi-uniform space 2 is projectively
generated by a family of mappings {f,}, then each subspace 2 of P is projectively
generated by the family {g,,} where each g, is the domain-restriction of f, to 2,
and also by the family {h,} where each h, is the restriction to @ mapping of 2 into
the subspace Eg, of E*f,.

37 A.6ind. Theorem on partial commutativity. If a semi-uniform space P is
inductively generated by a family of mappings {f,,}, then each subspace 2 of P is
inductively generated by the family {g,}, where each g, is the restriction of f, to
a mapping of the subspacef‘,"l[l.@l] of D*f_ into the subspace 2 of 2.
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Proof of 37 A.6 proj. The identity mapping f of 2 into £ is a projective generating
mapping (by Corollary (&) of 37 A.2 proj.). Since g, = f, - f for each a, {g,} is a pro-
jective generating family by 37 A.4 proj. Let k, be the identity mapping of the sub-
space Eg, of E*f, into E*f,. Each of the mappings k, is a projective generating map-
ping (again by Corollary (¢) of 37 A.2 proj.) and g, = k, - h, for each a. Again by
37 A4 proj. the family {h,} is a projective generating family.

Proof of 37 A6 ind. Let R, = £ '[|2|]. If U = |D*/,| x |D*f,
(9a % 9 [UN (R, x R)] = (fu x £) [UT (|2] x |2)).

Now 37 A.6 ind. follows from the description of inductively generated uniformities
(37 A2 ind.) and the definition of a subspace (23 D.1).

Remark. One can easily prove 37 A.6 proj. without any reference to 37 A.4 proj.
and Corollary (e) of 37 A.2 proj. On the other hand 37 A.6 ind. cannot be derived
from the foregoing general results. The reason for this is that a subspace is defined
“projectively”, not “inductively”.

, then

37 A.7. Up to now the theory of projectively and inductively generated semi-
uniformities have been parallel. Now we shall state two distinctions in the theory
of these concepts.

(a) If { f.} is a projective generating family of mappings for semi-uniform spaces and
the range carrier of each f, is a uniform space, then the common domain carrier is
a uniform space; stated in other words, a projectively generated semi-uniform space
inherits the property of being a uniform space from the range spaces (see 37 B.1). On
the other hand, if f is an inductive generating mapping for semi-uniform spaces and
the domain carrier of f is a uniform space, then the range carrier of f need not be a
uniform space.

(b) If {<fo (P, %),{Qu ¥ 2> | a € A} is a projective generating family for semi-
uniform spaces, then the family {<f,, <P, Y%), {Qa Y¥ o)) | a € A} is a projective
generating family for closure spaces; in other words, if a semi-uniformity % for a set P
is projectively generated by a family {f,: P — <Q, ¥ >}, then the closure Y% in-
duced by % is projectively generated by the family {f,:P — {Q,, Y¥ >} (see
37 B.6). For inductive generation a similar result does not hold.

Therefore in the following we shall study projective and inductive generation
separately. We shall begin with the projective generation. Nevertheless it may be in
place to present a general example showing that statements (a) and (b) concerning
inductive constructions are actually true.

37 A.8. Theorem. Every semi-uniform space is inductively generated by a sur-
Jjective mapping whose domain is a discrete uniform space; stated in other words,
if {(P,%) is a semi-uniform space, then there exists a discrete uniform space
{Q,?"> and a surjective mapping f of {Q,¥") into {P, U) such that f is an inducti-
vely generating mapping, i.e. (P, %) is inductively generated by f.
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Proof. I. Suppose that (R, #) is a semi-uniform space and (X, X,) is a disjoint
cover of R such that W[X,] n X, + @ for each Win #"(and hence X, n W[X,] + 0
for each Win #"). It is clear that for a given (R, #") such a cover need not exist. On
the other hand there exist (R, #") and X |, X, such that (R, #") is a discrete uniform
space. For example, if R is an infinite set (for instance N) and #" is the uniformly
coarsest uniformity for R which induces the discrete closure for R (that is, the sets of
the form ((R — X) x (R — X)) U Jg, X finite, form a base for #°) then each disjoint
cover (X, X,) consisting of infinite sets has the required property.

II. Now let (P, %) be a semi-uniform space. Consider the sum Q of the constant
family {R | ze P x P} and the single-valued relation f on Q to P which assigns to
each {z, r) € Q, where z = {x,, x,), the point x; if r € X;. Preceding the construc-
tion of the required ¥~ for Q, we denote by R, ze P x P, the set E{<z, r) | reR},
by f, the restriction of f to R, and by #°, the semi-uniformity for R, inductively
generated by the canonical mapping {r — (z, r)} of R onto R, that is, #7, is the
collection of all sets W, = E{{(z, x), {z, y>) | X, y>e W), Wew.

III. Construction of #". For each U in % and each family {W’ |zeP x P},
where W.ew,, put V(U, {W.}) = U{X, |zeP x P} where X, = W,if ze U and
X, is the diagonal of R, x R otherwise. It is easily seen that

(=) FxNvE.{wpHl=vuvU!
for each U in % and each family {W,}. Next, if ‘W, . 2W, = *W, for each z, then
evidently V(U, {*W.}) = (V(U, {*W7})) - (V(U, {*W})), and if all W, are symmetric
then also V(U, {W}}) is symmetric. Thus the collection of all ¥(U, {W}) is a base of
a semi-uniformity ¥ for Q, and ¥ is a uniformity if #" is a uniformity. From () it is
clear that {f, (Q,¥">, (P, %)) is an inductively generating mapping.

IV. The reader can easily verify that the relativization of ¥ to R is#,if ze N %
and is the finest uniformity for R, otherwise.

V. Clearly the set U{R, x R, | ze P x P} belongs to 7. It follows from IV that
if (R, #) is discrete, then the space (Q, ¥") is discrete.

We shall introduce the terminology which enables us to formulate 37 A.7 more
precisely.

37 A.9. Definition. The projective progeny (inductive progeny) of a class K
of semi-uniform spaces, denoted by proj, K or simply proj K (indy K or simply
ind K) is the class of all semi-uniform spaces projectively (inductively) generated by a
family of mappings with range carriers (domain carriers) in K. A class K of semi-
uniform spaces is said to be projective-stable or inductive-stable if, respectively,
proj K = K or ind K = K. As in the case of closure spaces the terminology intro-
duced is applied to classes of semi-uniformities.

Statement (a) of 37 A.7 can be formulated as follows: the class vU is projective-
stable but not inductive-stable. Let K be any class of semi-uniform spaces. It follows
from 37 A.7 (b) that y¢, [projy K] is the projective progeny of the class ycy[ K] of
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closure spaces (37 B.7), but y¢y [indy K] need not be the inductive progeny of the
class ycy[ K] (substitute K = vU).

37 A.10. Theorem. The projective (inductive) progeny of any class of semi-
uniform spaces is projective-stable (inductive-stable), that is to say,

proj proj K = proj K, indind K = ind K

for any class K of semi-uniform spaces.
Proof. 37 A.4.

37 A.11. Theorem. Let K be a class.of semi-uniform spaces and let L be the class
consisting of semi-uniform structures of spaces of K. Then K is projective-stable
(inductive-stable) if and only if the following two conditions are fulfilled:

(@) L is completely meet-stable (completely join-stable) in U and contains all
uniformly accrete (uniformly discrete) semi-uniformities.

(b) If f is a projective (inductive) generating mapping for semi-uniform spaces
and E*f e K (D*f € K) then D*f e K (E*f e K).

The proof is left to the reader.

Remark. Notice that condition (a) is equivalent to the statement that every scmi-
uniformity has an upper (lower) modification in L.

1
B. PROJECTIVE GENERATION

37 B.1. Theorem. Every semi-uniformity projectively generated by a family of
mappings into uniform spaces is a uniformity, i.e., the class vU is projective-stable.

Proof. Suppose that a semi-uniformity % for a set P is projectively generated by
a family of mappings {f, | a € 4} into uniform spaces. If %, is the semi-uniformity
projectively generated by f,, a € A, then % = inf {0?1,,} by 37 A2 proj. Since the
greatest lower bound of a family of uniformities is a uniformity (36 B.2), to prove that
9 is a uniformity it will suffice to show that a semi-uniformity % for a set P projective-
ly generated by a single mapping f into a uniform space (@, ¥") is a uniformity. By
37 A2 proj. the collection cf all (f x f)~! [V], Ve ¥, is a base for %. Consequently,
to prove that % is a uniformity it will suffice to show that each V' = (f x f)™' [V],
Ve, contains a Vo V{ for some V] = (f x )~ [V}] with V; in ¥". Evidently,
if Vo V; € Vthen Vo V] < V', which completes the proof.

37 B.2. Theorem. In order that a mapping f of a uniform space {P, %) onto
another {Q,¥") be a projective generating mapping it is necessary and sufficient
that a pseudometric d for (P, %) be uniformly continuous if and only if d = d, o
o (f x f) for some uniformly continuous pseudometric d, for {Q,¥"), or stated in
other words, if n(P,¥) is the range of the relation {d, »d,.(f x f)|d,e
emQ, ¥}

This is a straightforward consequence of 37 A.2 proj. and earlier results.
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Corollary. A semi-uniform space is a uniform space if and only if it is projectivel y
generated by a family of mappings into metrizable uniform spaces. .

37 B.3. Theorem. A semi-uniformity projectively generated by a family of map-
pings into proximally coarse semi-uniform spaces is proximally coarse.

Proof. A semi-uniformity % is proximally coarse if and only if the finite square
elements of % form a base for #%. Using this fact, it is easily shown that a semi-
uniformity projectively generated by a single mapping into a proximally coarse semi-
uniform space is a proximally coarse semi-uniformity, and then the theorem
follows from Theorem 37 A.2 proj. asserting that the semi-uniformity projectively
generated by a family of mappings {f,} is the greatest lower bound of semi-uniformities
projectively generated by single mappings f,, and from the description of infima
in Theorem 36 A.1 (see also 38 B.12).

Corollary. The product of a family of proximally coarse semi-uniform spaces
is a proximally coarse semi-uniform space.

37 B.4. Theorem. Each of the following three conditions is necessary and suf-
ficient for a semi-uniformity % for a set P to be a totally bounded uniformity:
(a) % is projectively generated by the family of mappings {f |fe U*(KP, %), R)}

(b) % is projectively generated by.a family of bounded functions.

(c) % is projectively generated by a family of mappings into proximally coarse
uniform spaces.

Proof. Evidently (a) implies (b), and it follows from 37 B.1 and 37 B.3 that (c)
is sufficient. We shall show that (b) implies (c), and (a) is necessary. — I. (b) = (c):
Assume that (P, %) is projectively generated by a family {f,} of bounded functions
and consider the family {g,} where each g, is the range-restriction of f, to the sub-
space Ef, of R. By 37 A.6 the space (P, %) is projectively generated by {g,}. Each
set Ef, is bounded in R and therefore each space E*g, is proximally coarse (by
25 B.16). — II. (a) is necessary: Assume that % is a proximally coarse uniformity and
consider the semi- -uniformity ¥~ projectively generated by the family {f:P —
- R |f e U*(KP, %), R)}. By 37 B.1 and 37.B.3, 7" is a proximally coarse uniformity.
We shall prove that ¥~ = 4. Both uniformities are proximally coarse and therefore
it is sufficient to show that the proximity p induced by % coincides with the proximity q
induced by 7~ (by 25B.9). Both proximities are uniformizable and therefore it is
sufficient to show that a bounded f : {P, %) — R is proximally continuous if and
only f:{(P,¥ ) —» R is proximally continuous, or equivalently, a bounded f:
:{P, %> — R is uniformly continuous if and only if f: (P, ¥ > — R is uniformly
continuous. Evidently ¥~ = % (i.e. ¥” is uniformly coarser than %) and hence “if” is
obvious. On the other hand, if a bounded f : (P, #> — R is uniformly continuous
then f : (P, 7> — R is uniformly continuous because ¥ is, by definition of ¥, pro-
jectively generated by such functions.

Remark. The necessity of (a) will be an immediate consequence of 39 B.7.
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If {{fs, P, {Qa ¥ 2p>} is @ projective family for semi-uniform spaces, then we can
consider the projective family {(f,, P, {Q,, Y¥ ,>>} for closure spaces, and it is natural
to ask whether the closure induced by the semi-uniformity projectively generated
by the former family coincides with the closure projectively generated by the latter
family. The answer is positive. Before presenting the proof some notation and termino-
logy may be in place. Recall that yo %, or simply y%, denotes the closure induced
by % and see 7 B.6.

37 B.5. Definition. v, abbreviated to vy, denotes the single-valued relation which
assigns to each mapping f for semi-uniform spaces the mapping f:ycyD*f —
— YcuE*f for closure spaces which is said to be the transpose of f to a mapping for
closure spaces. If {f,} is a family of mappings for semi-uniform spaces then {yf,} is
the transpose of {f,} to a family of mappings for closure spaces.

Evidently, if f is uniformly continuous, then the transposed mapping f is continuous.
Now we shall prove

37 B.6. Theorem. If {f,,} is a projective generating family for a semi-uniform
space P, then the transposed family {'ycuf,,} is a projective generating family for
the closure space Yey?.

Proof. It will suffice to prove the theorem for a single mapping. Indeed, if %, is
projectively generated by f, and u, is projectively generated by yf,, then inf {%,} is
projectively generated by {f,} (by 37 A.2 proj.), inf {u,} is projectively generated by
{vf.}, (32 A4) and by 36 A3, if y%, = u, for each a, then yinf {%,} = inf {u,}.
Suppose that f is a projective generating mapping for semi-uniform spaces; write
(P, %)y = D*f, (Q,7> = B¥f, u =y¥%,v = y¥. To prove that u is projectively
generated by f : P - {(Q, v) one may merely compare the description of % by means
of ¥~ (37 A.2 proj.) with the description of neighborhoods relatively to a closure pro-
jectively generated by a mapping by means of neighborhoods in the range carrier
(32 A6).

From 37 B.6 we immediately obtain the following result.

37 B.7. Theorem. If K is a class of semi-uniform spaces then y¢y [projy K] is
the projective progeny of the class yey[ K] of closure spaces.

Corollary. If a class K of semi-uniform spaces is projective-stable then the class
Yeu[ K] of closure spaces is projective-stable.

Example. The class vU is projective-stable and hence the class y¢,[0U] = vC
is projective-stable.

37 B.8. Theorem. Let K be a class of semi-uniform spaces and let K be the class
of all uniformly accrete semi-uniform spaces. A semi-uniform space P belongs to
proj K if and only if 2 is homeomorphic to a subspace of the product of a family
of spaces from K u K;.

Corollary. A class K of semi-uniform spaces is projective-stable if and only if
K contains all uniformly accrete spaces, K is hereditary and completely pro-
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ductive, and, of course, K contains all the uniform homeomorphs of each of its
elements.

Proof. Let K, be the class of all spaces satisfying the condition. Clearly K, =
< proj K. Suppose that 2 € proj K and {f,} is a projective generating family for 2
such that E*f, € K for each a. If A4 is empty then £ is a uniformly accrete space and
hence 2 € K,. Assuming 4 =+ @ consider the reduced product f of {f,}; by Corollary
of 37 A4, f is a projective generating mapping. Let 2 be the set Ig‘l endowed with
a uniformly accrete semi-uniformity and let g be the reduced product of ) : 2 — 2
and f. Clearly g is a projective generating mapping. Since g is injective, g is a uniform
embedding.

C. INDUCTIVE GENERATION

By 37 A.8 the class vU of all uniform spaces is not inductive-stable, and moreover,
U is the inductive progeny of vU (37 A.8 implies that U is contained in the inductive
progeny of the class of all discrete uniform spaces). Thus if {f,} is an inductive gener-
ating family for semi-uniform spaces then {ycy,f,} need not be an inductive generating
family for closure spaces. Let {f,} be an inductive generating family for a semi-
uniform space (P, %) and let %, be inductively generated by f, : D*f, - P; from
37 A2 we have % = sup {#,}. Consider the closure u, inductively generated by
fa:YcuD*f.— P and the closure u inductively generated by {f, : Y¢,P*f, — P}; from
33 A.4 we have u = sup {u,}. If u, = ycy %, for each a then u = ycy % bzcause
Yeu : U = Cis completely lattice preserving (36 A.3). It follows that if the transpose of
each mapping f, : D*f, — (P, %,> to a mapping for closure spaces is an inductive
generating mapping for closure spaces, then the transpose{ycf,} of the family {f,}
is an inductive generating family for closure spaces. Thus the fact that the transpose
of an inductive generating family of mappings for semi-uniform spaces to a family of
mappings for closure spaces need not be an inductive generating family for closure
spaces lies in the fact that the transpose y¢f of an inductive generating mapping f
for semi-uniform spaces need not be an inductive generating mapping for closure
spaces. Inductive generating mappings for semi-uniform spaces will be studied in
37 D, to which we also leave the discussion of transposed families of mappings.

Considering that uniform spaces form the most important class of semi-uniform
spaces, we shall introduce the concept of an inductive generating family for uniform
spaces. The results concerning inductive generating families for uniform spaces will
be proved directly and also by a reduction to analogous results for inductive generat-
ing families for semi-uniform spaces; in the first case the proofs are similar to those
concerning the corresponding results for inductive generating families for semi-
uniform spaces, and in the latter case the reduction is dependent upon the properties
of the uniform modification and the almost self-evident proposition 37 C.1. Compare
this development with the similar one for inductive génerating families for topological
spaces in 33 B.
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37 C.1. If % is the uniformly finest semi-uniformity for a set P rendering all given
mappings f,:<Q, ¥ ,> — P uniformly continuous, then the uniform modification
V% of % is the uniformly finest uniformity for P rendering all the above mappings
uniformly continuous.

37 C.2. Definition. A uniformity % for a set P is said to be inductively generated
in the uniform sense by a family of mappings {f,} if P is the common range carrier
of all f,, the domain carrier of each f, is a semi-uniform space and % is the uniformly
finest uniformity for P such that all enriched mappings {gr f,, D*f,, {P, %)) are
uniformly continuous. A uniform space is said to be inductively generated in the
uniform sense by a family {f,}, and {f,} is said to be an inductive generating family
in the uniform sense for (P, %>, if (P, %) is the common range carrier of all f, and
the uniformity % is inductively generated in the uniform sense by the family
{(grfa, D*f,, P)}. An inductive generating family for uniform spaces is a family
{f.} with a common range carrier (P, %) which is inductively generated in the
uniform sense by the family {f,} (thus % is a uniformity). All the terminology intro-
duced is carried over to collections of mappings and single mappings.

Now 37 C.1 can be restated as follows.

37 C3. If {{f ., 2., P)} is an inductive generating family for semi-uniform spaces,
then {(f,,, 2,, vP)} is an inductive generating family for uniform spaces; in other
words, if P is inductively generated by the former family then the uniform modific-
ation v of P is inductively generated in the uniform sense by the latter family.

Corollary. If {f,,} is an inductive generating family for semi-uniform spaces and
the common range carrier of the f, is a uniform space, then {f,} is also an inductive
generating family for uniform spaces.

It should be noted that an inductive generating family {f,} for uniform spaces need
not be an inductive generating family for semi-uniform spaces. Indeed if f is the
identity mapping of a semi-uniform space onto its uniform modification v#, then
clearly f is an inductive generating mapping for uniform spaces but f is not an in-
ductive generating mapping for semi-uniform spaces provided that 2 + v#.

Before proceeding, some comments on the definitions may be in place.

Remarks. (a) Now we are in the same situation as in Section 33 when we had
proved the fundamental theorems about inductive generation for closure spaces and
we had noticed that the property of being a topological space is not inherited by in-
ductively generated spaces. Because of the importance of topological spaces we intro-
duced the definition of ‘““a closure operation topologically inductively generated by
a family of mappings” as the finest topological closure rendering all given mappings
continuous. Similarly we introduced the definitions of “‘a topological inductive gener-
ating family” and “‘a topological inductive generating family for a space”. In ac-
cordance with our previous terminology it would be more consistent to say ““a uni-
formity uniformly inductively generated by a family {f,}”, instead of “a uniformity
inductively generated in the uniform sense by a family {f,}”’ and a “uniform inductive

45—Topological Spaces
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generating family for a space 2’ instead of ‘‘an inductive generating family in the
uniform sense for a space #”’. However, there are serious reasons for avoiding this
terminology. The words uniform and uniformly are used to indicate that a notion
relates to semi-uniform spaces and not merely to uniform spaces, for example, ““uni-
formly continuous mapping”’, “uniformly discrete semi-uniform space”. Next, and this
is in accordance with the current use of the word uniform, we desire that “Z is uni-
formly P should imply “2 is P, e.g. if P is uniformly discrete, then P is discrete.
On the other hand if a uniform space 2 isinductively generated by a family {f,}, then
# is inductively generated in the uniform sense by {f,} but the converse is not true.
Finally, it is convenient to leave the term uniform generating family for a special
type of generating families.

(b) The theory which follows, and also the corresponding terminology, would be
more lucid if only uniform spaces were considered.  Nevertheless, the notion of a
semi-uniform space is basic and in the most general situation it expresses the intuitive
content of the notion of a structure describing ‘‘uniformness”. Furthermore, a
semi-uniformity % inductively generated by a family {f,} can be easily obtained from
the semi-uniform structures of the domain carriers of f,; we can say that % is the
image of these semi-uniformities. For uniformities no such a single description exists;
however, the theory can easily be reduced to that for semi-uniform spaces. On the
other hand uniformities form the most important class of semi-uniform spaces be-
cause the class of all uniformities is the greatest class having some important addi-
tional properties (extension theorem 27 B.15 and so on). We shall study the inductive
generation of uniform spaces from this point of view.

(¢) If {f,} is an inductive generating family for uniform spaces, then the common
range carrier of each f, is a uniform space, but the domain carriers are not required
to be uniform spaces. It is worth noticing that the following proposition is true.

37C4. A family {f,} is an inductive generating family for uniform spaces if
and only if the family {{gr f,, oD*f,, E*f,>} is an inductive generating family
for uniform spaces.

37 C.5. Theorem. Suppose that P is a set and {f, | a € A} is a family of mappings
of semi-uniform spaces into P. Then there exists exactly one uniformity, say %,
inductively generated in the uniform sense by {f,}: a pseudometric d for (P, U) is
uniformly continuous if and only if the pseudometric d o (f, % f,) is a uniformly
continuous pseudometric for D*f, for each a in A. If U, is inductively generated by
fathen % is the uniformly finest uniformity uniformly coarser than each %,, that is,
A is the least upper bound of {v#,} in vU(P).

Proof. The uniqueness is evident. Now let ¥" and ¥",, a € A, be semi-uniformities
inductively generated by the family {f,} or by the mapping f,, respectively. By 37 C.1
% = vy is inductively generated in the uniform sense by {f,} and %, = v¥, is in-
ductively generated in the uniform sense by f,; in particular we obtain the existence of
uniformities inductively generated in the uniform sense. By 37 A.2 ind. the semi-
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uniformity ¥ is the least upper bound of the family {¥#"} in U(P). By virtue of 36 B.2
we find that = v¥" is the least upper bound of {#,} in vU(P). Finally, the de-
scription of uniformly continuous pseudometrics for (P, %) follows from the de-
scription 37 A.2 ind of ¥” and the fact that d is uniformly continuous for (P, ¥") if
and only if it is uniformly continuous for (P, v¥") = (P, %).

Direct proof. Let .# be the set of all pseudometrics for P such that each d o
o(fs x f,) is a uniformly continuous pseudometric for D*f, for each a in A. It is
easily seen that .# is a uniform collection of pseudometrics for P and the correspond-
ing uniformity is inductively generated in the uniform sense by {f,}. Now let .Z,,
a € A, be the collection of all pseudometrics d for P such that d - (f, x f,) is uniformly
continuous for D*f,. Since we have proved that .#, = p%, for each a and clearly
M = N{M,}, it follows that % = sup {#%,} in vU(P).

Corollary. Let {f,| a € A} be a family of mappings of semi-uniform spaces into
a semi-uniform space 2 and let A, be a subset of A such that the domain carrier
of each f,, ae A— Ay, is a uniformly discrete uniform space. Then {f,| a € A} is an
inductive generating family for uniform spaces if and only if {fa l a € Ay} is such.

37 C.6. Let us consider a family {f,} of mappings of semi-uniform spaces ranging
in a semi-uniform space (P, %) and let ¥ be the uniformity for P inductively
generated in the uniform sense by the family {gr f, : D*f, » P}. Put

h=J:<P"V>_)<P’%>’ ga=fa:D*fa_’<P"V>'

Thus {g,} is an inductive generating family for uniform spaces, h is a bijective map-
ping and f, = h . g, for each a; this could be written as

(*) {fa} =ho [{ga}]
This factorization () will be called the canonical inductive factorization in the
uniform sense of the family {f,}. If <P, %) is a uniform space, then obviously the
mapping h is unifoimly continuous if and only if all f, are uniformly continuous.
Of course, the assumption that % is a uniformity is essential. Let us also consider the
canonical inductive factorization (see 37 A.3)

(%) {fa} = ¥ o [{g2}]

of {f,}. By 37 C.3 we have

9a = {Jp. E*g,, ©E*g> og,
for each a and
h=h o{Jp,vD*h', D*h’> .

37 C.7. Theorem. In order that a family {f, I a € A} of mappings of semi-uniform
spaces into a uniform space (P, %) be an inductive generating family for uniform
spaces it is necessary and sufficient that

a mapping f of <P, %) into a uniformspace {Q,¥") be uniformly continuous if
and only if each composite f - f,, a € A, is uniformly continuous.

45*
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Proof. Let:-us consider the canonical inductive factorization {f,} = h[{g,}]-
By 37 A.5 a mapping f . h into a semi-uniform space is uniformly continuous if and
only if all mappings (f o h) - g, are uniformly continuous. But fo h o g, = f o f, and
consequently

(*) A mapping f o h is uniformly continuous if and only if all mappings f . f, are
uniformly continuous.

According to 37 C.1, { f} is an inductive generating family for uniform spaces if
and only if the common range carrier (P, %) (= E*h) of all f, is the uniform modific-
ation of the common range carrier of each g,, say (P, ¥"), which coincides with
D*h. However, in order that (P, %) be the uniform modification of (P, ¥°) it is
necessary and sufficient that a mapping f of (P, %) into a uniform space be uni-
formly continuous if and only if the mapping f - & is uniformly continuous. Combin-
ing this with (%) we obtain the statement.

Direct proof. I. Necessity. Suppose that {f,} is an inductive generating family
for uniform spaces. If f: (P, %) — {@, ¥ ) is uniformly continuous, then each
mapping f o f, is uniformly continuous as the composite of two uniformly continuous
mappings (notice that {Q, ¥")> need not be a uniform space here). Conversely, sup-
pose that all composites fof, are uniformly continuous and <{Q,? ) = E*f is
a uniform space. To prove that f is uniformly continuous it is enough to show that
do(f x f) is a uniformly continuous pseudometric for (P, %) provided that d is
uniformly continuous pseudometric for (Q, ¥">. Let d be any uniformly continuous
pseudometric for (Q,¥"). Since d.o(f x f) is a pseudometric for (P, %) and
{P, % is inductively generated in the uniform sense by the family {f,}, to prove that
d o (f x f) is uniformly continuous it is enough to show (by 37 C.5) that each
(do(f x f))o(fa x fo)is a uniformly continuous pseudometric for D*f,. However,
(do(f % f))o(fa x f) is equal to do(fof, X fof,), and the latter pseudometric
is uniformly continuous because d is a uniformly continuous pseudometric and f - f,
is a uniformly continuous mapping.

II. Sufficiency. Suppose that the condition is fulfilled and let us consider the
canonical inductive factorization in the uniform sense (see 37 C.6) {f,} = ho[{g.}]
of {f,}. If f is the identity mapping of the common range carrier (P, %) of all f, onto
itself, then the condition yields that all f - f, = f, are uniformly continuous, and con-
sequently by 37 C.6, h is uniformly continuous. If we put f = h™! then fo.f, = g,
and hence all f , f, are uniformly continuous. By the condition, f = k™! is uniformly
continuous. Since both # and h~! are uniformly continuous, # is a uniform homeo-
morphism, and the graph of k being the identity relation Jp, we obtain f, = g, for
each a.

Remarks. (a) Notice that it follows from the preceding result that the following
condition is necessary and sufficient for a uniform space {P, %) be the uniform
modification -of a uniform space (P, ¥ ): a mapping f of the space (P, ¥") into
a uniform space £ is uniformly continuous if and only if the mapping f : (P, %> — &
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is uniformly continuous. (b) It should be noted that we can introduce the definition of
an inductive gznerating family in a subclass K of U; then the concept of an inductive
generating family for uniform spaces would be a special case K = vU. We leave to
the reader the task of verifying that the preceding theorem follows from the fact that
vU is projective-stable (compare with 33 B).

37 C.8. Theorem. Let {f, | a € A} be a family of mappings of semi-uniform spaces
which range in a semi-uniform space {P, %) and let the domain carrier of each
f. be inductively generated in the uniform sense by a family {g,, l beB,}. Then
{f.} is an inductive generating family for uniform spaces if and only if {f, o g}
is such.

Proof. Let us consider the following canonical inductive factorizations (not in the
uniform sense!):

{9as | b€ B} = hyo[{gss | bEeB}],
{faoh,|aeA} =ho[{f;|aecA}].

It follows that h o f, o g,y = fao gap for each ain 4 and b in B. Since {f;} and all
{9:| b€ B,} and hence also {f; - g,,} are inductive generating families for semi-
uniform spaces, by 37 C.3 the family {f, - g,5} is an inductive generating family for
uniform spaces if and only if the space (P, %) (= E*f, . g,) is the uniform modifica--
tion of the common range carrier (P, ¥") of all f,. g,,. By our assumption and
37 C.1 each mapping h, is the identity mapping of each E*g’,, b € B,, onto its uni-
form modification. It follows that {f,} is an inductive generating family for uniform
spaces if and only if {f, h,} is such. Finally, by 37 C.3 and 37 C.4 we find that
{fao h,} is an inductive generating family for uniform spaces if and only if (P, %)
is the uniform modification of (P, ¥ >, which completes the proof.

Direct proof. According to the preceding theorem it is sufficient to show that
the statement “{P, %) is a uniform space, and a mapping f of {P, %) into a uniform
space is uniformly continuous if and only if all the mappings f . f, are uniformly
continuous’ is equivalent to the statement “{P, %) is a uniform space, and a map-
ping f of <P, %) into a uniform space is uniformly continuous if and only if all the
mappings f o (f, o g,) are uniformly continuous”. For each a the family {g,} is an
inductive generating family for uniform spaces and therefore, again by the preceding
theorem, the mapping f - f, is uniformly continuous if and only if all the mappings
(fofs) o 9m» b€ B,, are uniformly continuous (notice that this conclusion remains
valid if we assume that {g,, | b € B,} is an inductive generating family; we must use
37 A.5). Since fo (fao0gas) = (f ofa) o gup» the proof is complete.

37 C9. In 37 C.8 the assumption that {g,, | b€ B,} is an inductive generating
Sfamily for uniform spaces can be replaced by the following formally weaker as-
sumption: If a € A, then {g,, | b € B,} is an inductive generating family for uniform
spaces or an inductive generating family for semi-uniform spaces.
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Proof. The direct proof of the preceding theorem applies in this more general
situation. On the other hand we shall show that 37 C.9 is an immediate corollary of
the preceding theorem. Put

9ob = Gap - D*gop = VE*gy, ., fo = fo 1 0D*f, > E¥f,.

By 37 C.4 the family {f,} is an inductive generating family for uniform spaces if and
only if {f.} is such. Apply 37 C.8 to {g_,} and {f.} and notice that f, o g, = f1 c g

As a straightforward consequence of 37 C.9 we obtain the following theorem which
shows that the inductive generation for uniform spaces by a non-void family can be
reduced to the construction of the sum semi-uniformity and the inductive generation
for uniform spaces by a single mapping.

37 C.10. Theorem. Let {f, | a € A} be a non-void family of mappings of semi-
uniform spaces into a semi-uniform space (P, U). Then {f,} is an inductive generat-
ing family for uniform spaces if and only if the reduced sum f of {f,} is an inductive
generating mapping for uniform spaces.

Proof. We have D*f = X{D*f,} and f{a, x) = f,x. Thus f i, = f, for each a
where i, is the canonical embedding of D*f, into D*f. Since {i,} is an inductive gener-
ating family for semi-uniform spaces, the statement follows from 37 C.9.

37C.11. If (Q,¥") is a subspace of a semi-uniform space (P, %), {f,} is an
inductive generating family for (P, %) and £, is the subspace of D*f, whose under-
lying set is f; [Q], then <Q, ¥") is inductively gznerated by the family {f, : #, —
— {0, ¥">}. A similar result does not hold for the inductive gzneration for uniform
spaces. E.g. let (Q, ") be a subspace of a semi-uniform space (P, #) such that
{@,v¥") is not a subspace of {P,v%). Then [:4{Q,¥ > —» {Q,v¥") and |:
: (P, %) — (P,v%) are inductive generating mappings for uniform spaces and so on.

D. QUOTIENTS

As in the case of closure spaces and topological spaces, we shall introduce the
definitions of a quotient, and of a quotient in the uniform sense, of a semi-uniform
space under a mapping or an equivalence.

37 D.1. Definition. Let (P, %) be a semi-uniform space. If f is a mapping whose
domain carrier is (P, %), then the quotient of (P, %) under f, denoted by {P, %D/f
(the quotient in the uniform sense of (P, %) under f, denoted by (P, «)/,f), is the
set Ef endowed with the semi-uniformity inductively generated (with the uniformity
inductively generated in the uniform sense) by the mapping f : (P, %) — Ef. If g is
an equivalence on (P, %) then the quotient of {P, %) under g, denoted by (P, %)/e,
(the quotient in the uniform sense of (P, %) under o, denoted by (P, >/,0) is the
space (P, U)[n ({P, %)/,n), where = is the canonical mapping of (P, %) onto P/g.
More specifically we shall often write uniform quotient instead of quotient.

As a corollary of 37 C.1 we obtain:
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37 D.2. If P is any semi-uniform space, f is a mapping with D*f = 2 and ¢ is
an equivalence on 2, then

Z/.f = o(2Z|f)
2] = v(Z/e) .

The quotient of a semi-uniform space under an equivalence was defined as the
quotient under a certain mapping, and hence any investigation of quotients under equi-
valences reduces to an investigation of quotients under mappings. On the other hand
the theorem which follows shows that any investigation of quotients under mappings
also reduces to an investigation of quotients under equivalences. Hence we shall state
various results for 2[g or 2/f, leaving the formulation for the other quotient to the
reader.

37 D.3. Let f be a mapping of a semi-uniform space 2 into any struct and let g
be the equivalence {x — y |fx = fy}. Then there exist uniform homeomorphisms h
and h, such that

(*) {gtf, P, Plf> =hon

(**) <grf’ g’ g/vf> = hu oW,
where n and 7, are the canonical mappings of ? onto P[g¢ and P/ 0. In particular,
P|[f is uniformly homeomorphic to Plg and P|,f is uniformly homeomorphic to
2.0 _

Proof. Equation (x) defines exactly one mapping # which is bijective, and also
(**) defines exactly one mapping h, which is bijective; moreover, if we denote the
left side of () and () by g and g, then alson = h™'.g, 7, = h; ' o g,. Since n
and g are inductive generating mappings for semi-uniform spaces and =, and g, are
inductive generating mappings for uniform spaces, we obtain from 37 A.5 and 37 C.7
respectively that the mappings & and k™!, h, and h, ! are uniformly continuous; this
completes the proof.

To the projective concept “a uniform embedding into a space”, i.e. a projective
generating mapping for semi-uniform spaces which is also injective, there corresponds
the inductive concept “a mapping of a space # onto a quotient of 2, i.e. an induc-
tive generating mapping for semi-uniform spaces with D*f = £ such that f is surjec-

tive. As an example we shall describe the inductive progeny of a class (compare with
378.8).

37 D.4. Theorem. Let K be a class of semi-uniform spaces and let K; be the
class of all uniformly discrete spaces. The inductive progeny of K consists of quot-
ients of sums of families in K U K.

Proof. Let K, be the class which consists of all spaces satisfying the condition.
Clearly K, < ind K. Let 2 be any space of ind K and let {f,} be an inductive generat-
ing family for 2 with domain carriers in K. The reduced sum f of {f,} is an inductive
generating mapping for 2. Let 2 be the uniformly discrete space such.that |9| = |.@|
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The reduced sum g of ) : 2 » £ and f is an inductive generating mapping for 2, and
clearly g is surjective. Thus # € K,.

37 D.5 Corollary. A class K of semi-uniform spaces is inductive-stable if and only
if K contains all uniformly discrete spaces, K is closed under arbitrary sums and
all quotients of spaces of K belong to K.

37 D.6. By 37 A.8 every semi-uniform space is the quotient of a discrete uniform
space. It follows that, in general, 2[p + 2/,0 even if & is a uniform space, and
Yeu(@/e) + Ycu?/e. Two questions naturally arise: under what necessary and suf-
ficient conditions on # = (P, %) and g do the equalities

(P, %>[e = (P, %>,
'Ycu((P, %>/Q) = YeulP, %)[e

hold. The most important sufficient conditions require compactness and other
related concepts, and therefore will be not treated here(consult the exercises to 41).
At present we shall restrict ourselves to a general discussion. It should be noted that
according to the introduction to 37 D the solution of the problem whether the trans-
pose of an inductive generating family for semi-uniform spaces to a family of map-
pings for closure spaces is an inductive generating family is easily reduced to the
problem whether ycy(D*f,/f.) = YeuDP*f./f. for each a.

37 D.7. Theorem. In order that the quotient of a semi-uniform space {P, U
under an equivalence g be a uniform space it is necessary and sufficient that for
each U in % there exist a U, in U such that U, c 0o U, < oo U o g.

Proof. Write {Q, ") = (P, #)/o. First we shall show that

(*) ¥ consists of all (n x =) [U], Ue .

We know that ¥~ consists of all vicinities ¥ of the diagonal of @ x Q such that
(mr x m)~* [V] e %. Since = is surjective, ¥~ coincides with all ¥ = Q x Q such that
(r x n)"*[V]e%. Since (n x n)[(m x m)~' [V]] = V for each V¥ = P x P, the
auxiliary statement follows. '

Let us consider the semi-uniformity %’ projectively generated by the mapping
7 : P - {(Q, 7). Evidently, if % is a uniformity then ¥ is a uniformity, and it follows
from the fact that vU is projective-stable, that if 7" is a uniformity then %’ is a uni-
formity. Thus %’ is a uniformity if and only if ¥ is such. Now prove that %’ is a uni-
formity if and only if the condition of 37 D.7 is fulfilled. First we shall show that

(**) %' has for a base the collection of allg o U o ¢, U € %.

The semi-uniformity %’ has the collection of all (= x n)™! [V], Ve, for a base,
and hence by (#), the collection of all (= x =)™ ' [(z x =) [U]], U € %, is a base for
%’'. On the other hand

(r x )~ [(= x =) [U]] = U{e[x] x e[¥] I G, y)eUt=0oUog

because ¢ is symmetric. The proof of (*x) is complete.
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Now %' is a uniformity if and only if for each U in % there exists a U, in % such that
(QoUloQ)o(QoUloQ)CQoUoQ,

ie. 9oUj000U;00<=0-Uog (we have gog = Q). However if WegooUop
then 0o Wog c 0o U o because go@olUoc@o@ = 00 Uog. The proof is com-
plete.

The quotient of a uniform space need not be a uniform space, in other words, the
condition of 37 D.7 need not be fulfilled. Nevertheless, Theorem 37 D.7 is rather
general, and therefore it seems to be useful to illustrate this theorem with simple
example. It will be based on the following proposition.

37 D.8. A quotient of a semi-pseudometrizable semi-uniform space is semi-
pseudometrizable. In addition, if d semi-pseudometrizes (P, %), and g is an equi-
valence on (P, U, then the quotient {P, U>/¢ is semi-pseudometrized by

D = {(X,Y) - dist (X, Y)}

Proof. As above let {(Q, ¥") stand for (P, %)/o, and = for the canonical mapping
of (P, %) onto {Q, ¥ ). Obviously D is a semi-pseudometric for {(Q, ¥"). For each
positive real r put U, = E{(x, y) | d(x,y) <r}andV, = E{(X, Y) | D(X,Y) <r}
Since evidently D(X, Y) < r if and only if d(x, y) < r for some x in X and y in ¥,
we have (n x n)[U,] = V, for each positive real r. The semi-uniformity ¥ con-
sists of all (= x =) [U], U € %, and consequently, {U, | r > 0, r € R} being a base
of %, {V, r>0,re R} is a base of ¥7; in other words, D semi-pseudometrizes ¥".

37D.9. Example. Suppose that a semi-uniform space (P, %) is semi-pseudo-
metrized by d and let D be the semi-pseudometric for #/g defined in 37 D.8. By 24 A.3
D is a uniformly equivalent to a pseudometric if and only if for each r > 0 there exists
an s > 0 such that D{(X,Y) < s, D{Y,Z) < s imply that D{X, Z) < r. Notice
that this condition coincides with the condition of 37 D.7.

We now proceed to an examination of the validity of the second formula of 37 D.é.
In what follows, unless otherwise stated, (P, %) will be a semi-uniform space, ¢ will
be an equivalence on (P, %), © will be the canonical mapping of (P, %) onto the quo-
tient space (P, %)>/¢ which will be denoted by (@, ¥ >. We have shown that

(1) v = E{(n x n) [U]|Uea}.

By the definition of induced closures ,

(2) E{((x x m) [UD [(X)] | U e %}

is the neighborhood system at the point X in {Q, ycy? -
It is easily seen that ((z x =) [U]) [(X)] = a[U[X]] for each X e Q and U <
= P x P (notice that X € @ = =~ ![(X)] = X), and hence we have that

(3)  E{n[U[X]]| U € %} is the neighborhood system at X in <@, Yey? ).
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It follows from (3) that the closure y¢y?” depends only on the proximity induced
by %; more precisely,

37D.10. If %, and %, are two proximally equivalent semi-uniformities for
a set P, then the closure spaces Yeu(<P, %1>[e) and 1cy((P, %,) | @) coincide for
each equivalence g on P.

Proof. If %, and %, are proximally equivalent, then the collections E{U[X] | Ue
€%,} and E{U[X] | U € %,} coincide for each X < P.

Now let us return to our problem. Denote by v the closure inductively generated
by the mapping 7 : {P, Yeu#) — @, in other words, v is defined by (Q,v) =
= (P, Ycu¥) | 0. By the description of neighborhoods in quotients of closure spaces,

(4) the collection E{zn[G] | G is a neighborhood of the set X in (P, yco%)}
is the neighborhood system at the point X € Q in {(Q, v).

It follows from (3) and (4) that ycy¥ = v provided that every neighborhood G
of each X e Q contains a U[X] for some U € % (remember that every U[X], U e %,
is a neighborhood of X). Stated in other words, Y¢,¥?~ = v provided that every neigh-
borhood of each set X € Q in (P, Yo%) is a proximal neighborhood relative to the
proximity induced by #%. It is useful to state the result which has just been proved
as a theorem.

37 D.11. Theorem. In order that Ycu(<P, %) [ @) = YculP, %) [ 0 it is suf-
ficient that every neighborhood in {P, yey, ) of every set ¢[x], x € P, be a proximal
neighborhood, i.e. contain a set of the form U[g[x]] for some U in %, in other
words,

E(U-0) [¥] | Uet)
be a base for the neighborhood system of the set g[x] in (P, Yey#) for each x € P.

Corollary. If the sets g[x], x € P, are closed in (P, Ycu%), {P, Yeu#) is a normal
space and % is a semi-uniformity inducing the Cech proximity for (P, Yeu®),
then the equality holds.In particular, if the sets ¢[x], x € P are closed, {P, Yoy, %)
is a normal space and U is the fine or the Cech uniformity for (P, e, ), then
the equality holds.

Remark. The condition in Theorem 37 D.11 is not necessary. A more detailed
discussion is given in 39 D.
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38. ORDERED SETS OF PROXIMITIES

This section is concerned with the development of order properties of the ordered
class P of all proximities. The results of this section will be applied to projective and
inductive generation for proximity spaces in 39.

In subsection A we shall prove that P is boundedly order-complete and we shall
describe infima and suprema in P. In subsection B we shall prove that the canonical
mapping of U into P (which assigns to each semi-uniformity % the proximity induced
by %) is completely join-preserving (but not meet-preserving), and the canonical map-
ping of P into C (which assigns to each proximity p the closure induced by p) is
completely lattice-preserving. In this connection the following concepts will be intro-
duced: proximally fine semi-uniformity (proximally coarse semi-uniformities were
introduced in 25 B), fine proximity and coarse proximity. Subsection C concerns the
class vP of all uniformizable proximities. We shall prove that vP is completely meet-
preserving and completely meet-stable in P, the canonical mapping of vU into vP is
completely join-preserving (but not meet-prescrving), and the canonical mapping of
vP into vC is completely meet-preserving (but not join-preserving). The following
concepts will be introduced: proximally fine (coarse) uniformity, fine (coarse) uni-
formizable proximity.

A. ORDERED CLASS P

By definition 25 A.1, a proximity for a set P is a relation p for exp P and exp P
satisfying certain conditions. A proximity space is a pair (P, p) such that P is a set
and p is a proximity for P. If p is a proximity for P then |JDp = P. By definition
25 A.7, 2 mapping f of a proximity space (P, p) into another one {Q, ¢) is said to be
proximally continuous if X pY implies f[X] q f[Y]. A proximity p is said to be pro-
ximally coarser than a proximity g, and q is said to be proximally finer than p, if both
proximities are for the same sef, say P, and the identity mapping of (P, ¢> onto
(P, p) is proximally continuous; stated in other words, p is proximally coarser than g
if and only if XqYimplies XpY (i.e. ¢ = p)and YDg = Dp.

The relation {p —q | p is proximally finer than g} is an order; the class of all
proximities ordered by this relation is denoted by P, and if P is a set then P(P) de-
notes the ordered subset of P consisting of all proximities for P.
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It is to be noted that the order structure of P coincides with the restriction of the
inclusion <, and hence P(P) is an ordered subset of (exp (exp P x exp P), =).

38 A.1. Theorem. Let P be a set. The ordered set P(P) is order-complete. The
proximally finest proximity for P consists of all (X, Y) such that X =« P, Y c P,
X N Y * 0. The proximally coarsest proximity for P consists of all pairs {X,Y)
such that P> X + 0 + Y P. If {p;| a e A} is a non-void family in P(P), then

sup {p,|ae A} = U{p,|aec4}.

Proof. I. Let us consider the relations p’ = {X > Y|X cP,Y< P,X N Y 4 0}
and p" = {X > Y|P > X + 0 #+ Y < P}. It follows from the definition of pro-
ximities that p’ = p = p” for each proximity p for P(p’ < p follows from (prox 3)
and p < p” from (prox 1)). As a consequence, to prove that p’ is the proximally finest
proximity for P and p” is the proximally coarsest proximity for P it remains to show
that both p’ and p” are proximities. The verification of the corresponding conditions
(prox i) is simple and may be left to the reader. — II. Now let {p, | a € A} be a non-
void family of proximities for P and consider the relation p = U{p, I a € A}. The
reader may show without difficulty that p is a proximity for P. Clearly p is the least
upper bound of {p,} in P(P). — III. The ordered set P(P) is order-complete because it
possesses a least element and a greatest element by I, and every non-void family has
a least upper bound.

38 A.2. Corollary. The set P(P) is completely join-stable in the ordered set
exp (exp P x exp P), =).

38 A.3. On the other hand P(P) is not meet-stable in {exp (exp P x exp P), =)
whenever P has at least three points. Indeed, if x,, x, x, are distinct elements of
Pand p,;, i = 1,2, are proximities for P such that (x,) p;(x;) and (x,) non p; (x;) for
i%j,j=1,2and p = p; N p,, then (xo)non p(x;), i = 1,2, but (x,) p(xy, x;).
Thus p does not fulfil (prox 4) and hence p is not a proximity.

38 Ad. If {p,} is a non-void family in P(P) and p = N\{p,} is a proximity, then
p is the infimum of {p,} in P(P).

It is easily seen that p fulfils conditions (prox 1)—(prox 3). By 38 A.3 condition
(prox 4) need not be fulfilled. If the family {p,} is range down-directed, then (prox 4)
is fulfilled (and hence p is a proximity). In fact,if X non pX,,i = 1,2,then X non p, X
for some a;, and {p,} being down-directed, there exists an a so that p, is proximally
finer than p,,, i = 1, 2; clearly X non p, X;, i = 1, 2, and hence X non p, (X, U X,)
and hence X non p (X; U X,).

For the sake of completeness we recall a direct description of inf {p,} which was
established in 25 E.7.

38 A5. If p is the infimum of a non-void family {p,} in P(P) then XpY if and only
if X = P, Y< P and the following condition is fulfilled: If {X|} is a finite de-
composition of X and {Y}} is a finite decomposition of Y, then X p,Y; for some i, j
and each a.
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38 A.6. Theorem. Let p be the supremum of a non-void family {p,} in P(P) and
let X be a subset of P. A set U is a proximal neighborhood of X in (P, p) if and
only if U is a proximal neighborhood of X for each a. Stated in other words, if U is
the set of all proximal neighborhoods of X in (P, p> and if %, is the set of all
proximal neighborhoods of X in {P, p,» for each a, then U = (\{%,}.

Proof. By 38 A.1 we have (P — U) non p X if and only if (P — U) non p, X for
each a.

If % is the set of all proximal neighborhoods of a set X in {P, p), then % is a filter
on P which is proper if and only if X # 0.

38 A.7. Theorem. Let p be the infimum of a non-void family {p,} in P(P) and let
X < P. If U,y is the collection of all neighborhoods of an Y in (P, p,y and Uy =
= U{%,y}, then the set of all Y{U;} with U; € Uy, and {X.} a finite cover of X is
a sub-base for the filter consisting of all proximal neighborhoads of X in (P, p).

This is an immediate consequence of 38 A.5. In conclusion we shall state an im-
portant result, leaving the proof to the reader.

38 A8. Let {p,} be a family in P(P), {q,} be a family in P(Q) and let f be a map-
ping of P into Q. If all the mappings f: (P, p,) — {Q, q,> are proximally con-
tinuous, then the mappings f: (P, sup {p,}> = <@, sup {q.})> and f : {P, inf {p,}> -
— (Q, inf {qa}) are also proximally continuous.

B. INTERRELATIONS BETWEEN U, P AND C

If % is a semi-uniformity for a set P, then
p=E(X,Y)|X <P, YcP,Ue%=U[X]NY=+0}

is a proximity for P which is said to be induced by % (cf. 25 A.1). If p is a proximity
for a set P then the relation {X — uX I X < P}, where uX = E{x | (x)pX}, isa
closure operation for P which is said to be induced by p (25 A.1). Finally, let us recall
that every semi-uniformity % for P induces the closure {X — uX}, where

uX = E{x|Ue% = U[(x)] n X *+ 0},

which is denoted by yy% or merely Y%, and the relation {# — y%} is denoted by
Yeu Orf merely y. The mapping v : U — C which is termed the canonical mapping
of U into C was examined in 36 A.

38 B.1. Definition. Let 7y, be the single-valued relation which assigns to each
semi-uniformity the proximity induced by %, and let yp be the single-valued relation
which assigns to each proximity p the closure induced by p. The symbols g, and y¢p
will also be used to denote the relations {<P, %) — (P, vpy%)} and {(P, p) —
— (P, Ycpp)}. The restrictions of the mappings ypy : U — P and y¢p : P — € will be
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called the canonical mappings; e.g. if Pis a set then the mapping v, : U(P) —» P(P)
will be called the canonical mapping of U(P) into P(P) and y¢p : P(P) - C(P) will
be called the canonical mapping of P(P) into C(P).

For convenience our earlier results will be restated as follows:

38 B.2. Theorem. The range of Ypy is the class of all proximities and Yoy =
= Yep o Ypu- In particular, given a set P, the canonical mapping of U(P) into P(P) is
surjective and the canonical mapping of U(P) into C(P) is the composition of the
canonical mapping of U(P) onto P(P) followed by the canonical mapping of P(P)
into C(P). '

Proof. The fact that each proximity is induced by a semi-uniformity was explicitly
stated in 25 B.9. It is to be noted that the proof of this was performed by the construc-
tion of the proximally coarse semi-uniformity inducing a given proximity. The equal-
ity Yeu = Yep o Tpu Was explicitly stated in 25 A.2; its proof is almost self-evident.

It has already been proved that the canonical mappings vp, and ycp are order-
preserving. Now we shall prove essentially more for y.p as well as for yp,,. Recall
that, by 36 A.3, the canonical mapping of U(P) into C(P) is completely lattice-
preserving. The next theorem asserts that the same is true for y¢p and the theorem
following it asserts that ypy : U(P) — P(P) is completely join-preserving. On the
other hand, yp, does not preserve infima since, in general, there exists no finest
semi-uniformity inducing a given proximity.

38 B.3. Theorem. If P is a set then the canonical mapping of P(P) into C(P) is
completely lattice-preserving. The canonical mapping of P into C is completely
lattice-preserving.

Proof. Evidently the two statements are equivalent. We shall prove first statement.
Let P be a set, {p,} be a non-void family in P(P), u, be induced by p,. We must show
that sup {u,} is induced by sup {p,} and inf {u,} is induced by inf {p,}. First let
p = sup {p,}, u = sup {u,}. If (x) p X, then (x) p, X for some a (by 38 A.1), hence
x € u,X which implies x € uX. Conversely, if x € uX, then x € u,X for some a (by
31 A.2) and hence (x) p, X which implies (x) p X. Thus (x) p X if and only if x € uX.
Now let p = inf {p,}, u = inf {u,} and let x be any element of P. Remember that
proximal neighborhoods of a point coincide with neighborhoods in the induced
closure space. Let %, be the neighborhood system of x in {P, u,) for each a; thus
%, is the set of proximal neighborhoods of x in (P, p,». By 31 A.5 the union % of
{%,} is a local sub-base at x in (P, u) and by 38 A.7 the same collection is a sub-base
for the filter of all proximal neighborhoods of x in (P, p). Consequently U = P
is a proximal neighborhdod of x in {P, p) if and only if U < P is a neighborhood
of x in {P, u), and therefore u is induced by p.

38 B.4. Theorem. Let P be a set. The canonical mapping of U(P) into P(P) is
completely join-preserving. The canonical mapping of U into P is completely
join-preserving.
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Proof. Evidently both statements are equivalent. We shall prove the first. Suppose
that {#,} is a non-void family in U(P), % = sup {%,}, p, is induced by %, for each a
and p is the supremum of {p,} in P(P). We must show that p is induced by %, i.e.
XpYifand onlyif X =« P, Y= Pand U[X] n Y = @ for each U in %. By 36 A.1 we
have % = N{%,} and by 38 A1 p = {p,}. If XpY, then Xp,Y for some a and hence
U[X] n Y = 0 for each U in %,, and hence, each U in % < %,. If X non pY, then
X non p, Y for each a, and hence there exists a family {U,} such that U, € %,,
U [X] N Y= 0; clearly U = (J{U,} belongs to % and U[X] n Y =U{U,[X] n Y} =
= (. The proof is complete.

Recall that if & is a closure space then the symbol U(g’) denotes the ordered set
of all semi-uniformities inducing the closure structure of 2. A similar notation will be
introduced for proximities on closure spaces and semi-uniformities on proximity
spaces.

38 B.5. Remark. Let P be a set. If u is a closure for P then P(P, u) denotes the
ordered set of all proximities inducing u. If p is a proximity for P, then U(P, p) de-
notes the ordered set of all semi-uniformities which induce p. If 2 = (P, u) or
P = (P, p) then P(P) or U(P) stands for P(P, u) or U(P, p), respectively.

The set U(P, p) is always non-void because each proximity is induced by a semi-
uniformity. On the other hand, a set P(P, u) is non-void if and only if U(P, ) is
non-void i.e. u is semi-uniformizable. In addition, by 38 B.2,

|U(P, u)| = U{|U(P, p)| | p € P(P, u)}
for each closure u for P.

38 B.6. Theorem. If ? = (P, u) is a closure space, then the set P(ﬁ’) is completely
lattice-stable in P(P) and hence completely lattice-preserving in P(P).

Proof. If {p, | a € A} is a non-void family in P(P, u) then p, induces u for each g,
and by 38 B.3, sup {p,} induces sup {u | a € A} = u and inf {p,} induces inf {u | a €
€ A} = u, and hence sup {p,} as well as inf {p,} belong to P(P, u).

Corollary. For each closure space P the ordered set P(P) is order-complete.
In particular, if P(P) £ 0, i.e. ? is semi-uniformizable, then P(?) has a smallest
and a greatest element.

Recall that a semi-uniformity % is said to be fine (coarse) if % is the uniformly
finest (uniformly coarsest) semi-uniformity inducing the closure v%. Similarly we
shall introduce the concepts of a fine and a coarse proximity.

38 B.7. Definition. A proximity p is said to be fine (coarse) if p is the proximally
finest (proximally coarsest) proximity inducing the closure yp.

1t follows from the corollary to 38 B.6 that if 2 is a semi-uniformizable closure space
then the greatest element (least element) of P(#) is the unique coarse (fine) element
of P(#). We shall prove somewhat more.

38 B.8. If u is a closure for P then there exists a proximally finest proxlmally
fine (coarse) continuous proximity for (P, u).
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Proof. Let v be the semi-uniformizable modification of u. The unique fine element
of P(P,v) and the unique coarse element of P(P, v) have the required properties.

38 B.9. Theorem. In order that a proximity p for a set P be fine it is necessary
and sufficient that XpY imply that either (x) pY for some x € X or Xp (y) for some
ye Y.Inorder that a proximity p for a set P be coarse it is necessary and sufficient
that every two infinite subsets of P be proximal in (P, p).

Proof. Let p be a proximity for a set P and let u be the closure induced by p,
i.e. x e uX if and only.if (x)p X. Let g, consist of all (X, Y) such that X and Y are
not semi-separated in (P, u) and let g, comnsist of all (X, Y) such that X < P,
Y < P and either both sets X and Y are infinite or X q,Y. It is easily seen that g, is
the proximally finest continuous proximity for {P, u) and ¢, is the proximally coars-
est proximity inducing u. It is easily seen that p = g, (p = ¢,) if and only if the con-
dition of the first (the second) statement is fulfilled.

38 B.10. Theorem. If p is a proximity for a set P, then the set U(P, p) is complete-
ly join-stable and completely lattice-preserving in U(P).

Proof. Let {%,| a € A} be a non-void family in U(P, p). Each %, induces p and
hence, by 38 B.4, sup {#%,} induces sup {p |a e 4} = p.

To prove that U(P, p) is completely lattice-preserving in U(P) it is sufficient to
show that U(P, p) is interval-like in U(P); but this is evident.

Corollary. If 2 is a proximity space then the ordered set U(P) is boundedly
order-complete and has a greatest element. — Remember that U(#) is non-void.
We have introduced the concept of a proximally coarse semi-uniformity (25 B.8).
By 25 B.7 a semi-uniformity % is proximally coarse if and only if % is the greatest
element of U(P, p) where p is the proximity induced by %. For the sake of complete-
ness we shall state the characterization 25 B.8 of proximally coarse semi-uniformities.

38 B.11. Theorem. A semi-uniformity % is proximally coarse if and only if the
finite square elements of U form a base for %.

38 B.12. Theorem. Let P be a set. The set T of all proximally coarse elements
of U(P) is completely meet-stable in U(P), and the canonical mapping of T into
P(P) is an order-isomorphism.

Proof. I. The canonical mapping of Tinto P(P) is bijective and order-preserving
and therefore an isomorphism. — II. Now let {#%, | a € A} be a non-void family in T
and let 77, be the collection of all finite square elements of %, for each a. Thus ¥~
is a base for %,. The union ¥~ of ¥", is a sub-base for inf {%a} Since ¥~ consists of
finite square vicinities, the smallest filter base containing ¥ also consists of finite
square vicinities and therefore, by 38 B.11, inf {%,} is proximally coarse. Thus T is
completely meet-stable in U(P). An alternate proof follows from 25 B.20.

Remark. The supremum in P(P) of proximally coarse semi-uniformities need not
be a proximally coarse semi-uniformity (see 25 ex. 9). On the other hand, if the
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supremum of a family of proximally coarse semi-uniformities is a uniformity %,
then % is proximally coarse because % is totally bounded and a totally bounded uni-
formity is proximally coarse.

38 B.13. Remark. The mapping v : U — P is not meet-preserving, i.e., if % and
¥~ are semi-uniformities for a set Q and p and ¢ are proximities induced by % and ¥~
respectively, then inf (%, ") need not induce inf(p, ) (even if p = q). This was
shown by Example 25 B.10 where we proved that if P is an infinite set, #, is the
uniformly finest uniformity for P, #7, is the uniformly finest proximally coarse
uniformity for P, then #°; x #°, and #", x %", are proximally equivalent and
inf (Wy X W, W2 x "/’/l) is the uniformly finest uniformity for P x P which
induces the proximally finest proximity for P x P; but #°, x #°, as well as
W X #, induces a proximity which is not the proximally finest proximity for
P x P.

On the other hand, the following proposition hoids.

38 B.14. If at least one of the semi-uniformities % or ¥ is proximally coarse,
then the proximity induced by inf (%, ¥") coincides with the infimum of the pro-
ximities induced by U and ¥".

Proof. Suppose that % is proximally coarse and %’ is the set of all finite square
elements of %. The set #" of al UnV, Ue %', VeV, is a base for inf (%, ¥°).
If p is induced by %, q is induced by ¥~ and r = inf (p, q) then each element .of %
as well as each e¢lement of ¥ is an r-proximal vicinity. Since each element of %’ is
finite square, by.25B.6 each element of %" is an r-proximal vicinity. Consequently
# is a base for a proximally continuous semi-uniformity for (P, r). It is evident
that inf (%, ¥") always induces a prox1m1ty proximally finer than r, and therefore
inf (%, ¥") induces r.

Corollary. Let P be a set and let {,} be a non-void family in U(P). If all the %,,
excepting at most one, are proximally coarse, then inf {%,} induces inf {p,}, where
D, is induced by U for each a. — 38B.12, 38 B.14.

38 B.15. Definition. A semi-uniformity % is said to be proximally fine if % is the
uniformly finest semi-uniformity inducing the proximity induced by %.

Evidently any fine semi-uniformity is proximally fine. It follows that if p is a fine
proximity then there exists a proximally fine semi-uniformity which induces p; it
coincides with the fine semi-uniformity which induces the closure induced by p. In
general a proximity need not be induced by a proximally fine semi-uniformity; e.g.
in 38 B.13 the proximity induced by #7, x 'l// » is induced by no proximally fine semi-
uniformity.

38 B.16. A semi-uniformity % for a set P is proximally fine if and only if %
contains each vicinity V of the diagonal of P x P which has the following property:
For each X < P there exists a U in % such that U[X] < V[X].

46—Topological Spaces
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Proof. Let p be the proximity induced by %. The property of V stated is equivalent
to the fact that V is a p-proximal vicinity. It follows from 38 B.14 that % is proximally
fine only if % consists of all p-proximal vicinities. On the other hand *“if” is evident.

C. UNIFORMIZABLE PROXIMITIES

Recall that a uniformizable proximity is a proximity induced by a uniformity. We
begin with a review of some earlier results.

38 C.1. (a) Each of the following conditions is necessary and sufficient for a pro-
ximity p for a set P to be uniformizable:

(o) every two non-proximal subsets of (P, p) have disjoint proximal neighbor-
hoods (25 B.2);

(B) p=E{X,Y)|X <P, Yc P, fe P(KP, p), R) = dist (f[X], f[Y]) = 0}
(25 C.5);

(Y) the coarse semi-uniformity inducing p is a uniformity (25B.9).

(b) If p is a proximity then there exists a proximally finest uniformizable pro-
ximity proximally coarser than p (the so-called uniformizable modification of p)
(25 C.2).

(¢) If ¥ is the proximally coarse semi-uniformity inducing the same proximity
as a semi-uniformity %, then the uniform modification of ¥ induces the same pro-
ximity as the uniform modification of % (25 C.2).

Recall that the symbol vC (vU) denotes the ordered subclass of € (U) consisting
of all uniformizable closures (uniformities). The symbol v has been used to denote
the uniform modification, that is, the single-valued relation which assigns to each
semi-uniformity % the uniformly finest uniformity uniformly coarser than %; the
symbol vc denotes the uniformizable modification for closures, that is, the single-
valued relation which assigns to each closure u the finest uniformizable closure
coarser than u. It should be noted that as vy as well as v are sometimes ab-
breviated to v.

38 C.2. Remark. vP denotes the ordered class of all uniformizable proxim-
ities; if P is a set then vP(P) denotes the ordered subset of P(P) consisting of all uni-
formizable proximities, and vP(P, u), u being a closure for P, denotes the ordered set
of all uniformizable proximities inducing the closure u. Finally, if p is a proximity
for a set P, then vU(P, p) denotes the ordered set of all uniformities inducing the pro-
ximity p. The uniformizable modification for proximities, denoted by vp or simply v,
is the single-valued relation which assigns to each proximity p the proximally finest
uniformizable proximity proximally coarser than p, i.e. vp is the upper modification
of p in vP. The symbol v, also denotes {{P ,p> — (P, vpp) | {P,pyeP}.

38 C.3. Theorem. Let P be a set. The ordered set vP(P) is completely meet-stable
and completely meet-preserving in P(P)and the proximally coarsest and proximally
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finest proximities for P are uniformizable, and hence they are the proximally
coarsest and proximally finest uniformizable proximities for P. Furthermore, oP(P)
is order-complete and vP(P) = v[ P(P)]. The mapping v : P(P) — vP(P) is completely
lattice-preserving, v o v = v and vp is proximally coarser than p for each p in
P(P). If {p,} is any family in P(P) then

vsup {p,} = vsup {vp,} = sup {vp,}
where the last supremum is taken in vP(P).

Corollary. The class vP is completely meet-stable and completely meet-preserving
in P, and oP = Ev. The class vP is boundedly order-complete and contains each
proximally accrete or proximally discrete proximity. We have v « ¥ = v, VD is
proximally coarser than p for each p in P, and the mapping v : P — oP is sur-
Jjective and completely lattice-preserving.

Proof. By 38 C.1 (b) each element of P(P) has an upper modification in vP(P),
by 38 A.1 the set P(P) is order-complete. Lemma 31 B.2 applies, and we obtain all
the statements except that each proximally discrete proximity is uniformizable; how-
ever, this follows readily from 38 C.1 (a) () and the description of prommally discrete
proximities (38 A.1).

It has already been shown (36 B.7) that y¢y ¢ vy = Ve o ey, DUt (Yey o Vy) % is
always coarser than (v oYey) %.

38 C.4. Theorem. The uniform modification of a semi-uniformity % induces the
the uniformizable modification of the proximity induced by %, in symbols,

Teu o Vy = Vpo Ypy -
Proof. Let % be a semi-uniformity for a set P and let ¥~ be the coarse semi-uniform-~
ity inducing the same proximity as #. It is enough to show that the uniform modific-

ation ¥°; of ¥~ induces the same proximity as the uniform modification %, of %;
however, this was recalled in 38 C.1.

38 C.5. Remark. (a) Yep o Up # g o Yep. In point of fact, assuming Yepo Vp =
= V¢ o Yep, We immediately obtain from 38 C.4 that y¢y o Uy = V¢ o Yey; but this
is not true as noted above.

(b) Since vP(P) = vp[P(P)] for each set P, it follows from 38 C.4 that vU(P, p) =
= vy[ Y(P, p)] provided that p is a uniformizable proximity. On the other hand it is
not true that vP(P, u) = vp[P(P, u)] even if u is a uniformizable closure (by (a)).

38 C.6. Theorem. Let P be a set. The canonical mapping of vU(P) into vP(P)
(i.e. the mapping Ypy : VU(P) > vP(P)) is completely join-preserving, and

Yeu Sup {%, | a€ A} = sup {ypu%, | ac A}

Sor each family {%,} in vU(P), where the supremum on the left side is taken in
vU(P) and that on the right side in vP(P). The mapping v : vU — vP is completely
join-preserving.

46*
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Proof.-Denote by % or %, the supremum of {%,} taken in vU(P) or U(P), re-
spectively,-and by p or p, the supremum of {yp,%;} taken in vP(P) or P(P) respective-
1y. By 38 B.4 we have ypy%, = p;. Since % = v %, and p = vpp,, we obtain from
38 C.4 that yp,% = p.

Remark. In general the canonical mapping ¥ :'vW(P} — vP(P) is not meet-
preserving. By 38B.13 there exist two proximally equivalent uniformities whose
infimum induces a strictly proximally finer proximity.

.38 C.7. Corollary. For each proximity p the ordered set vU(P, p) is boundedly
order complete, and DU(P p) is completely Jjoin-stable and completely join-preserv-
ing in vU(P). :

'38-C.8. Theorem..Let P be a set.-The canonical mapping y : vP(P) — vC(P) is
completely meet-preserving, and

O y inf {p,,}' = inf {yp,}
for each famlly {p,,} (not necessarzly non-void) in vP(P), where the infimum on the
left Slde is taken in UP(P) and that on the right side in vC(P).

Corollary. The canonical mappmg v : 0P = vC is completely meet-preserving.

Proof: By 38 C.3 (31.B.4) the greatest lower bounds in vP(P) (vC(P))coincide with
those in P(P) (C(P), respectively). On the other hand, by 38B.3 the relation ()
holds if the greatest lower bounds are taken in P(P) and C(P) respectively,

38 C.9. Corollary. For edch closire u for a set P the ordered set vP(P, u) is
boundedly order-complete and the set vP(P, u) is completely meet-stable and com-
pletely meet- preservmg in DP(P)

Remark. The set, uP(LP u) is non-void if and only if u is uniformizable. If vP(P, u)
is non-void, then (by 38.C.9) there exists a finest element of vP(P, u), the so-called
Cech prox1m1ty of (P, u) (see 28 A. 1) On the other hand, the coarsest element need
not ex1st eg. if (P u) = Q (see 41 D.6).

38 C 10. Deﬁmtlon. A prommall ¥ ﬁne (coarsg) uniformity is a uniformity- % such
that % is the uniformly finest (coarsest) uniformity inducing the proximity y%.
A fine (coarse) uniformizable.proximity is a uniformizable proximity p such that
p is the proximally finest (qoarscst)'uniformizable,proximity inducing the closure yp.

Thus the term fine uniformizable proximity is an alternate name for the Cech pro-
Ximity.

38 C.11. (a) A umformzty % is a proximally coarse semi-uniformity if and only
if % is a proximally coarse uniformity. (b) If a proximally fine semi-uniformity U
is a uniformity, then % is a proximally fine uniformity (but a proximally fine
uniformity need not be-a proximally fine semi-uniformity). (¢) If a fine (coarse)
proximity p is uniformizable, then p is a fine (coarse) uniformizable proximity;
but a fine (coarse) uniformizable proximity need not be a fine (coarse) proximity,
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Proof. I. If a uniformity % is a proximally coarse semi-uniformity, then obviously
% is a proximally coarse uniformity. If % is a proximally coarse uniformity, then % is
a proximally coarse semi-uniformity, by 38 C.1 (c).

II. The first statements of (b) and (c) are evident.

IIL. Let (P, u)> be a subspace of R, where P is the set consisting of zero and all
points of the form 1/n, n = 1, 2, .... It is easily seen that the fine proximity of <P, u>
differs from the fine uniformizable proximity of (P, u) (i.e., the Cech proximity of
(P, u)).

IV. An example of a coarse uniformizable proximity which is not a coarse pro-
ximity can be obtained as follows: take a coarse uniformity % which is not a coarse
semi-uniformity; clearly the proximity induced by # is a coarse uniformizable pro-
ximity but not a coarse proximity. An example of a proximally fine uniformity which
is not a proximally fine semi-uniformity can be obtained as follows: take a pseudo-
metrizable uniform space (P, %) which is not uniformly quasi-discrete; % is a pro-
ximally fine uniformity but not a proximally fine semi-uniformity, see ex. 4.

38 C.12. A uniformity % is a proximally coarse uniformity if and only if U is
totally bounded. Indeed, a uniformity % is a proximally coarse uniformity if and only
if % is a proximally coarse semi-uniformity (by 38 C.11 (a)), and a uniformity % is
a proximally coarse semi-uniformity if and only if % is totally bounded (by 25 B.12).

38 C.13. A description of proximélly fine uniformities was given in 25 B.22.
Observe that the uniform modification of a proximally fine semi-uniformity is a pro-
ximally fine uniformity.

38 C.14. A proximity p is a proximally fine uniformizable proximity (i.e.,
a Cech proximity) if and only if p is the uniformizable modification of a fine
proximity. _

Proximally coarse uniformizable proximities will be described in 41 D.
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39. PROJECTIVE AND INDUCTIVE GENERATION
FOR PROXIMITY SPACES

The projective and inductive generation for closure spaces or semi-uniform spaces
was studied in 32, 33 and 37. The present section concerns projective and inductive
generation for proximity spaces. Whereas the proofs and examples in 32, 33 and 37
were given with all the details, and some theorems were proved twice, the proofs
in this section are rather short and, possibly, rather concise. Particular attention
is given to interrelations between the generation of closure spaces, semi-uniform spa-
ces and proximity spaces (for a summary see 39 C.6). The reader familiar with the
fundamentals of the theory of categories is invited to carry over generations and the
interrelations between the generation for various kind of spaces to the theory of
categories (e.g. with given functors into the category of sets); the proofs persist.

A. GENERALITIES

39 A.1. Definition. A proximity p for a set P is said to be projectively generated
by a family of mappings {f, | a € A} if {f,} is a projective family of mappings for
proximity spaces with a common domain carrier P or {P, p) and p is the proximally
coarsest proximity for P such that all the mappings f, : (P, p> — E*f, are continuous;
in this case the family {fa} is said to be a projective generating family for {P, p).
A proximity space (P, p) is said to be projectively generated by a family of map-
pings {f,}if {f,} is a projective generating family for (P, p) and (P, p) is the common
domain carrier of all f,. A proximity p for a set P is said to be inductively generated
by a family {f,} if {f,} is an inductive family of mappings with a common range
carrier P or (P, p) and p is the proximally finest proximity such that all the mappings
fa : D*f, = (P, p) are continuous; in this case {f,} is said to be an inductive generat-
ing family for (P, p>. A proximity space is said to be inductively generated by
{f.} if {f.} is an inductive generating family for (P, p) and (P, p) is the common
range carrier of all the f,. The definitions just stated are carried over to collections
of mappings and single mappings in such a way that a collection % has a property P
if and only if the family {f l f € %} has the property B, and a mapping f has a pro-
perty B if and only if the singleton (f) has the property B.
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39 A.2. Examples. (a) The empty set @ is a projective generating family for each
proximally accrete space and an inductive generating family for each proximally
discrete space. (b) A proximity space (P, p> inductively generated by a family of
constant mappings is a proximally discrete space, and a proximity space projectively
generated by a family of constant mappings is a proximally accrete space (remember
that every constant mapping for proximity spaces is proximally continuous). (c) A pro-
ximity space projectively generated by a family of mappings into proximally accrete
spaces is a proximally accrete space, and a proximity space inductively generated by
a family of mappings of proximally discrete spaces is a proximally discreie space
(remember that a mapping f for proximity spaces is proximally continuous whenever
E*f is proximally accrete or D*f is proximally discrete). (d) A proximal homeo-
morphism is both a projective generating mapping and an inductive generating map-
ping. (¢) If {p,} is family in P(P), then inf {p,} is projectively generated by the family
{J: P - (P, p,>} and sup {p,} is inductively generated by the family {J : (P, p,> -
— P}.

39 A3 proj. Theorem. Every projective family of mappings for proximity
spaces with a common domain carrier P which is a set, projectively generates
exactly one proximity p for P. If p is projectively generated by a single mapping
f:P—>{Q,q), then XpYif and only if X =« P, Y = P and f[X] q f[Y]. If a pro-
ximity p for a set P is projectively generated by a family {fa} and if each p, is pro-
jectively generated by the mapping f,, then p is the infimum of {p,}.

39 A.3 ind. Theorem. Every inductive family of mappings {f,} for proximity
spaces with a common range carrier P which is a set, inductively generates
exactly one proximity for P. If p is inductively generated by a single mapping
f:(Q,q> > P, then XpY if and only if X € P, Y= P and either X Y *+ { or
S7UX]) qf Y] If a proximity p for a set P is inductively generated by a family
{fa} and p, is inductively generated by the mapping f, for each a, then p is the
supremum of {p,}.

Proof of 39 A.3 proj. I. Uniqueness is clear.

II. Let f be a mapping of P into a proximity space (@, g> and let p be the set of all
{X, Y)such that X < P, Y c P and f[X] g f[X]. We shall prove that p is the pro-
ximity projectively induced by f. The proof of the fact that p is a proximity for P
is left to the reader because the verification of the conditions (prox i) is straight-
forward. If XpY, then f[X] q f[Y] (by the definition of p) and hence the mapping
f:{P, p> - <£Q, q> is proximally continuous. If r is a proximity such that the
mapping f : (P, r> — {Q, ) is proximally continuous, then XrYimplies f/[X] q f[ Y]
and hence X pY, which shows that pis the proximally coarsest proximity which rend-
ers f continuous.

III. Let { fo} be a projective family for proximity spaces with a common domain
carrier P, which is a set, and let p, be the proximity projectively generated by f,.
We shall prove that p = inf {p,} is projectively generated by {p,}. The mapping
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gs = f.: (P, pp - E*f,is proximally continuous for each a because g, is the compo-
site of two proximally continuous mappings, namely ] : {P, p> = {P, p,> and f,:
: {P, p,> — E*f,. On the other hand, if r is a proximity such that each f, : (P, r) —
— E*f, is proximally continuous, then r is proximally finer than each p,, and hence
r is proximally finer than inf {p,} = p.

Proof of 39 A3 ind. We shall only prove that if f is a mapping of a proximity
space {@, q) into a set P then the set p of all (X, Y) such that X « P, Y =« P and
either X N Y & @ or f~![X] g f~![Y], is the proximity inductively generated by f.
It is easily seen that p is a proximity for P. If X,qY,, then f[X,] pf[Y,] because
FSIX]] = Xy, ST f[Y1]] @ Y3, and hence X,qY; implies f~'[f[X,]] q
f7[f[Y:]]- Thus the mapping f: <Q, g> — (P, p) is proximally continuous. If
r is a proximity for P such that f:{Q, g) — (P, r)> is proximally continuous, and
if XpY, then either X n Y & @, in which case XrY because » is a proximity, or

fTUX]) qf'[Y], in which case f[f~'[X]]rf[f~'[X]] and hence also XrY be-
cause X > f[f'[X]] and Y = f[f~ 1[Y]] Thus XpY implies XrY, and hence r is
proximally coarser than p.

39 A.4 proj. Theorem. Let {f,} be a projective family of mappings for proximity
spaces with a common domain carrier 2 which is a space. Then {f,} is a projective
generating family for proximity spaces if and only if the following condition is
Sulfilled:

A mapping f of a proximity space into P is proximally continuous if and only if
all the mappings f, o f are proximally continuous.

39 A4 ind. Theorem. Let {f,} be an inductive family of mappings for proximity
spaces with a common range carrier 2 which is a space. Then {f,} is an inductive
generating family for proximity spaces if and only if the following condition is
Julfilled:

A mapping f of 2 into a proximity space.is proximally continuous if and only if
all the mappings f o f, are proximally continuous.

Proof of 39 A.4 proj. I. Suppose that & is projectively generated by {f,} and f is
a mapping of a proximity space 2 into 2. If f is proximally continuous, then all the
faof are proximally continuous as composites of proximally continuous mappings.
Conversely, suppose that all the f, - f are proximally continuous. Write 2 = {Q, q),
P = (P, p). Consider the proximity » inductively generated by f: {(Q, g> - P. To
prove that f is continuous it is sufficient to show that r is proximally finer than p,
and to prove that r is proximally finer than p it is sufficient to show that each map-
ping f, : {P, r)> — E*f, is proximally continuous. Suppose XrY; we must show that
the sets f,[X] and f,[ Y] are proximal in E*f,. If X n Y # @ then f,[X]| nf[Y] + ©
and therefore the sets f,[X] and f,[Y] are proximal in E*f. If X n Y = @, then
SUX] qf~[Y] (by 39 A3 ind) and hence, f,o f being proximally continuous, the
images under f, o f of the sets X; = f![X] and ¥, = f~![Y] must be proximal in
E*f,. Since evidently f,[X] o f.[f[X,]] and f,[Y] = f.[f[Y1]], we obtain that
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f.J[X] and f,[Y] are also proximal in E*f; this establishes the proximal continuity
of f,: (P, r) = E*f,.

II. Suppose that the condition is fulfilled. Taking f = | : - 2 we see that all
the mappings f, = f,  f are proximally continuous. Write 2 = (P, p)>. If r is a pro-
ximity for P such that all the mappings f, : {P, r)> — E*f, are proximally continuous,
then ] :<{P,r) - (P, p)> is proximally continuous because f,: (P, r)> - E¥f, =
= fao () : <P, r> > (P, p)), and therefore r is proximally finer than p. Thus 2
is projectively generated by the family {f}.

Proof of 39 A4 ind. I. Suppose that 2 is inductively generated by {f,} and f is
a mapping of £ into a proximity space 2. If f is proximally continuous then all the
f o f, are proximally continuous as composites of proximally continuous mappings.
Conversely, assume that all the mappings f . f, are proximally continuous. We must
show that f is proximally continuous. Write 2 = (P, p), 2 = {Q, q) and let r be
the proximity projectively generated by f : P — {Q, ¢>. It is sufficient to prove that
p is proximally finer than r, and hence, that each mapping f, : D*f, - (P, r) is
proximally continuous.

Assume that X and Y are proximal in D*f,. We must show f,[X] r f,[Y]. Since
f o f, is proximally continuous we have f[f,[X]] ¢ f[fJ[Y]] and therefore, r being
projectively generated by f: P — {Q, ¢, f,[X] r f[Y].

II. Suppose that the condition is fulfilled. Taking f = ] : 2 — £ we obtain that
each f, is proximally continuous. If r is a proximity for |97‘| such that all f, : D*f, —»
— (l.@', r) are proximally continuous, then ) : # — (lg‘|, r) is proximally continuous
(by the condition) and hence £ is inductively generated by {f,}.

From theorem 39 A.4 we immediately obtain the following important theorem
on the associativity of projective and inductive constructions.

39 A.5 proj. Associativity theorem. Let {f,| a € A} be a projective family for
proximity spaces and let the range carrier E*f, be projectively generated by a
family {g,, | beB,} for each a in A. Then {f,} is a projective generating family for
proximity spaces if and only if the family {g, o f,| a€ A, be B,} is a projective
generating family for proximity spaces.

39 A.5ind. Associativity theorem. Let {f,|ae A} be an inductive family for
proximity spaces and let the domain carrier D*f, be inductively generated by a
Sfamily {g,, I b eBa} for each a in A. Then {f,} is an inductive generating family
for proximity spaces if and only if the family {f, - g, | ac A, beB,} is an in-
ductive generating family for proximity spaces.

Proof of 39 A5 proj. Applying 39 A.4 proj. to each D*g,, we find that f, . f is
proximally continuous for each a if and only if the mapping g, o f, o f is proximally
continuous for each a € A and b € B,. Again by 39 A4, {f,} is a projective generat-
ing family if and only if {g,, o f,} is a projzctive generating family.

Proof of 39 A.5 ind. Applying 39 A.4 ind. to each D*f, we see that, given a map-
ping f of the common range carrier of all f, into a proximity space, then all the



730 VII. GENERATION IN U AND P

f o f, are proximally continuous if and only if all the f . f, - g,, are proximally con-
tinuous. Now the conclusion follows from 39 A.4.

39 A.6. Examples. (a) Every surjective projective generating mapping is in-
ductive generating. In fact, if f : {Q, g) - (P, p) is a surjective projective generat-
ing mapping, XpY and X; = f~'[X], Y; = f7![Y], then f[X,] = X, f[Y,] =Y,
because f is surjective, and hence X ,qY; because f is a projective generating mapping.
Thus XpY implies f “'[X] q f ~'[ Y], which means that f is an inductive generating
mapping.

(b) Every injective inductive generating mapping is a projective generating
mapping. Use the fact that f ~'[ f[X]] = X if f is injective.

(c) If <P, p> is a proximity space, then the relativization q of p to a subset Q
of P is projectively generated by | : Q — (P, p); stated in other words, if Q = P
then ) : (Q, g> — {P, p) is a projective generating mapping if and only if {Q, ¢)>
is a subspace of {P, p). Remember that the relativization of p to a subset Q of P is
is defined to be p N (exp Q x exp Q), i.e. XqY if and only if X = Q, Y = Q
and XpY.

(d) If f is a proximally continuous mapping of {P, p)> into {Q, q) and if there
exists a proximally continuous mapping g : {Q, q> — {P, p) such that fog =} :
10, 9> = {Q, q>, then f is a surjective inductive generating mapping.

(e) If f is a proximally continuous mapping of (P, p) into {Q, q> and if there
exists a proximally continuous mapping g of a subspace of {Q, q) into {P, p) such
that gof = ] :{P, p) = (P, p), then f is an injective projective generating map-
ping, i.e. a proximal embedding (first notice that f is injective).

(f) If f and g are proximally continuous mappings and if fo g is a proximal
homeomorphism (in particular, D*f = E*g), then f is a surjective inductive generat-
ing mapping and g is an injective projective generating mapping (i.e. a proximal
embedding).

39 A.7 proj. Commutativity. If {fa} is a projective generating family for a pro-
ximity space (P, p> and {Q, q) is a subspace of (P, p), then {g,} is a projective
generating family for {Q, q) where g, = f, :{Q, q> — E*f, for each a.

39 A.7 ind. Partial commutativity. If {(Q, q)> is a subspace of a proximity space
P, p) and {f,} is an inductive generating family for (P, p), then{g,} is an inductive
generating family for {Q, q)> where g, is the restriction of f to a mapping of the
subspace f ~'[ Q] of D*f, into {Q, q) for each a.

Proof of 39 A.7 proj. The identity mapping f of {Q, g) into {P, p) is a projective
generating mapping (by 39 A.6 (c)) and hence {f,.f} is a projective generating
family (by 39.A 5). Clearly f, o f = g, '

Proof of 39 A.7 ind. We have XqY if and only if X = Q, Y = @ and XpY; and
if X = Q, Y = Q then the sets f; '[X] and f; }[ Y] are proximal in D*f, if and only if
the sets g, '[X] = f; '[X] and g, '[X] = f; '[X] are proximal in D*g,. The state-
ment follows from the following description of inductively generated proximities.
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39 A8. In order that a proximity space (P, p) be inductively generated by a
family of mappings {f,:<Q, q.) — P, pd} it is necessary and sufficient that
XpYifand only if X « P, Y c P and either X n Y + 0 or foX] q.f'[Y] for

some Qa.

Proof. If p, is inductively generated by f,:<Q,, q,> — P then p = sup {p,} is
inductively generated by {f,: {Q,, 4,> = P} (cf. 39 A.3). We have p = U{p,} (by
38 A1) and Xp,Yif and only if X = P, Y = P and either X n Y + @ or f;'[X] q,
TP

Remark. Notice that the proofs of 39 A.7 proj. and 39 A.7 ind. are entirely dif-
ferent. This follows from the fact that a subspace can be defined projectively (an
identity mapping is a projective generating mapping, see 39 A.6 (c)) but not induct-
ively.

39 A.9. Definition. Let {{P,, p,>} be a family of proximity spaces. The product of
{{P,, pay}, denoted by ITI{(P,, p,>}, is defined to be the proximity space <II{P,}, p>
where p is the proximity projectively generated by the family {pr, : II{P,} — (P,, p.>}.
The sum of the family {{P,, p,>}, denoted by Z{(P,, p,>},is defined to be the pro-
ximity space {Z{P,}, p) where p is the proximity inductively generated by the family
{inj, : <Po o> — Z{P.}}.

As an immediate consequence of Definition 39 A.9 and Theorems 39 A.4and 39 A.5
we obtain the following important results.

39 A.10 proj. Let f be a mapping of a proximity space into the product P of
a family {@,} of proximity spaces. Then f is continuous if and only if all (pr, :
: P — P,) o f are continuous, and f is a projective generating mapping if and only if
{(pra: P — P,) o f} is a projective generating family.

39 A.10 ind. Let f be a mapping of the sum @ of a family {9‘,} of proximity spaces
into a proximity space. Then f is proximally continuous if and only if all the
mappings f o (inj, : @, —> P) are proximally continuous, and f is an inductive gene-
rating mapping if and only if {f o (inj, : @, — P)} is an inductive generating family.

39 A.11. Definition. The product of a family {f,,} of mappings for proximity spaces
is the mapping of II{D*f,} into II{E*f,} whose graph is the relational product of the
family {gr f,}. The reduced product of a projective family {f,} of mappings for
proximity spaces with common domain carrier 2 = (P, p) is the mapping of 2
into IT{E*f,} whose graph is the reduced relational product of {gr f,}, i.e. fx = {f,x}.
The sum of a family {fa} of mappings for proximity spaces is defined to be the map-
ping of {D*f,} into Z{E*f,} whose graph is the relational sum of {gr f,}, and the
reduced sum of an inductive family {f,} of mappings for proximity spaces with
common range carier ? = (P, p) is the mapping of Z{D*f,} into 2 whose graph
is the reduced relational sum of {gr f,}.

Theorems 39 A.10 can be restated as follows:
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39 A.12 proj. The reduced product f of a family of mappings {f,} for a proximity
space is proximally continuous (a projective generating mapping) if and only if all
fa are proximally continuous ({f,} is a projective generating family).

Indeed, f, = (pr, : E*f > E*f,) . f for each a.

39 A.12 ind. The reduced sum f of a family of mappings {fa}for proximity spaces
is proximally continuous (an inductive generating mapping) if and only if all the
f. are proximally continuous ({f,} is an inductive generating family).

Indeed, f o (inj, : D*f, —» D*f) = f, for each a.

For an examination of products and sums of mappings we shall need the following
result.

39 A.13 proj. If 2 is the product of a family {?,} of proximity spaces and
Pr, i P — P, is surjective (in particular if |9’| % 0), then pr,:? - P, is an
inductive generating mapping.

39 A.13ind. If 2 is the sum of a family {@,} of proximity spaces, then each
inj, : &, = P is a projective generating mapping (and hence an embedding).

Proof of 39 A.13 proj. Suppose that f = pr, : # — 2, is surjective. If |9‘| =0,
then I?al = @ and the statement is trivial. Assuming |.@| % @ choose an xin |9| and con-
sider the mapping g of 2, into 2 which assigns to each y € 2, the point gy whose
a-th coordinate is y and the other coordinates coincide with those of x. Thus fo g
is the identity mapping and pr,. g : # — 2, is constant for each a + «. Since all
(pr,: 2 > 2,) o g are proximally continuous, the mapping g is proximally conti-
nuous. By 39 A.6 (d) the mapping f is an inductive generating mapping.

Proof of 39 A.13 Ind. Let g be the mapping {«, x> — x of the subspace inj, |9’,|
of # onto #,. By 39 A4 and 39 A7 ind. the mapping g is proximally continuous
because clearly g o (inj, : 2, > #) = | : 2, > ?,. By 39 A6 (e) the mapping inj, :
: P, - P is a proximal embedding.

39 A.14 proj. Theorem. Let f be the product of a family {f,} of mappings for
proximity spaces. If all the f, are proximally continuous, then f is proximally con-
tinuous. Conversely, if Df = 0 and f is proximally continuous, then all the f, are
proximally continuous.

39 A.14 ind. Theorem. Let f be the sum of a family {f,} of mappings for pro-
ximity spaces., The mapping f is proximally continuous if and only if all the map-
pings f, are proximally continuous.

Proof of 39 A14 proj. If Df = @ then f is proximally continuous. It remains
to show that, if Df & §, then f is proximally continuous if and only if all the map-

pings f, are proximally continuous, and this follows from the following obvious
equality:

(pra : E¥f — E*f)) o f = f, o (pr, : D*f - D*f,).
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Indeed, if f is proximally continuous, then the left side is proximally continuous
and hence f, is continuous because (pr, : D*f —» D*f,) is an inductive generating
mapping by 39 A.13 proj. If each f, is proximally continuous, then f is continuous
by 39 A.4 proj. because {pr, : E*f — E*f,} is a projective generating family.

Proof of 39 A.14 ind. Notice that
f o (inj; : D¥f, - D*f) = (inj, : E*f, - E*f). f,.

If each f, is proximally continuous then the right side is proximally continuous, and
therefore f is proximally continuous by 39 A.4 because {inj, : D*f, - D*f} is an
inductive generating family. If f is proximally continuous then the right side is pro-
ximally continuous for each a, and therefore f, is continuous because (inj, : E*f, -
— E*f) is a projective generating mapping (by 39 A.13 ind.).

39 A.15 proj.-If f is the product of a family {f.} of mappings for proximity spaces
and each f, is a projective generating mapping, then f is a projective generating
mapping. '

39 A.15ind. If f is the sum of a family {fa} of mappings for proxirlnity' spaces
and each f, is an inductive generating mapping, then f is an inductive generating
mapping.

-Proof of 39 A15 proj. If Df = @, then Ef = @ and f is a projective generating
mapping. If Df + @ then Ef % @ and the formula of the proof of 39 A.14 proj.
holds. Since {pr, : D*f —» D*f,} is a projective generating family and each f, pro-
jectively generates D*f,, {f, . (pr, : D*f - D*f,)} is a projective generating family
(by 39 A.5) and by the formula, {(pr,: E*f — E*f,) o f} is a projective generating
family, and {pr, : E¥f - E*f,} being a projective generating family, f is a projective
generating family by 39 A.5.

Proof of 39 A.15 ind. is left to the reader.

Remark. One can show that if Df £ @ and f is a generating mapping, then
each f, is a generating mapping.

In conclusion we shall state the factorization theorems, the proofs of which are
left to the reader.

39 A.16. Projective factorization. If {f,} is a non-void projective family of
mappings for proximity spaces, then there exists a unique projective generating
family {g,} for proximity spaces and an identity mapping h such that f, = g, o h
for each a, i.e.

Uah =ga}]o b

The mapping h is proximally continuous if and only if all the mappings f, are
proximally continuous, and h is a proximal homeomorphism if and only if {f,,} is
a projective generating family.
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Inductive factorization. If {f,} is a non-void inductive family of mappings
for proximity spaces, then there exists a unique inductive generating family {g,}
and an identity mapping h such that ho g, = f, for each a, i.e.

{f} = he[{ga}].

The mapping h is proximally continuous if and only if all the mappings f, are pro-
ximally continuous, and h is a proximal homeomorphism if and only if {f,,} is an
inductive generating mapping.

B. PROJECTIVE GENERATION

We begin with two descriptions of projectively generated proximities.

39 B.1. Theorem. If a proximity space {P, p) is projectively generated by a
non-void family of mappings {f,: (P, p) = {Qa 4,0} then

(a) XpY for X = P, Y = P if and only if, for each a and any finite decomposi-
tions {X;} and {Y;} of X and Y respectively, then f,[X ] q, f,[Y;] for some i and j;

(b) U is a proximal neighborhood of X in (P, p) if and only if it contains a
finite intersection of sets of the form U{f;'[U;]} with U; proximal neighborhoods
of fuo[Xi]in {Qa, 4a,> and {X;} a finite cover of X.

Proof. Combine 39 A.3 with the descriptions 38 A.5 and 38 A.8 of infima in P(P).

39 B.2. Theorem. If {f,:<P, p)> — <Q,, 4,>} is a projective generating family
for proximity spaces, then {f,, (P, Yeppy — Q4 ycpq,>} is a projective generating
family; stated in other words, if {f,,} is a projective generating family for proximity
spaces, then {g,} is a projective generating family for closure spaces where each g,
is the transpose of f, to a mapping for closure spaces.

Proof. A direct proof can be obtained from description 39 B.1 (b). Indeed,
if X = (x), then U is a neighborhood of x if and only if U is a proximal neighborhood
of x, and the statement is obtained by combining 39 B.1 (b) with the description 32 A.6
of projectively generated closures. Another proof may be in order. Since the canonical
mapping of P(P) into C(P) is completely meet-preserving, it is sufficient to prove the
statement for a family consisting of one member, i.e. for projective generating map-
pings. Suppose that f : (P, p> — {Q, q) is a projective generating mapping and let u
be the closure induced by p and v be the closure induced by g. Thus x € uX if and only
if (x) p X, (x) p X if and only if (fx) q f[X] (by 39 A.3), and (fx) ¢ f[X] if and only if
fx e of[X]. Thus x € uX if and only if fx € vf[X ], which shows that u is projectively
generated by f: P — {Q, v).

39 B.3. If {f,} is a projective generating family for semi-uniform spaces, then
the transposed family {g,} = {f.: YpuD*fs = YeuE*f.} need not be a projective
generating family for proximity spaces (even if the index set consists of two elements
and all the semi-uniform spaces in question are uniform spaces). This follows from
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the fact that the canonical mappings ¥ : U — P and also v : oU — vP are not meet-
preserving. We shall prove a general result which shows that if {f,} is a projective
generating family for semi-uniform spaces then {g,} is usually not a projective gene-
rating family for proximity spaces.

39 B.4. Theorem. The mapping
{% - You(% x %)} :0U > P
is an order-embedding. In particular,

Teol% X %) + Yoo X Tpu¥
provided that % is a uniformity which is not proximally coarse.

Proof. Clearly it is sufficient to show that the mapping in question is injective, and
this follows from the following simple result.

39 B.S. If % and ¥ are semi-uniformities for a set P, then the filter of all proximal
neighborhoods of a set X in (P x P, % x ¥ ) has the following sets for a base:
UoXoVwithU in % and Vin ¥ In particular, the sets U o V,U e %, VeV, form
a base of the filter of proximal neighborhoods of the diagonal of P x P.

Proof. By definition, the collection of all
Ux., V= E{<<x1: X2, V1> V20D | xi; 10 €U, (X3, y2) € V} s
Ue%, VeV, is a base for the product semi-uniformity % x ¥". It is easily seen that
U xqV)[X]=UoX.Y

for each symmetric U and V, and each X < P x P.

Remark. Notice that it follows from 39 B.4 that the theory of uniform spaces
can be reduced to the theory of uniformizable proximities.

39 B.6. Theorem. The transpose of a projective generating mapping for semi-
uniform spaces to a mapping for proximity spaces is a projective generating map-
ping for proximity spaces.

Proof. Let f : (P, %) — {Q,¥") be a projective generating mapping for semi-uni-
form spaces and let p and g be the proximities induced by % and ¥". By our assump-
tion the set %’ of all (f x f)™* [V], Ve¥, is a base for  and we must show that
XpY if and only if f[X] g f[Y]. By the definition of induced proximities we have
f[X] qf[Y] if and only if V[f[X]] n f[Y] + @ for each Vin ¥", and XpY if and
only if U[X] n Y = @ for each U in %, and hence, %' being a base for %, X pY if and
only if U[X] n Y %  for each U € %'". Since evidently V[ f[X]] n f[Y] #+ 0 if and
only if (f x f)"'[V][X] n Y + 0, we obtain XpY if and only if f[X] q f[Y]-

39 B.7. Theorem. Let {f,} be a projective generating family for semi-uniform
spaces such that all E*f, except for at most one index a, are proximally coarse.
If g, is the transpose of f, to a mapping for proximity spaces, then {g,} is a project-
ive generating family of mappings for proximity spaces.
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Proof. Let (P, %) be the common domain carrier of all f,, %, be the semi-uni-
formity projectively generated by f.: P — E*f,, and p, be the proximity induced by
%, By 37 A2 % =iof {%,} and, by 39 B.6, p, is projectively generated by the mapping
g.: P - E*g, By 39 A3 the proximity generated by the family {g,: P — E*g,} is
inf {p,}, and we need only prove that inf {p,} is induced by # = inf {%,}. But this
follows from the corollary to 38 B.14 because each %,, excepting at most one, is
proximally coarse (by Theorem 37 B.3 which asserts that a semi-uniformity projectively
generated by a mapping into a proximally coarse semi-uniform space is proximally
coarse).

39 B.8. Corollary. If (P, %) is the product of a family of semi-uniform spaces
{<P,, %,>} and if p, is the proximity induced by %, and p is the proximity indyced
by U, then (P, p) is the product of the family {{P,, p,>} whenever all the %U,, ex-
cepting at most one, are proximally coarse.

Combining 39 B.4 with 39 B.8 we obtain the following interesting characterization
of proximally coarse semi-uniformities. h

39 B.9. Theorem. In order that a uniformity % be proximally coarse (i.e., to-
tally bounded) it is necessary and sufficient that

Yool % %) = Yeul X Yoo .

~

Now we proceed to a description of classes of semi-uniform spaces which are
stable under projective constructions.

39 B.10. Definition. A class K of proximity spaces is said to be projective-stable
if every proximity space projectively generated by a family of mappings with range
carriers in K belongs to K. A class L of proximities is said to be projective-stable
if the class K consisting of all proximity spaces whose proximity structures belong’
to Lis projective-stable.

39 B.11. Theorem. Let K be a class of proximity spaces and L be the class
consisting of proximity structures of spaces from K. Then K is projective-stable
if and only if the following two conditions are fulfilled:

(a) Lis completely meet-stable in P and contains all proximally accrete proxim-
ities.

(b) If f is a projective generating mapping for proximity spaces and E*fe K,
then D¥f e K.

Proof. Apply 39 A3 (corhpare with the corresponding results for projective con-
struction for closure spaces and semi-uniform spaces).

39 B.12. Remark. Notice that condition (a) is equivalent to the statement that
every proximity has an upper modification in L.

39 B.13. Theorem. The class vP of all uniformizable proximity spaces is pro-
Jective-stable.
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Proof. We shall verify conditions (a) and (b) of 39 B.11. Condition (a) is fulfilled
by 38 C.3. Let f be a projective generating mapping of a proximity space (P, p) into
a uniformizable proximity space (Q, ¢>; we shall prove that (P, p) fulfils condition
(prox 5). If X non p Y, then f[X|nonpf[Y] and, <Q, g) being uniformizable,
{Q, ¢ fulfils (prox 5), and therefore we can choose proximal neighborhoods U of
fIX] and V of f[Y] such that U n V = . Since f is proximally continuous, f ~* [U]
is a proximal neighborhood of X in (P, p> and f ~! [V] is a proximal neighborhood
of Yin (P, p).

39 B.14. Definition. The projective progeny of a class K of proximity spaces,
denoted by projp K or simply proj K, is the class consisting of all proximity spaces
projectively generated by families of mappings with range carriers in K. The pro-
Jective progeny of a class L of proximities is the class consisting of proximity struc-
tures of spaces of proj K where K is the class of all proximity spaces whose proximity
structures belong to L.

39 B.15. Theorem. For any class K of proximity spaces
proj proj K = proj K,

that is to say, the projective progeny of any class K of proximity spaces is projective-
stable.

Proof:39 AS proj.

39 B.16. Theorem. Let K be any class of proximity spaces and let K, be the
class of all proximally accrete spaces. A proximity space 2 belongs to proj K if
and only if P is homeomorph to a subspace of the product of a family of spaces
JromK v K.

Corollary. A class K of proximity spaces is projective-stable if and only if K
contains all proximally accrete spaces, K is hereditary and completely produc-
tive, and, of course, K contains the proximal homeomorphs of all of its
elements.

Proof. Let K, be the class of all spaces satisfying the condition. Clearly K, =
< proj K. Suppose that 2 € proj K and {f, | a € A} is a projective generating family
for 2 such that E*f, € K for each a. If A is empty then & is a proximally accrete space
and hence 2 € K,. Assuming A =+ @ consider the reduced product f of {f,}; by
39 A12, f is a projective generating mapping. Let 2 be the set |9| endowed with the
proximally accrete proximity and let g be the reduced product of | : # — 2 and f.
Clearly g is a projective generating mapping for 2, and E*g € K,. Since g is injective,
g is a proximal embedding and hence 2 € K,.

39 B.17. Let K be a class of proximity spaces. The projective progeny of Ycp[ K]
(in C) coincides with Ycp [proje K] (i.e. the class of all spaces induced by spaces
of the projective progeny of K.

47—Topological Spaces
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Corollary. If a class K of proximity spaces is projective-stable, then the class
Yol K] is projective-stable.
Proof. Use 39B.2.

39 B.18. Example. Since the class of all uniformizable proximities is projective-
stable and a closure space is uniformizable if and only if it is induced by a uniformiz-
able proximity, we obtain from 39 B.16 a new proof of the fact that the class of all
uniformizable spaces is projective-stable.

C. INDUCTIVE GENERATION

This subsection is concerned with the development of the properties of the inductive
generation. We begin with a description of inductively generated proximities. Then we
shall show that the transpose of an inductive generating family for semi-uniform spaces
to a family of mapping for proximity spaces is an inductive generating family of
mappings for proximity spaces (39 C.2), but the transpose of an inductive generating
family of mappings for proximity spaces to a family of mappings for closure spaces
need not be an inductive generating family (39 C.5). In 39 C.é we shall summarize all
earlier results which concern transposed families inheriting the properties of being an
inductive generating family and of being a projective generating family. Then we
shall give a characterization of inductive-stable classes of proximity spaces. We shall
show that the class of all uniformizable proximity spaces is not inductive-stable and
therefore, in the exercises, we shall introduce the notion of an inductive generating
family for uniformizable proximity spaces.

39 C.1. Theorem. Let a proximity space {P, p> be inductively generated by
a non-void family of mappings {f,: {Q,, 4.> = <P, p>. Then

(a) XpYifandonlyif X « P,Yc Pandeither X n Y + Qor f7'[X] qa.f5 '[Y]
for some a;

(b) a subset U of P is a proximal neighborhood of a set X < P if and only if
U o X and f; '[U] is a proximal neighborhood of f;'[X] in {Q,, q,) for each a.

Proof. Combine 39 A.3 with the descriptions 38 A.1 and 38 A.6 of suprema in
P(P).

39 C.2. Theorem. If {f,} is an inductive generating family for semi-uniform
spaces, then {Ypyf,} is an inductive generating family for proximity spaces (where
Yeufa denotes the transpose of f, to a mapping for proximity spaces). Stated in
other words, if a semi-uniformity % is inductively generated by a family of ma-
pings {f, : {Qu ¥ > — P}, then the proximity p induced by % is inductively gener-
ated by the family {f,:<Q,, 4,> > P} where q, is the proximity induced by ¥,

Proof. Every uniformly continuous mappings is proximally continuous, and
therefore the proximity p’ inductively generated by the family {f, :<Q,, 4.> = P}
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is proximally finer than the proximity p induced by %. To prove that p’ is proximally
coarser than p we must use the direct descriptions of %, p and p’. Assuming XpY we
must show that Xp'Y. Since p is induced by # we have U[X] n Y # 0 for each
U € . Consider the families {X,} and {Y,}, where X, = f;'[X] and Y, = f;'[Y]
for each a. By 39 C.1, to prove Xp'Y it is sufficient to show that X n Y # 0 or
X, q,.Y, for some a. Thus the proof will be completed by showing that the assumption
“X N Y = Pand X, non q,Y, for each a” leads to a contradiction. Since g, is induced
by ¥, we can choose a family {V, | a € A} such that V,e¥ ,and V,[X,]n ¥, =0
for each a. Put
U =lpuU{(f, x £ [V.] | acd}.

Since % is inductively generated by the family {f, : {Q,, ¥",> = P}, by 37 A2 ind,,
the set U belongs to %, and hence, by our assumption, U[X] A Y % 0. On the other
hand, it is easily seen that

£Vl Xa]l = (fa x fa) [Va]) [X]

and hence
U[X]n Y= (X a ¥) U U{((f. x S [V.D[XD A ¥|acd} = 0.

39 C.3. Theorem. Every proximity space is inductively generated by a surjective
mapping whose domain carrier is a discrete uniformizable proximity space.

Proof. Let (P, p> be a proximity space. Choose a semi-uniformity % inducing p.
By 37 A.8 the semi-uniform space (P, %) is inductively generated by a surjéctive
mapping f : {Q,¥ > — P where (Q,¥ ) is a discrete uniform space. If g is the pro-
ximity induced by ¥, then p is inductively generated by the mapping f : {Q, g¢> - P
(39 C.2). Evidently {Q, ¢) is uniformizable and discrete.

From 39 C.3 we obtain the following two results:

39 C4. A proximity space inductively generated by a mapping of a uniformiz-
able proximity space need not be uniformizable.

Proof. Let & be a proximity space which is not uniformizable. By 39 C.3 the spa-
ce 2 is inductjvely generated by a (surjective) mapping f such that D*f is a uniformi-
zable proximity space.

39 C.S. If f is an inductive generating mapping for proximity spaces, then the
transpose g = Ycpf of f to a mapping for closure spaces need not be an inductive
generating mapping for closure spaces.

Proof. Let (P, p> be a non-discrete proximity space. By 39 C.3 there exists an
inductive generating mapping f of a discrete uniformizable space (@, g into {P, p).
If v is the closure induced by g, then v is discrete, and hence the closure u inductively
generated by f: (Q,v) — P is also discrete. Since p is not discrete, u is not in-
duced by p.

39 C.6. For convenience we recall earlier results concerning transposed map-
pings. If {f,} is an inductive generating family for semi-uniform spaces, then {ypyf.}

47
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is an inductive generating family for proximity spaces (39 C.2), and {ycyf,} need not
be an inductive generating family for closure spaces (e.g. by 37 A.8). If {f,} is a pro-
jective generating family for semi-uniform spaces, then {ypy f,} need not be a pro-
jective generating family for proximity spaces (by 39 B.3), but {yf,} is a projective
generating family for closure spaces (by 37 B.6). If {f,} is an inductive generating
family for proximity spaces, then {yc,, f.} need not be an inductive generating family
for closure spaces (by 39 C.5). On the other band, if {f,} is a projective generating
family for proximity spaces, then {ycpf,} is a projective generating family for clo-
sure spaces (by 39 B.2).
Now we proceed to inductive-stable classes of proximity spaces.

39 C.7. Definition. A class K of proximity spaces is said to be inductive-stable
if every proximity space inductively generated by a family of mappings with domain
carriers in K belongs to K. A class L of proximities is said to be inductive-stable
if the class K consisting of all proximity space whose proximity structures belong
to Lis inductive-stable.

39 C.8. Theorem. Let K be a class of proximity spaces and let L be the class
consisting of proximity structures of spaces from K. Then K is inductive-stable
if and only if the following two conditions are fulfilled:

(a) Lis completely join-stable in P and contains all the proximally discrete pro-
ximities.
~ (b) If f is an inductive generating mapping for proximity spaces and D*f belongs
to K, then E*f also belongs to K.

Proof. Apply 39 A.3.

39 C.9. Remark. Notice that condition (a) is equivalent to the statement that
every proximity has a lower modification in L.

39 C.10. Definition. The inductive progeny of a class K of proximity spaces, de-
noted by indp K or simply ind K, is the class of all spaces inductively generated by
a family of mappings with the domain carriers in K.

Thus K is inductive-stable if and only if ind K = K

39 C.11. For any class K of proximity spaces
indind X =ind K .

that is to say, ind K is inductive-stable.
Proof: 39 A5 ind.

D. QUOTIENTS
We have introduced the concepts of a quotient of a closure space under a mapping

or an equivalence (33 C.1), a quotient mapping of a closure space into another
one (33 C.1), a quotient of a semi-uniform space under a mapping or an equivalence
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(37 D.1), and a quotient in the uniform sense (37 D.1). Now we shall introduce the
corresponding concepts for proximity spaces.

39 D.1. Definition. Let 2 be a proximity space. If f is any mapping such that
D gr f contains the underlying class of 2, then the proximal quotient of P under f,
denoted by 2/f, is defined to be the set f| [|9’|] endowed with the proximity inductively
generated by the mapping f : # — f [l9|] A mapping of £ into a proximity space 2
is said to be a proximal quotient mapping or a quotient mapping for proximity
spaces if 2[f is a subspace of 2. Finally, if ¢ is an equivalence on £, then the proximal
quotient of ? under g is defined to be the proximal quotient space 2[f, where f is
the mapping {x — ¢[x]} of 2 onto Ig’l/g (= E{e[x] l xe l.@'})

39 D.2. Any inductive generating mapping for proximity spaces is a quotient map-
ping for proximity spaces. On the other hand a quotient mapping for proximity
spaces f need not be an inductive generating mapping unless f is surjective. Indeed,
if f is an inductive generating mapping for proximity spaces and X and Y are proximal
and contained in |E*f| — Ef, then X N Y % 0. On the other hand an embedding of
a proximity space into another one is a quotient mapping. Thus e.g. J:]0,1[ - R
is a quotient mapping for proximity spaces but not an inductive generating mapping
for proximity spaces.

39 D.3. Theorem. If f is a quotient mapping for semi-uniform spaces, then the
transpose Ypyuf of f to a mapping for proximity spaces is a quotient mapping for
proximity spaces; loosely speaking, a uniform quotient mapping is a proximal
quotient mapping. If ¢ is an equivalence on a semi-uniform space 2, then

YPU(W/Q) = (Ypug)/Q .
Finally, if 2 is a semi-uniform space and f is a mapping such that Dgr f o l.@l,
then Ypu(2[f) = (Yeu?)/f- .

Proof. Evidently it is sufficient to prove the last statement under the additional
assumption that f is a surjective generating mapping for semi-uniform spaces and £
is the domain carrier of f, i.e. E¥f = 2/[f. By 39 C.2 the transpose g of f to a mapping
for proximity spaces is an inductive generating mapping for proximity spaces. On
the other hand, D*g = v,,2 and hence, f being surjective, E*g = (y5,2)/f. Since
E*g = YpuE*f = Ypu(2/f), the formula is proved.

On the other hand a proximal quotient mapping need not be a quotient mapping
(although a proximal continuous mapping is continuous). Indeed, Theorem 39 C.3
can be restated as follows.

39 D.4. Every proximity space is a proximal quotient of a discrete uniformizable
proximity space.

It is important to know some sufficient condition for the formula ycp(2/0) =
= (Ycp?)/e to be true. For convenience we shall give a direct description of the proxi-
mity structure of the proximal quotient 2/f by means of the proximity structure of 2.
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39 D.5. Let f be a proximal quotient mapping of a proximity space # = (P, p)>
onto a proximity space 2 = {Q, q); thus 2 = P|[f. Then

XqY<XcQ, Y Q, f ' [X]pf'[Y],
and U < Q is a proximal neighborhood of X = Qin 2 if and only if the set f ~'[U]
is a proximal neighborhood of f "'[X] in 2.

Proof. Since f is surjective, f is an inductive generating mapping for proximity
spaces, and both statements then follow from 39 A.3.

39 D.6. Definition. A proximity p for a set P is said to be fine around a subset X
of P if each neighborhood of X in (P, Yepp) is a proximal neighborhood of X in
{P, p>. A semi-uniformity % for a set P is said to be fine around a subset X of P
if the proximity induced by % is fine around X.

Notice that any proximity for a set P is fine around each singleton (x), x € P.
A simple characterization 39 D.7 is followed by the main result.

39 D.7. Theorem. Let X be a non-void subset of a set P and let ¢ = Jp v (X x X).
A proximity p for P is fine around X if and only if

(*) 'ch((Ps P>/Q) = ('ch(P, P>)/Q .
A semi-uniformity % for P is fine around X if and only if
’Ycu((P, %>/Q) = ('Ycu(P, %»/Q -

‘Proof. It is sufficient to prove the first statement. Write Q = Pfo, f = {x -
— o[x] | x € P}. Let u be the closure induced by p, g be the proximity inductively
generated by f : (P, p> — Q and v be the closure inductively generated by f : {P, u) —
— Q. Relation (*) can then be written ycpg = v. First assume that the equality
holds. If U isaneighborhood of the set X in (P, u), then ¥ = f[U] is a neighborhood
of the point X in {Q, v) because evidently U = f~![V]. According to the equality,
the set Vis a neighborhood of the point X in {Q, Y¢pg) and hence (X)nonq(Q — V),
and thus by 39 D.5, the sets f ~![(X)] = X and f~'[Q — V] = P — U are distant
in (P, p>; this shows that U is a proximal neighborhood of the set X in (P, p).
Conversely, assuming that each neighborhood of X in (P, u) is a proximal neighbor-
hood in (P, p)> we must show that ycpg = v. This follows, however, from the fol-
lowing theorem because each proximity is fine around each singleton.

39 D.8. Theorem. If f is a quotient mapping for proximity spaces (semi-uniform
spaces) and if the proximity structure (semi-uniform structure) of D*f is fine
around each inverse fibre of f, then the transpose of f to a mapping for closure spaces
is a quotient mapping. If P is a proximity (semi-uniform) space whose structure
is fine around each fibre of a given equivalence g on 2, then the space Yer(2/0)
or Yeu(2/e) coincides with the space (Yep?)/0 or (Yeu?)/e respectively.

Proof. It is sufficient to prove the statement concerning the quotients of proximity
spaces under equivalences. Let ¢ be an equivalence on a proximity space {P, p),
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Q = Plo, f={x—o[x] | x€ P}, g be the proximity inductively generated by
f:4{P, p) - Q, u the closure induced by p and v the closure inductively generated
by f: (P, u) — Q. Assuming that p is fine around each fibre of g (i.e. around inverse
fibres of f), we must show that v = ycpq. Now v is finer than ycpq, and hence it is
enough to prove that ycpq is finer than v, i.e. that if (X) € Q and Vis a neighborhood of
(X) in €@, v), then Vis a neighborhood of (X) in {Q, Yepq)- Let V' be a neighborhood
of (X) in <@, v). Since the mapping f : {P, u) — {Q, v is continuous, the set U =
= f~![V] is a neighborhood of X = f~'[((X))] in (P, u). Since p is fine around X,
the set U is proximal neighborhood of X in (P, p) and hence, by 39 D.5, Vis a pro-
ximal neighborhood of the one-point set (X)) in (Q, ¢ because X = f~'[((X))],
U=fv]

39 D.9. Examples. Let 2 = (P, p) be a proximity space and let u be the closure
induced by p. (a) The proximity p is fine around each X < Pifand only if X n uY =
=0 implies uX nY =0 and p is a fine proximity (i.e. XpY <= (uX N Y) U
U (X N uY) # 0). (b) The proximity p is fine around an open set X if and only if X
is closed and distant to P — X. (c) If p is fine around each X < P, then u is a quasi-
discrete closure. (d) If p is the Wallman proximity of (P, u) and u is topological,
then p is fine around each closed set.

39 D.10. A uniformizable closure space  is normal if and only if the Cech pro-
ximity of P is fine around each closed subset of . — 39 D.9 (d).

We know that the projective progeny of a class K of proximity spaces consists of all
homeomorphs of subspaces of arbitrary products of proximally accrete spaces or
spaces from K. It has already been noted that to projective concepts (subspace, accrete,
product) there correspond inductive concepts (quotient, discrete, sum). E.g. we shall
establish the following description of the inductive progeny of a class of proximity
spaces.

39 D.11. Theorem. Let K be a class of I;roximity spaces and let K, be the class
of all proximally discrete spaces. The inductive progeny of K consists of all
quotients of sums of spaces from K u K.

Corollary. A class K is inductive-stable if and only if quotients of spaces of K
belong to K, sums of families of spaces of K belong to K, and K contains all proxim-
ally discrete spaces.

Proof. Consider the class K, of all spaces satisfying the condition. Evidently
K, < ind K. We shall prove that K, contains ind K. Assuming that a space £ is
inductively generated by a family {f,} with D*f, in K U K, for each a, let us consider
the reduced sum f of {f,}; by 39 A.12 f is an inductive generating mapping for 2.
If f is surjective then 2 = D*f/f and hence 2 € K, (because D*f is a sum of spaces
of K U K,). If f is not surjective then consider the proximally discrete space 2 such
that |9| = |.?2| The reduced sum g of | : 2 — £ and f is a surjective inductive generat-
ing mapping and hence # = D*g/g. Clearly D*g is the sum of spaces from K u K.
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40. PRESHEAVES

If {P,|ae A} is a family of sets and {f,} is a family, each f, being a mapping of
a set P into P,, then there exists a unique mapping f of P into II{P,} such that
fo = (pro : II{P,} — P) o f for each a in 4. The mapping f is the reduced product of
{f.}. If P, are closure spaces, proximity spaces or uniform spaces, and all f, are con-
tinuous, proximally continuous or uniformly continuous respectively, then the same
is true with f continuous, proximally continuous or uniformly continuous respectively.
Let a family of sets {P, | a € A} be given, and for each pair (a, b) € R, where R is
a given subset of A x A, let f,, be a mapping of P, into P,. It is then natural to in-
quire whether there exists a set Q and mappings g,: @ — P, with the following proper-
ty: if {f,} is any family of mappings f,: P — P, with f, = f., o f, whenever {a, b} € R,
then there exists a unique f : P> O with fo = ga o f for each a. The answer is in the
affirmative under the assumption that f, . f,, = f,. for each {a, b), (b, c) and
{a, ¢) in R; we shall be concerned with the case where R is a quasi-order for 4;
then & = {{P,}, {fu | Ca, b) € R}) will be called a presheaf of sets over {4, R)
and a certain Q will be called the projective limit of & (denoted by li_rg &); the
product TI{P,} will be a particular case of lim &. The same problem and defini-
tions apply to presheaves of closure spaces (P, are spaces, f;, are continuous
mappings, f, f., g, are required to be continuous), proximity spaces or semi-uniform
spaces. A “dual” reasoning leads to inductive limits. Roughly speaking, the projective
limits are related to the products as the inductive limits to the sums.

Subsection A concerns limits of presheaves of sets. We shall show in subsection B
that any projective presheaf of sets over the ordered set of open subsets of a closure
space & is isomorphic to the sheaf of continuous sections of a covering fibration
over 2. Subsection C concerns limits of presheaves of spaces.

A. PRESHEAVES OF SETS AND THEIR LIMITS

For convenience we shall begin with a review of terminology concerning quasi-
ordered sets. A quasi-ordered set will be a {4, £) where A is a set and < is a re-
flexive and transitive relation on 4. A subset B of a {4, <) is left-cofinal or left-
saturated if, respectively, each a € 4 follows some b € B, or each a € A preceding some
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element of B belongs to B. The right-cofinal and right-saturated subsets are defined
similarly. Finally, {4, <) is left-directed (right-directed) if A+ 0 and every two
elements of A are preceded (followed) by an element of 4. A subset B of a quasi-
ordered set (A4, <) will usually be considered as a quasi-ordered subset of (4, £>
and usually the relativized quasi-order will also be denoted by <. A left-cofinal (right-
cofinal) subset of a left-directed (right-directed) set is left-directed (right-directed).

40 A.1. Definition. A presheaf of sets over a quasi-ordered set (A, <) is a pair
¥ ={{P,|aed}, {fu|a < b})> such that {P,} is a family of sets, each f,, is
a mapping of P, into P, (i.e. P, = D*f,,, P, = E*f,;) and the following two conditions
are fulfilled:

(a) faq is the identity mapping of P,;

(b)if @ £ b and b < ¢, then f,. = fy. o fup-

If B is an ordered subset of (4, <), then the presheaf {{P, | a € B}, {f. | a<bh,
a € B, b e B}) will be called the restriction of & to B and will be denoted by Fp.
The mappings f,, are called connecting mappings of & and the quasi-ordered set
(A, £ is called the base of &.

It is to be noted that a presheaf is uniquely determined by the family {f,,}; indeed,
P, is the domain of f,,. Nevertheless, in the most important examples we shall only
be interested in the sets P,; A will be a collection. of sets ordered by inverse inclusi-
on o, each P,will be a collection of mappings with domain a and f,, will be a mapping
assigning to each x € P, the restriction of x to b; thus f,, will be uniquely determined
by a, b, P, and P,,.

40 A.2. Presheaves of continuous mappings. Let P and Q be closure
spaces. For each X < P let Cy be the set of all continuous mappings of the subspace
X into Q (ie. Cx = C(X, @), and for X o Y let fy, be the mapping of Cy
into Cy which assigns to each g € Cy the domain-restriction g | Y of g to Y (we must
know that the restriction of a continuous mapping is a continuous mapping). Clearly
{Cx}, {fxy}> is a presheaf over (exp P, ). This presheaf will be called the
presheaf of continuous mappings of P into Q and the mappings fyy are usually
called restriction mappings. It should be noted that the term restriction mapping is
sometimes used for mappings f,, in any presheaf. Now if P and Q are semi-uniform
spaces then ({Cy}, {fxy}> will be a presheaf over {exp P, o) if Cy is the collection
of all uniformly continuous mappings of the subspace X of P into Q and if fy, are
the corresponding restriction mappings. This presheaf will be called the presheaf of
uniformly continuous mappings of P into Q. In a similar way we define the presheaf
of proximally continuous mappings of a proximity space P into another one Q.
In what follows, if ({P,}, {f.s}> is a presheaf over a collection of sets 4 such that P,
is a set of mappings with domain a and f,, is the restriction mapping, then this
presheaf will be denoted simply by {P,}. _

From the definition of presheaves we shall derive the following simple but useful
result.
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40 A.3. If {{P,}, {fa}) is a presheaf over (A, <) anda < b, b < a, then f,, =
= f..L; in particular, f,, is bijective.

Proof. Indeed, from Definition 40 A.1, condition (b), we obtain f,, = fy, o fup,
fob = fab o fra- Since by condition (a) of the definition the mappings f,, and f,, are
identity mappings of P, and P, respectively, the first equality implies that f,, is in-
jective and f;, is surjective and the second one implies f,, is injective and f, is sur-
jective. Thus both mappings f;, and f,, are simultaneously injective and surjective,
that is bijective. Now, f,, is the inverse of f,,, e.g. by the first equality.

With every presheaf of sets there are associated two sets — the projective limit and
the inductive limit. We begin with the former.

40 A.4. Definition. Let & = ({P,}, {f,5}> be a presheaf of sets over a quasi-
ordered set {4, < The projective limit of & (in another terminology, the inverse
limit of &) is defined to be the set of all elements x = {x,} of the product of the family
{P,| a € A} such that

a £ b implies f,x, = x,.

The projective limit of & will be denoted by lim & (= lim ({P,}, {fa}>), arid this
notation will sometimes be abbreviated to lim {P,}. For each a in A the mapping
pr,:lim & - P, will called the projection of & into P, or the a-th projection of
lim &, and will usually be denoted by f,.

1-._Obviously the projections of a projective limit are restrictions of corresponding
projections of the corresponding product 'set. The projective limit is derived from the
notion of the product set. On the other hand the product set is a special case of the
projective limit. Indeed, if {P, | ae A} is a family of sets and a < b if and only if
a = be A, then & = ({P,}, {fu}), where f,, is the identity mapping of P, onto P,
(since a = b), is a presheaf over (4, <) and its projective limit coincides with the
product of the family {P,}.

40 A.5. Definition. A projective family {g,|a € A} of mappings is said to be
compatible for a presheaf & = {{P,}, {f.s}> over {4, <) if P, = E*f, for each a
in A and a £ b implies g, = fup 0 g

40 A.6. The family of all projections of the projective limit of a presheaf & is
compatible for &.

Proof. With the usual notation, let a < b and x = {x, | c € A} be any point of
lim &. By definition 40 A.4 we have f,,x, = x,, f,x = x, and f,x = x;, which yields
(fab °fa X =fbx'

40 A.7. Theorem. If & = {{P,}, {fu}> is a presheaf over {A, <) and {g,} is
a family of mappings of a set Q and {ga} is compatible for &, then the relation
{x - {gx | aeA} I x € Q}, which is the relational reduced product of the family
{er 9.}, ranges in the projective limit of &.

Proof. Fix an x in Q. If a < b, then g, = f,; - g, and hence g,x = (f,, 0 g,) x =
=/, ab(gax)'
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Corollary (a). There exists exactly one mapping g of Q into lim & such that

(*) 9o = (pro:lim & — P,) o g for each a.

The graph of g is the relational reduced product of {g,}, that is, gx =
= {g,x | a € A} for each x € Q.

Proof. If g fulfils (*) then necessarily g,x = pr, gx and hence there exists at most
one such mapping. By the theorem there exists at least one such mapping, namely
that from the second statement of the corollary.

Corollary (b). Supposethat & = ({P,}, {f.} is a presheaf over (A, <>, R is a set,
{h,} is a family of mappings compatible for & suchthatDh, = R foreachain A,and
finally assume that, if Q is a set and {g, | a € A} is a family of mappings compatible
for & such that Dg, = Q for each a, then there exists exactly one mapping g of Q
into R such that g, = h, o g for each a in A.
Then there exists an injective mapping k-of R onto the projective limit of % such
that h, = (pr, : lim & — P,) o k for each a in A.

40 A.8. Definition. Let & = {{P,}, {f.,;}> be a presheaf over {4, <) and let
o be a lower bound of a subset B of A. By the corollary of 40 A.7 there exists exactly
one mapping g of P, into lim & such that f,, = (pr, lim #p > P,) o g for each
b € B. This mapping will be called the canonical mapping of P, into lim &p.

40 A.9. Under the assumptions of 40 A.8, if o € B (thus o = inf B) then the canon-
ical mapping g of P, into lim &y is bijective.

Proof. If gx = gy, then pr, gx = pr, gy for each b € B; substituting b = « we
obtain x = y because always pr, o g = f,,. Thus g is injective. If {x, | b e B} is any
point of lim &y, then x, = f,;x, for each b € B because « < b for each b € B. Now
clearly {x, | b e B} = gx,.

Corollary. If & is a presheaf over (A, <) and a is a least element of A, then
{x > {fux | a € A}} is a one-to-one relation on P, onto lim &.

Remark. Let & = ({P,}, {f.»}> be any presheaf over {4, <). Let us consider the
set A’ consisting of all points of 4 and one further point, say «. Define a quasi-order
< on A’ so that {4, £)> bzcomss a quasi-ordered subset of 4’ and « is the least
element of A". Finally put P, = lim & and f,, = pr,: P, > P, for a in 4. Then
F = ({P,|ae A}, {fs} is a presheaf over (4’, <), and the canonical mapping
of P,into lim &) = lim & (because &, = &)is bijective. Thus any presheaf & over 4
is the restriction of a presheaf &’ = ({P,}, {f.}) over a base with a least element «
such that the canonical mapping of P, into lim & corresponding to {fea | ae A} is
bijective.

It should be noted that, in general, a canonical mapping g of P, into lim &5, where
o is a lower bound of B, is neither injective nor surjective. For example, if « < f#, and
B = (), then lim &5 = TI{P, | ae(B)} = (B) x P, and the mapping g assigns to
each x e P, the point {f, f,zx>; it follows that g is injective or surjective if and only
if the mapping f,, has the corresponding property. But f,,need not be injective nor sur-
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jective. It seems to be appropriate to examine injectivity and surjectivity of canonical
mappings g for each « and B in a suitable presheaf.

40 A.10. Example. Let us consider the presheaf & = ({Px}, {ryy}> over
{exp R, o), where R is a set, Py = Q¥ (i.e. the set of all single-valued relations on
X into Q) where Q is a given set independent on X, and ry, is the restriction mapping
of Py into Py, that is, r4y assigns to each o € Py the restriction alY of ¢ to Y (notice
that the mappings ryy are surjective). Choose a non-void ordered subset Z of
{exp R, o) and a lower bound U of %, i.e. U o U%, and consider the canonical
mapping g of Py into lim &4; thus g assigns to each o € Py the family {olx I xeZ}.
Now if Q possesses at most one point, then each Py consists of the constant relation,
and clearly g is bijective. In what follows let us suppose that Q has at least two
points.

(o) The mapping g is injective if and only if U = & (that is, U = inf Z).

Proof. First suppose that U = J% and ¢, 6 € Py, ¢ # . There exists a point
x of U such that gx + ox. If we choose an X in & containing the point x, then
o|X =+ g]X, but g|X and ¢]X are, respectively, the X-th-coordinate of gg and go. Thus
go ¥+ go. Conversely, suppose that there exists an x in U — J%. Since Q has at least
two elements, there exist ¢ and o in Py such that gox + ox but gy = gy foreach y + x.
It follows that g|X = o|X for each X e %, and consequently go = go.

(B) In order that the mapping g be surjective it is sufficient that X; n X, e
€ & provided that both X; and X, belong to &; in particular, if & is right saturated
then g is surjective.

Proof. Suppose that the condition is fulfilled and let us consider any element
{ox ]Xe.f’l'} of lim &g. It is easily seen that x e X; N X,, X, € Z implies gx,x =
= gy,X. Indeed, X = X; n X, belongs to & and follows both X; and X,; thus
Ox = Qx, |X = 0y, IX in particular, gy;x = gy,x. It follows that we can define
a relation ¢ on U into Q so that gx = gyx if xeX e & (if xe U — US’Z’ then gx can
be any element of Q). Clearly g|X = g for each X € Z.

A necessary and sufficient condition for g to be surjective is rather complicated.

40 A.11. Definition. A presheaf & = ({P,}, {fu}> over (4, <) will be called
projective at an index o € A if the following two conditions are fulfilled:

(a) if « = inf B, then the canonical mapping {x — {f,;x | b € B}} of P, into lim &
is injective;

(b) if a =inf B and B is right-saturated, then the canonical mapping {x —
= {fux | b € B}} of P, into lim &5 is surjective.

A presheaf is said to be projective if it is projective at each index. Instead of
projective presheaf we will often use the term sheaf.

40 A.12. Examples. (a) The presheaf in example 40 A.10 is projective. (b) On
the other hand the presheaves of continuous mappings usually are not projective.
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For example let {Cx} be the presheaf of continuous functions on a space P (see
example 40 A.2) and consider the collection & consisting of all one-point sets and the
void set. Clearly each Cy, X € &, consists of all functions on the subspace X of P. If f
is a function on P which is not continuous, and if fy is the domain-restriction of f
to X, then fy € Cy for each X € % and the family {fx | X € Z} belongs to the pro-
jective limit of the presheaf {Cy |X € Z'}; nevertheless, there exists no continuous
function h on P such that fy = h|X for each X € &'; indeed, if h|X = fy for each
X e %, then necessarily h = f; but f was chosen not continuous. It follows that
if P is not discrete, then the presheaf of continuous functions on P is not projective
at P; in particular, it is not projective. '

{c) Consider again the presheaf {Cy} of continuous mappings of a space £ into
a space 2. Let U be a subset of & and let & be a multiplicative collection of subsets
of U which interiorly covers U. It is easily seen that the canonical mapping of Cy
into the projective limit of {Cy IX € &} is bijective. Indeed, let {fx | X eZ} be an
element of lim {Cx I X e Z}. As in 40 A.10 one cand find a mapping f of U into 2
such that fy = f|X for each X € &. Since & interiorly covers U, the mapping f is
continuous (roughly speaking, since f is locally continuous, f is continuous, see
17 A19).

(d) It follows from (c) that the restriction of the presheaf of continuous mappings
of 2 into 2 to the ordered subset  of all open subsets of £ is a projective presheaf.

40 A.13. Definition. A sheaf is a projective presheaf % whose base is the set of all
open subsets of a closure space 2 ordered by inclusion; we shall say that & is
a sheaf over 2. More generally, if the collection of all open subsets (occasionally,
all subsets) of a closure space £ is a base of a presheaf &, then we shall say that &
is over 2.

Let % be the collection of all open subsets of a space 2 and let 2 be a space. The
restriction to % of the presheaf of continuous mappings of & into 2 is a sheaf by
40 A12 (d) which will be called the sheaf of continuous mappings of 2 into 2.

40 A.14. Remarks to Definition 40 A.11. (a) It is easily seen that the condition
(a) can be weakened by requiring the.set B to be right saturated. Indeed, assume
the weaker condition and let « = inf B. Consider the smallest right saturated set B,
containing B; clearly B; consists of all b; € A following some b € B. Clearly g =
= f o g,, where g and g, are canonical mappings of P, into the projective limit of &g
and &y, respectively, and f is the canonical mapping of lim &5, into lim &, i.e.
F({xs | beB,}) = {x, | b € B}. The mapping g, is injective by virtue of the weakened
condition (a), and the mapping f is injective because each b, € B, is preceded by some
b e B. It follows that g is injective. Now the conditions (a) and (b) can be replaced
by the following condition:

If o = inf B and B is right-saturated, then the canonical mapping {x — {f,,x | be
€ B}} of P, into lim & is bijective.
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(B) If each finite family in (A4, <) possesses a supremum, then the condition
(b) can be strengthened by replacing the requirement “B is right-saturated” by the
following weaker requirement:

(*) Xf by, b, € B then sup (by, b,) € B.

For example, if & is a presheaf over {exp R, > then () requires B to be multi-
plicative. The proof is very simple. Suppose that & is projective at « and B is a set
satisfying (*). We must show that the canonical mapping of P, onto 11m & g is surjecti-
ve, i.e. that E{x » {f,x | be B} |xe P} = lim &.

Consider the smallest right saturated set B containing B. Since & is projective
at o, we have

E{x » {fyx|beB}|xeP,} =lim ..

It follows that it is enough to show that each family {x, | b€ B} €lim &5 can be
extended to a family {x, | beB}elim ¥p.If be B — Band b; < b, b, < b, then
also by = sup (by, b,) € B and hence So6%5, = fo36%Xb; = f,6%s,» and consequently
the value f; ,x,, does not depend on the choice of b; < b in B. Thus we can define
x,for bin B' — Basf,, witha b, < b (sucha b, exists).

(¥) If & is projective at the greatest element o, then P, is a one-point set. Indeed,
clearly B = @ is a right-saturated set in (4, <) and « = inf B. Since lim &,
contains exactly one clement (namely ), the set P, contains at most one element
by (a) and at least one element by (b).

We shall return to an examination of projective presheaves in subsection B. Now
we present the definition of the inductive limit of a presheaf.

40 A.15. Definition. Let us suppose that & = {{P,}, {f.»}> is a presheaf of sets
over a quasi-ordered set (A, <). Let ¢ be the smallest equivalence on the sum P
of the family {P, | a € A} such that {a, x) ¢ <b, y) provided that f,.x = f,.y for
some ¢ (which necessaiily follows both a and b). The quotient of P under ¢ will be
termed the inductive limit of &, and denoted by lim & (i.e., lim {{P,}, {f.s}>) or
merely lim {P,}. For each a the mapping {x — ¢[<a, x)]} of P,into lim & will be
termed the canonical mapping of P, into lim & and will often be denoted by “f.

40 A.16. Remarks. («) As it stands, the notion of inductive limit is derived from
the notion of sum. On the other hand, the sum is “almost’ a special case of inductive
limits. Indeed, if {P, | ae A} is a family of setsand ifa < b if and only ifa = be A4,
then & = ({P,}, {fw}), Where f,, is the identity mapping of P, onto P, (since
a= b), is a presheaf over (4, <) and its inductive limit is the quotient set of the
sum Z{P,} under the identity equivalence on the sum, that is,

lim & = E{(x) | x e Z{P,}}

(B) Evidently o = {<a, x) = (b, y> |f,,cx = f,.y for some ¢ in A} is a reflexive
and symmetric relation on Z{P,} which need not be transitive. Nevertheless, if
{A, £ is right directed then o is transitive, and hence o is an equivalence on P and
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therefore o = g. The proof of this fact is a matter of a simple calculation. Suppose
{a, x> o {b, ¥, {b, > 6 {d, z). By definition of o, there exist ¢ and e such that
SacX = foehs foey = faez(thus a, b < cand b, d £ e). Since (4, <) is right directed,
we can choose an I in A following both ¢ and e and hence also a, b, d. Now clearly

falx =fclfacx =fclfbcy =fbly =felfbey =felfdez =fdlz >

hence f,,x = f;z, which proves ({a, x), {d, z)) € ¢ and establishes the transitivity.

(v) As we noticed in (), the relation ¢ generating g is reflexive and symmetric but
need not be transitive. Sometimes it is convenient to define g as the smallest equival-
ence containing the following relation o;, which is reflexive and transitive, but in
general not symmetric:

oy = {<a,x) — (b, y)la <b and fux=y}.

Obviously o, < a. As we know (3 F.4) the relation ¢ can de described in terms of ¢
as follows (this description obtains under the assumption that ¢ is symmetric and
reflexive): (&, n) € ¢ if and only if there exists a finite sequence {¢ ,~| i < n} such that
& =¢ ¢ =nand {({,{;yyeocforeachi=0,1,...,n — 1. It is easily seen that
the relation ¢ can be described in terms of o, as follows: (&, ) € ¢ if and only if
there exists a finite sequence {fil i < n}suchthat &, = §,&, =n,{&, &4 ) €0, V0!
foreachi £ n — 1.

(8) The canonical mapping of P, into the inductive limit is the composite of the
canonical embedding {x — (a, x)} of P, into the corresponding sum followed by
the canonical mapping {(b, y> — ¢[(b, y)>]} of the sum onto the inductive limit.

(e) If A = 0, then Z{P, | a € A} = 0 and hence lim & = 0 as well.

Before presenting the general theory we give two examples. The first of them shows
that the notion of the inductive limit implicitly occurs in many theorems concerning
the local behavior of functions. The second very simple example serves as an intro-
duction to further rather general theorems.

40 A.17. Germs of a presheaf over subsets of a closure space. (a) Let
{{Cx}, {fxx}> be a presheaf over a closure space 2, and for each x in 2 let %, be the
neighborhood system at x. The elements of lim {Cx | X € U,} are called the germs of
the presheaf {Cx} at the point x. Since %, is right directed, the relation ¢ =
= {(X,s) > (Y, r) |fxzs = fyyr for some Ze%,, Z = X n Y} is an equivalence,
and consequently lim {Cy | X € %,} is the quotient of Z{Cx | X € %,} under o.

(b) For example, let {Cy} be the presheaf of continuous mappings of 2 into 4.
The germs of {Cy} are called the germs of continuous mappings of P into 2. The
elements of Z{Cy | X e} are usually called continuous elements at x (relative
to .@). Thus a continuous element at x is a pair (X, f), where X is a neighborhood
of x and f is continuous mapping of the subspace X of £ into 2, the germs at x of
continuous mappings into 2 are classes of equivalent continuous elements at x and
two continuous elements at x, say <X, f> and <Y, g), are equivalent if and only if
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there exists a neighborhood Z of x such that f l Z=g | Z (and hence Z = X n Y).
Stated in other words, two continuous elements at x determine the same germ if and
only if the corresponding mappings agree on a neighborhood of x.
40 A.18. Let 2 be a space. For each X < |2|let Fy be the set of all functions on X.
. L N
If £ is a germ of {F} at a point x and there exists a (U, f) € £ such that f is continuous
at x, then for each (V, g) € £, g is continuous at x. Similarly, if there is defined the
notion of differentiability, e.g. if 2 = R and there exists a (U, > in { such that the
derivative of f at x exists, then for each (V, g) € { the derivative of g at x exists
and equals that of f. Thus we can define the notion of a “continuous” germ and
of the derivative of a germ. It seems that the statement “if a germ £ has a derivative,
then the germ ¢ is continuous’ expresses the well-known fact more suggestively than
the usual formulation “if a function f has a derivative at a point x, then f is continu-
ous at x””. One can find many examples of local properties of functions at points
which are in fact properties of germs.

40 A.19. Example. Suppose that (4, <) is monotone, {P, | a € 4} is an order-
preserving family of sets (that is, a < b implies P, = P,), and if a < b then f,, is the
identity mapping of P, into P,. Clearly & = <{{P,}, {f.;} is a presheaf over {4, <).

(a) It is easily seen that lim & consists of all constant families {x I a € A} such
that x € N{P, | be A}; stated in other words, {x - {x | ae A} |x e N{P, | be A}}
is a one-to-one relation the domain of which is N{P, | b € A} and the range of which
is lim &. Next, lim & ‘consists of all sets of the form X, = E{<a, x) | x€P,},
xe U{P,, | be A}, in other words, the relation {x — X | x € U{P, | a € A}} ranges
on lim &; clearly this relation is one-to-one.

(b) For each a € A let g, be the identity mapping of N{P, | be A} into P,, i.e.
g.x = x for each x € Dg,. Clearly the family {g,} is compatible for &, i.e. g, =
= f, 0 g, for each a < b. By 40 A.7 there exists exactly one mapping g such that

= (pr, : lim & — P,) o g for each a and gx = {g,x | a € A}. But clearly the relation
gr g is the relation considered in (a). By (a) the mapping g is bijective. Thus g is
a one-to-one mapping of N{P, | ae A} onto lim & and {g,} = [{pr,:lim &¥ —
- P,,}] o g. In general, if g is a bijective mapping and fulfils the last equality, then we
say that Dg is isomorphic by {g,} with lim &. In our case, we can say that the
intersection of {P,} is isomorphic (by identity mappings) with lim &.

(c) Now, for each a € 4, let g, be the identity mapping of P,into J{P, I be B} and
let g be the mapping of lim & which assigns to each X, €lim & the point x. By (a) the
mapping g is bijective and g, = g - °f for each a, where °f is the canonical mapping
of P,into lim & which can be written as {g,} = g o [{*f}]. In general, if {g,} fulfils the
last equality with a bijective mapping g, then we shall say that the common range
carrier of mappings g,is isomorphic by {g,,} with lim &. In our case we can say that
the union P of {P, | a € A} is isomorphic by the 1dent1ty mappings g, : P, - P with
lim &.
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In 40 A.5 we introduced the notion of a projective family compatible for a presheaf
&; this is a projective family {g,} (i.e. a family with common domain carrier) such
that g, = f,s o g, for each a £ b, where f,, are connecting mappings of &% and <
is a quasi-order of the base of . Now we introduce corresponding notions for in-
ductive families.

40 A.20. Definition. Let & = {{P,}, {f.s}> be a presheaf over {4, <). By an in-
ductive family compatible for & we shall mean an inductive family of mappings
{g.} (i.e. a family {g,} with a common range carrier) such that g, = g, » f,; for each
a < b (thus Dg, = P, for each b € A).

Before stating the main result for inductive families compatible for a presheaf we
summarize the results of 40 A.6 and corollaries of 40 A.7 in the theorem which fol-
Tows.

40 A.21. Theorem. Let & = {{P,}, {f.s}> be a presheaf over (A, <. The family
{fa} of projections of lim & is compatible for &, and if a projective family {g.}
is compatible for &, then there exists exactly one mapping g such that g ,= f,- g
for each a; this can be written as

(%) {9} = [{fu}] - 9.

If {h,} is a projective family compatible for & such that each projective family
{9.} admits a unique decomposition (%) with f, replaced by h,, then there exists
exactly one bijective mapping k such that h, = f, - k for each a.

40 A.22. Theorem. Let & = {{P,}, {fu}> be a presheaf over {A, <). The
family {°f} of canonical mappings into lim & is an inductive family compatible for
&.If {g,} is any inductive family compatible for &, then there exists exactly one
mapping g of lim & (into the common range carrier of all g,) such that g, = g - °f
for each a € A; this can be written as

() {9} = g - [{f1]

Stated in other words, each inductive family compatible for & admits a unique
decomposition (*) (where only g depends on {g,}).

Corollary. If {h,} is an inductive family compatible for & such that each in-
ductive family {g,} compatible for ¥ admits a unique decomposition (x) with °f
replaced by h,, then there exists a bijective mapping k such that h, = k . °f for
each a e A.

Proof. By definition, the inductive limit of & is the quotient set (2{P,})/o where
¢ is the smallest equivalence containing the relation o = {(a, x> = (b, y) l facX =
= f,.y for some c}. Now if y = f,,x, then {{a, x), (b, y>) €6 = g and hence the pairs
{a, x> and (b, y)> belong to the same equivalence class, i.e. °fx = bfy. It follows
that °f = °f o f,;, which shows that {°f} is compatible for &. Now let {g,} be any
inductive family compatible for & and let Q be the common range carrier of all g,.
Consider an auxiliary mapping k of £{P,} into Q which assigns to each {a, x) the
point g,x of Q. The relation {<{, #) | k{ = kn} is an equivalence on Z{P,} containing

48—Topological Spaces
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the relation o (since {g,} is compatible for &) and hence also g. Therefore there
exists exactly one mapping g of (£{P,})/e into Q such that k = g . {{ - ¢[(]} for
each { in the sum. Now we need only notice that a mapping g fulfils the last equality
if and only if g, = g o ?f for each a.

40 A.23. Definitions. Let & = ({P,}, {f.s}> be a presheaf over {4, <). (a) If «
is an upper bound of a subset B of A, then { f,,,l b e B} is an inductive family com-
patible for the restricted presheaf &5 and hence, by virtue of 40 A.22, there exists
exactly one mapping g of lim &y into P, such that each f,, is the composition of the
canonical mapping of P, into lim &5 followed by g. This mapping g will be termed
the canonical mapping of &y into P,.

(b) The presheaf & is said to be inductive at a € A if the following condition is
fulfilled:

If « = sup B and B is left-saturated, then the canonical mapping g of lim &4
into P, is bijective.

(c) The presheaf & will be called inductive if & is inductive at each index x € A
exzepting, possibly, the least indices.

40 A.24. Remarks to Definition 40 A23. () If « = sup B and a € B, then
the canonical mapping g of lim &5 into P, is bijective, and moreover g is the
inverse of the canonical mapping of P, into lim & 5. In particular, if « is the greatest
element of A, then the canonical mapping of lim & into P, is the inverse of the canon-
ical mapping of P, into lim & (compare with analogous result 40 A.9 for projective
Iimits). The proof is straightforward and may be left to the reader.

(B) If & is inductive at o and o is a least element of A, then P, = 0. Indeed,
B = @ is left saturated and sup B = a. Clearly lim &5 = @, and hence P, = 0.
Conversely, if « is a least element of A and P, = 0, then & is inductive at .

(Y) Notice that a presheaf was defined to be projective if it is projective at each
index (not excepting the greatest elements), but a presheaf was defined to be inductive
if it is inductive at each index with the exception of the least elements. The reasons
for this were explained in ().

(8) Very little is known about inductive presheaves. Therefore we shall restrict

ours:lves to examples. It should be remarked that more useful concepts are obtained
by imposing some additional properties on B in 40 A.23 (b).

40 A.25. Examples. Let & = {{S,}, {f,s}> be a presheaf over {4, <).

(a) If < A(B x B) = |, then lim &, “almost™ is Z{S,| be B}, and hence &
need not be inductive even if all the f,, are bijective and {4, <) is a boundedly com-
plete lattice.

(b) & is said to be filter-inductive at « if the condition in 40 A.23 (b) holds with B

a right filter. If each filter is directed then & is filter-inductive provided that all f,, are
bijective.
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(c) Let <A, £> be the collection of all closed subsets of a topological space
P = (P, u). & is filter-inductive at « if for each open additive cover % of P — « the
following condition is fulfilled: if s € S, then s = fp_y » Withrin Sp_y for some U
in % (i.e. the canonical mapping is surjective), and also if f,s = f,r With P — a e %,
P — be, then f,.s = f,.,r with ¢ = a n b. Inductivity may be described similarly.
E.g. if # = Cand S, is the set of all rational functions holomorphic on g, then & is
filter-inductive at any infinite a, but in general not inductive. On the other hand, & is
inductive at any infinite a provided that S, is the set of all rational functions holo-
morphic on a which do have at most one singularity.

In the following subsection we shall need the notion of an isomorphism of two
presheaves over the same base. For the sake of completeness we also introduce some
related notions, and show how morphisms of presheaves induce mappings of their
limits.

40 A.26. Definition. Suppose that & = ({P,}, {f.s}> and &' = ({P.}, {f.;} > are
presheaves over the same quasi-ordered set {4, <). A morphism of & into &' is
a family ¢ = {o, | a € A} such that each ¢, is 2 mapping of P, into P; and f}; - ¢, =
= @ o fa fOr each a < b; that is, the diagram '

qo,] S I%
fab

is commutative for each a < b. A morphism ¢ = {¢,} is an epimorphism or a mono-
morphism if each mapping ¢, is surjective or injective, respectively. A morphism ¢
is called an isomorphism if ¢ is simultaneously an epimorphism and a monomorph-
ism. '

Notice that we employ terms usually used in the general theory of categories. It
follows from the following theorem that all presheaves over a given quasi-ordered
set with the morphisms just defined as morphisms is a category. Moredver, one can
easily show that monomorphisms and epimorphisms just defined coincide with
the monomorphisms and epimorphisms in this category.

40 A.27. Let &, &' and &" be presheaves over the same base (A, £>. If {¢,}
and {y,} are morphisms (monomorphisms, epimorphisms, isomorphisms) of & into
&' and of &' into &" respectively, then {Y, o ¢,} is a morphism (monomorphism,
epimorphism, isomorphism) of & into &”. If {@,} is an isomorphism then {¢; '} is
an isomorphism of &’ into &. Let B be a quasi-ordered subset of {A, <). If
{0, | a eA} is a morphism, monomorphism, epimorphism or isomorphism of &
into &', then {(p,,]aeB} is a morphism, monomorphism, epimorphism or iso-
morphism of &yinto ¥5.

Now we shall prove that each morphism of & into &’ induces, in a natural way,
a mapping of lim & into lim &’ and a mapping of lim & into lim &".

48+
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40 A.28. Theorem. Suppose that & and &' are presheaves over the same quasi-
ordered set (A, <) and ¢ = {¢,} is a morphism of & into &'. Then

(2) There exists exactly one mapping o of lim & into lim &’ such that the dia-
gram

fa

—_—

P e

Ja
is commutative for each a in A, where {f,} and {f.} are the families of canonical
projections of lim & and lim &’ respectively. The mapping @ is injective or bijective
provided that all ¢, possess the corresponding property, i.e., provided that ¢ is
a monomorphism or an isomorphism.

(b) There exists exactly one mapping ¢ of lim & into lim &’ such that the dia-

gram
qo,[ 7 F
’f

is commutative for each a in A, where {°f} and {"f } are the families of canonical
mappings into lim & and lim &’. The mapping ¢ is surjective or bijective provided
that all mappings ¢, possess the corresponding property, i.e. provided that ¢ is an
epimorphism or an isomorphism.

Proof. The reader is requested to prove the existence and the uniqueness in both
statements (a) and (b), even though both are special cases of 40 A.29. We restrict
ourselves to the proof of additional properties of ¢ and o.

(a) It follows immediately from the diagram in (a) that o({x,}) = {@.x,} for each

{x,} in lim &. Thus clearly @ is injective if each g, is injective. If f ¢ is an iso-

rnorphlsm, then both ¢ and ¢~! = {@; 1} are morphisms and clearly ¢ o 1o @ is the

identity mapping of lim &. Tt follows that q) is bijective.

(b) Suppose that ¢ is an epimorphism and choose an # € lim &’. There exists an
ain A and y in P, such that °f'{(a, y) = #. Since ¢, is surjective, we can choose an x
in P, such that ¢,x = y. Put ¢ = %f<a, x). It follows from the diagram in (b) that
@& = 1. Thus ¢ is surjective. Now let ¢ be an isomorphism. Since ¢! is also an
isomorphism and qT:i ° EB is the identity mapping of lim &, Zﬁ is necessarily bijective.

Remark. It should be noted that ¢ need not be surjective if ¢ is an epimorphism,
and ZE need not be injective if ¢ is a monomorphism.

40 A.29. Theorem. Suppose that & = ({P,}, {fum}> is a presheaf over (A, <)
and &y = {{Q.}, {gcs} is a presheaf over {C, <).
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(2) Let o be an order-preserving mapping of (C, <) into {4, <) and {h, |ceC}
be a family of mappings, with each h. from P,y into Q,, such that the diagram

h CT Ged T hd

i
>

fa(c)a(d)

is commutative for each ¢ < d. There exists exactly one mapping h of 1‘1_n_1 & into
lim &, such that the diagram

fa(c)

is commutative for each c in C, where {f,} and {g.} are families of all projections of
lim & and lim &,, respectively.

(b) Let B be an order-preserving mapping of (A, <) into {C, <) and {h, | a € A}
be a family of mappings, with each h, from P, into Qgy, such that the diagram

h"] 98@)8(%) I hy

I
>

fab

is commutative for each a < b. Then there exists exactly one mapping g of lim &
into lim &, such that the diagram

B(a)
A
a’f .
is commutative for eaoh a in A, where {°f} and {°g} are families of canonical map-
pings into lim & and lim &, respectively.

Proof. I. First we shall prove statement (a). There exists at most one h such that
geoh = h.ofy for each ¢ in C, because if y = hx then necessarily g,y =
= h[ f.yx] for each c in C, and hence each g.y is uniquely determined by x; this
implies that y is uniquely determined by x. On the other hand, if x e lim &, then the
family {h.(f,)X) | ¢ € C} belongs to lim &, because of the commutat1v1ty of the first
diagramin (a). Thus h = {{x - {h, (fa(c)x)} | x elim &}, lim &, lim &,) is a mapping
and it clearly makes the second diagram of (a) commutative.

II. Proof of (b) The uniqueness is almost evident, Indeed, if { E_l_illl &, then
%f{a, x) = { for some a € A and x € P,, and the commutativity of the second dia-
gram in (b) yields g{ = #@gh,x. The existence of g can be proved as follows. By
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definition we have

lim & = 2{P, | ae A}/e
and

E_ﬂ}g’l = E{chcec}/91

where ¢ and g, are the smallest equivalences containing the relations

¢ = {<€a, XD, <b, YD) | faxX = fray for some o}

and
oy = {Ke, %), {d, D) | g%’ = gayy’ for some 7},

respectively. Consider an auxiliary mapping k of X{P,} into X{Q.} which assigns
to each {a, x) the point {B(a), h,x). It follows from the commutativity of the first
diagram in (b) that {{, n) € o implies <k{, kn) € 5, and this implies (k{, kn) € ¢,.
Since g, is an equivalence and ¢ is the smallest equivalence containing ¢, we have
& n)eo= (kL kn) € ;. But from the last implication one can conclude at once
that there exists a mapping g of lim & into lim &, such that

{n—einl}ok=go{0—ell]}
Obviously this mapping g makes the second diagram in (b) commutative.

Corollaries. Let & = ({P,}, {f.s}> be a presheaf over (A, £) and let B c A.
Then

(a) There exists exactly one mapping h of lim & into lim &psuch that the com-
position h with the canonical projection of lim &y into P, is the canonical pro-
Jection of li_n_l & into P, for each b in B.

(b) There exists exactly one mapping k of lim &pinto lim & such that, for each b
in B, the composition of the canonical mapping of P, into lim & followed by k is
the canonical mapping of P, into lim &#.

Proof. Put @« = B ={b — b | be B} and apply the theorem (in case (a) & =
= %and &, = Ppandincase (b) & = ¥y, ¥, = &).

40 A.30. Remark to Corollaries of 40 A.29.

(a) The mapping h is injective provided that B is left-cofinal in 4, and h is bijective
if B is left-cofinal in 4 and A is left-directed.

(b) If B is right-cofinal in A, then the mapping k is bijective.

Proof. (a) First suppose that B is left-cofinal in A and x = {x,} and y = {y,} are
elements of lim & such that x, = y, for each b in B (ie. hx = hy). We must
show that x, = y, for each a in A. Pick an a in 4. There exists a b in B preceding a.
Since fu, X, = X4 foaVp = Va and x, = y,, We obtain x, = y,. Now suppose that, in
addition, A is left-directed and {x, | b € B} is any clement of lim & . We must find
a family {y, | aeA}e E@ & such that y, = x, for each b in B. From our assump-
tions we shall obtain that, given an a in A, the value f,,x,, b < a does not depend
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on b. This will enable us to define y, = fj,x, for some b < a; clearly { Yo} € Ll_r_n & and
¥, = x, for each b in B. Suppose that ae A and b, and b, are elements of B preceding
a. Since B is left-cofinal and A is left-directed we can choose a b in B preceding both
by and b,. Now f, %y, = fo.afoe X6 = foa¥p, i = 1,2, which proves f, Xy, = fy,4%s,-
(b) Suppose that B is right cofinal. If # €lim &, then %(a, x) = 5 for some
ac A and x e P,; now, if be B, a £ b, then also °f(b, f,x) = n. If £ is the image
of (b, f;x> under the canonical mapping of P, into lim &p, then clearly k¢ = 7.
Thus k is surjective. It remains to show that k is injective. It is enough to show that
(%) es = ¢ 0 (Z{P, | be B}) x (X{P, | be B})
where ¢ and g, are equivalences such that

lim & = (Z{P,})/e and lim &5 = (Z{P})/es -

The proof of the inclusion () is straightforward and is left to the reader.

Remark. The assumption “A is left directed” cannot be omitted from (a) in
40 A.30. Indeed, put 4 = (1, 2,3,4) and define the order on A so that 1 and 2 are
incomparable, 3 follows both 1 and 2, and 4 follows 3. The sets P, P, and P, are
one-point and the set P, has at least two points. Finally, the connecting mappings
fij are defined so that f5[P,] does not meet f,,[P,]. If & is the resulting presheaf
of sets and B = (1, 2, 4), then B is left cofinal in 4, lim & =@ but lim & + 0 (and
hence the canonical mapping of l<l_rl_1 & into 1}2 &g is not surjective).

B. SHEAVES OF SETS AND COVERING FIBRATIONS

One of the main results of this subsection asserts that every sheaf over a space 2
is isomorphic with the sheaf of continuous sections of a covering fibration over 2.

40 B.1. We shall introduce some abbreviated terminology. By 7 B.12 a fibration is
a correspondence f such that f ~! is a mapping, i.e. f is a range-full correspondence
such that the fibres are disjoint. Here we shall only consider fibrations f such that
both D*f and E*f are closure spaces; for brevity we shall mean by a fibration a fibra-
tion such that both carriers are spaces. By 7 C.8 a section of a fibration f is a mapping
such that E*s = E*f and grs < grf; thus Ds = Df and no compatibility require-
ment on the structure of D*s is involved; for brevity we shall always assume that D*s
is a subspace of D*f. The space E*f will be called the fibre space of f.

Let f be a fibration over a closure space 2 and for each open subset U of 2 let S,
be the set of all continuous sections of f over U (i.e. sections over U which are con-
tinuous mappings). Since the domain-restrictions of continuous sections are continu-
ous sections and a domain-restriction s of a continuous section s; which is a domain-
restriction of a continuous section s, is a domain-restriction of s,, the family
{Sy | U open} endowed with restriction mappings as connecting mappings (see
40 A.2) is a presheaf over open subsets of 2 ordered by =.
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We shall prove that {SU} is a projective presheaf, i.e. a sheaf over 2. A direct proof
can be given, but we prefer to reduce the projectivity of {Sy} to the projectivity of the
sheaf {Cy} of continuous mappings of 2 into E*f (see 40 A.12). Clearly S, = Cy
for each U, and an s e Cy belongs to Sy if and only if grs is a section of grf, i.e.
f~sx = x for each x in U. Now if U = U¥" and {s, | Ve ¥} is a family such that
sy € Sy for each Vin ¥~ and the restrictions of sy, and s, to V; n V, coincide for
each V; and V, in ¥, then {Cy} being projective at U, there exists an s in Cy such
that each sy is a restriction of s to V. It is easily seen that f ~sx = x for each x in U,
and hence s € S;; as we noticed above.

40 B.2. Definition. If f is a fibration over a space £ then the sheaf over #2 just
defined will be called the sheaf of continuous sections of f and will be denoted by #,.

It turns out that any sheaf over a space £ is isomorphic with the sheaf of continuous
sections of a fibration f over &; furthermore, the fibration f can be chosen with
some important additional properties, namely f may be taken to be a covering
fibration.

40 B.3. Definition. A covering fibration is a lower semi-continuous and inversely
continuous fibration f such that Df is open in D*f and each point of the fibre space
E*f has an open neighborhood U such that the mapping f ~! : U —» D*f is injective.

40 B.4. In order that a fibration f be a covering fibration it is necessary and
sufficient that each point of E*f have an open neighborhood U such that the domain-
restriction g of f~' to the subspace U of E*f is an embedding and the set Eg
(= g[U] = f~*[U]) is open in D*f.

Proof. I. Assuming that f is a covering fibration, choose a point y of E*f and an
open neighborhood U of y such that g = f~! : U — D*f is injective. We shall prove
that g is an embedding (U is considered as a subspace of E*f) and Eg is open. The
mapping g is continuous as the restriction of the continuous mapping, and g is inversely
lower semi-continuous as the domain-restriction of an inversely lower semi-continuous
mapping to an open subspace, namely of f~'. Finally, Eg = f~![U] is open in the
subspace E f~! = Df because f is lower semi-continuous; since Df is open in D*f,
Eg is open in D*f. — II. Assume the condition. Evidently f ~! is injective on an open
neighborhood of any point of E*f, and Ef ~! = Df is open as the union of open sets,
namely the ranges of embeddings in the condition. The mapping f ~! is continuous be-
cause f ! is continuous on a neighborhood of any point of E*f. To prove that f is
lower semi-continuous we shall show that if Vis a neighborhood of a point y of E*f
then f ~![V] is a neighborhood of f ~!y in D*f. Let U be an open neighborhood of y
such that f~! : U — D*f is an embedding and f ~'[U] is open. The set U n V is
a neighborhood of y in U and hence f™'[U n V] is a neighborhood of f ™'y in
f~'[U] and so certainly in D*f because f ~'[U] is open.

40 B.5. In order that a fibration f be a covering fibration it is necessary and
sufficient that
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(2) ranges of continuous sections over open sets be open and cover E*f and

(b) either f~! be continuous or D*f be topological.

Proof. I. Assume (a) and (b). Let y be any point of E*f; by (a) we can choose
a continuous section s over an open set ¥ such that U = Es is open and contains y.
The mapping s is an embedding; this is evident if f ~! is continuous, and if D*f is
topological then s is an embedding because D*s is topological and s carries open sets
of D*s into open sets of E*s = E*f (by (a)). Since s is an embedding, the mapping
g=51:U->D* =f"1:U - D* is also an embedding and Eg = V is open.
By 40 B.4, fis a covering fibration. — II. Assume that f is a covering fibration. Clearly
(b) is fulfilled. Let s be a continuous section over an open set U. We shall prove that
the set Es (= s[U]), denoted by V¥, is a neighborhood of each of its points. Assuming
y € Vchoose an open neighborhood W of y such that f ~![ W] is open and the mapping
g = f~' : W D*fis an embedding (by 40 B.4). We shall prove that W n Vis open.
It is sufficient to show that g[ W V] is open. Clearly g| W V] = s~ ![W]. The
set s”![W] is open in D*s because s is continuous and W is open; since U = Ds is
open, s~ '[W] is open in D*f. Finally, we must show that ranges of continuous sec-
tions over open sets cover E*f, and this follows from 40 B.4, because if g = f ™' :
: U — D*f is an embedding such that Eg = f~![U] is open, then g~' : Eg — E*f
is an embedding and so a continuous section.

Remark. If £ is a closure space which is not topological and f =) : 2 — t2,
then (a) is fulfilled but (b) is not.

For the proof of the main results we shall need the following characterization of
covering fibrations.

40 B.6. Theorem. In order that a fibration f be a covering fibration it is necessary
and sufficient that there exist a family {s,,} of continuous sections over open sets
such that

(a) {s,} inductively generates the fibre space E*f,

(b) {Es,} covers E*f, and

(c) if s,, and s,, agree at a point x (i.e. s,,x = 5,,%) then both sections agree
on an open neighborhood of x.

Remarks. (1) Condition (c)is equivalent to the following condition:

(¢') The set E{x | s,,x = s,,x} is open for each a, and a,.

(2) As {s,} we can take any family of continuous sections over open sets satisfying (b).

Proof. Evidently (c) and (¢’) are equivalent. I. Assume that f is a covering fibration
and {s,} is any family of continuous sections over open sets satisfying condition (b)
(such a family exists by 40 B.5). Condition (a)is fulfilled since the s, are embeddings and
{Es,} is an open cover of E*f. The set X in (c) is the inverse image of the open set
Es,, n Es,, (by 40 B.5) under a continuous mapping, e.g. s,,, and therefore X is
open. — II. Assuming (a)—(c) we shall prove that f is a covering fibration by showing
that f fulfils the condition in 40 B.4. First notice that f ~! is continuous (because f ' -
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o 5, is an identity mapping and thus certainly a continuous mapping for each a); thus
fis an inversely continuous fibration. Now let y be any point of E*f and let us choose
an s, such that y e Es,. We shall prove that g = f~! : Es, - D*f is an embedding
and Es, is open in E*f. Since f is inversely continuous and s, is a continuous section,
s, is an embedding; since gr s, = gr g%, g is also an embedding. To prove that
Es, is open it is sufficient to show that s, ![Es,] is open in D*s, for each a, and this
immediately follows from condition (c) (we have s; '[Es,] = E{x | s,x = s,x}).

Remark. Let r and s be continuous sections over an open connected set U of
a covering fibration f whose fibre space is separated. Then r = s or Er n Es = 0.
In fact, X = E{x|sx = rx} is open in U by 40B.6, and X is closed in U because
E*f is separated (27 A7). Since U is connected we have X = U or X = 0.

Now we are prepared to prove our main result. Given a sheaf % over a space 2,
we shall construct a covering fibration f over 2 and an isomorphism of & onto the
sheaf of continuous sections of f. We shall prove somewhat more: for any presheaf
over open subsets of a space & we shall construct a covering fibration f over £ and
a morphism ¢ of & into &, which has some important properties, e.g. ¢ is an iso-
morphism provided that & is a sheaf. In 40 A.18 we introduced the concept of a germ
at a point of a presheaf over subsets of a closure space. We shall need germs of a
presheaf over open sets of a closure space. It is to be noted that if the space is not
topological then there is an essential difference between the germs of a presheaf &
over subsets of a closure space and the germs of & restricted to open sets. If the space
is topological then this difference is merely formal.

40 B.7. Definition. Let & be a presheaf over open subsets of a closure space # and
for each x let %, be the collection of all open sets containing x. The inductive limit of
& restricted to %, is called the stalk of & over x, and the elements of the stalk over
x are called the germs of & over x or at x.

Notice that the germs of % over open sets of 2 and the germs of & over open sets
of ©2 coincide.

40 B.8. Let & = {{Sy}, {fur}) be a presheaf over the collection % of all open
subsets of a space 2 and let %, = E{U | x € U e} for each x in 2. We shall con-
struct a covering fibration f and the required morphism of & into & .

(a) Denote by Q, the stalk of & over x. The set
0 = 2{0,|xe?} = Z{lim &, | x €2}
will be the underlying set of the fibre space of f, and the relation
e = X{(x) x Q, | x € P}

will be the graph of f (¢ consists of all {x, {x, ¥>>, x €2, y € Q,)). For each U in %
and s in Sy let § be the single-valued relation which assigns to each x € U the point
{x, y> where y is the value at s of the canonical mapping of S into the inductive
limit Q, (40 A.15). The following assertion is obvious:
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(*) Each s is a section of o, and if s = fyys,, then s is the domain-restriction of
51 to V.

We shall also need the following:

(*¢) If xeU; N U,, 5;,€ Sy, (i = 1,2) and s,x = s,% then there exists a U <
< U; n U, suchthatx e U and fy,ys, = fu,us, = s € Sy; in particular, the domain-
restrictions of s, and s, to U coincide.

Since %, is directed and s,x = s,x we can choose a U in %, following both U,
and U, (i.e. U = Uy n U,) such that fy,ys; = fy,us; (by 40 A.16 (B)).

(b) Let u be the closure inductively generated by the family of all mappings §:
: U — Q (where U is considered as a subspace of ) with U in % and s in Sy, and let
f=0:2-Qu.

We shall prove that f is a covering fibration by verifying conditions (a)—(c) in
40 B.6 for the family {s : U — E*f | Ue#,se Sy} Evidently each member is a con-
tinuous section of f over an open set and the ranges of the members cover E*f. Con-
dition (c) immediately follows from ().

In what follows the symbol s with s in Sy will denote the continuous section
5 : U — E*f.

(c) Let {Sy} denote the sheaf: of continuous sections of f. For each U in % let ¢y
be the mapping of Sy into S; which assigns to each s the continuous section s. It
follows from (*) that the family ¢ = {@y | U e %} is a morphism of & into {Sy}.

We shall prove that ¢ is a monomorphism whenever & fulfils condition (a) of de-
finition 40 A11 of projective presheaves, and ¢ is an epimorphism whenever & is
projective (i.e., a sheaf). It will follow that ¢ is an isomorphism whenever & is
a sheaf.

Take any & which fulfils condition (a) at U € % and two elements s, and s, of S, such
that s; = s,. We shall prove s; = s,. By (#x) we can choose families {U, | x € U} and
{s. | x €U} such that xeU, « U, s, €Sy, and fyy s = fyp s, for each x in U.
Since Y{U, | xe U} = U (i.e,, inf {U,} = U), condition (a) implies that s, = s,.

Suppose that & is a sheaf, U € % and g € Sy;. We must find an s in S such that
s = g. Consider the collection ¥~ of all ¥ = U such that ¥ is restriction of g to V for
some r in Sy. Since ¢ is a monomorphism, as it has already been shown, for each V
in ¥ there exists exactly one r in Sy such that 7 is a restriction of g; let s, stand for
this r. Evidently if V, c Ve¥", V, € %, then V; € ¥ and f,y,sy = sy, and hence
¥ is a right saturated. It remains to show that J¥" = U (i.e. U = inf ¥); indeed,
it will follow from condition (b) in 40 A.11 that there exists an s in S, such that
fuvs = sy for each Vin ¥, and hence s is a restriction of g to U. Consider any point x
of U and choose a Win % and an r in Sy, such that #x = gx. Since 7 and g are con-
tinuous sections of f and f is a covering fibration, by 40 B.6 (c) the two sections agree
on an open neighborhood V of x; clearly we may assume that V < U. If t = fyyr,
then tx = gx for each x in ¥, and hence Ve ¥". The proof is complete.
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40 B.9. Definition. Let & be any presheaf over open sets of a space £, The cover-
ing fibration f constructed in 40 B.8 will be called the covering fibration associated
with & (and will often be denoted by f); the fibre space of f will be called the fibre
space of &, the sheaf of continuous sections of f will be termed the sheaf associated
with & and denoted by &. Finally the morphism ¢ of & into & constructed in
40 B.8 will be called the canonical morphism of & into &.

The main result of 40 B.8 can be restated in terms of 40 B.9 as follows:

40 B.10. Theorem. The canonical morphism of a presheaf & over open sets
of a space P into the associated sheaf & of continuous sections of the covering
fibration associated with & is an isomorphism if and only if & is a sheaf. In parti-
cular, every sheaf over a space P is isomorphic with the sheaf of continuous sections
of a covering fibration over 2.

40 B.11. Examples. Let & = {S,} be a sheaf of holomorphic functions over
the space C of complex numbers. The fibre space associated with & is clearly the
underlying closure space of the Riemann surface of &. E.g., for each open set U
let Sy be the set of all holomorphic functions on U whose derivative is the function
{z - 1/z}. Tt is easily seen that & is a sheaf; this sheaf is called the logarithm. It is
well-known that Sc_, = @ and Sy is infinite for each sphere in C — (0). If G is an
open subset of C, then the restriction & of & to open subsets of G is the restriction
of the logarithm to G. The covering fibration associated with &_(o, is upon
C — (0) and the fibres are infinite.

The foregoing theorem shows that there is a close connection between sheaves and
covering fibrations, and in fact every notion based on sheaves can be described in
terms of covering fibrations and conversely. As an example we shall find the de-
scription of morphisms of sheaves.

40 B.12. Let f, and f, be two fibrations over a space # and let &; = {Su},
i = 1,2, be the sheaf of continuous sections of f,. (a) Let g be a continuous mapping
of E*f, into E*f, such that f{' = f;' o g (or equivalently, f, = g~ ' of,). If s is
a continuous section over U of f, then g o s is a continuous section over U of f, (we
have gr(g of,) = grfs). Put oy = {s > gos}: Sy — Syp. It is easily seen that
¢ = {@y} is a morphism of & into &,. This morphism is called the morphism
associated with g.

(b) Conversely, given a morphism ¢ = {@y} of ¥, into &, we want to define a
continuous mapping g of E*f, into E*f, such that ¢ is the morphism associated with g.
Clearly gy must be the common value at f, f; 'y of all ¢ys such that f;'y e U and
sf{'y = y. On the other hand, a given point y may be the value of no continuous
section over an open set, and if s; and 5, are continuous sections over an open set U
and s;x = s,x for some x in U, then the points ¢ s,x and ¢ys,x need not coincide,
moreover, the sets Epys; and Egys, may be disjoint. It follows that g need not
exist. If f, is a covering fibration then g exists. In fact, for any y in E*f there exists
a continuous section s over an open set with y € Es, and if s, and s, are two continuous



40. PRESHEAVES 765

sections over open sets U, and U, such that y € Es; n Es,, then s, and s, agree on
an open neighborhood U of x = f{ 'y, i.e. restrictions of s, and s, to U coincide,
and hence @y 5;x =.Qysx = @y,s,x where s is the domain-restriction of both s; and
s, to U. Thus the mapping g is well-defined, and clearly f;* = f; ' o g. It is easily
seen that ¢y = {s = g o s} : Sy — S,y. Since E*f, is inductively generated by con-
tinuous sections over open sets (40 B.6) and each composite g o s is continuous, g is
continuous by 33 A.5.

(c) Let g be a continuous mapping of E*f, into E*f, satisfying fi' =f;'0g
and let ¢ be the morphism associated with g.If g is injective then ¢ is a monomorph-
ism. In fact, if ¢ is not a monomorphism then gos, = g o5, for some s;eS;y
s; % s;; since s; =+ s;, we have s;x % s,x for some x in U and hence gs;x =
= (g os1) x = (g o 5,) x = gs,x, which shows that g is not injective. If ¢ is a mono-
morphism and f; are covering fibrations then g is injective. Indeed, assuming that
g is not injective, we can choose distinct y, and y, in E*f such that gy, = gy,, and
continuous sections s, and s, over open sets U, and U, with y; e Es;; since f7* =
= f5 ' o g, the points y, lie over the same point relative to f;, say x, and (g o 5;) x =
= (g o 5;)x. Since f, is a covering fibration, the continuous sections g .s, and
g o S, agree on an open neighborhood U of x. Let s;, i = 1, 2, be the domain-restric-
tions of s; to U; evidently s; = s but g o s; = g o 5.

(d) Under the assumptions of (c) it is evident that g is surjective provided that ¢ is
an epimorphism and the ranges of continuous sections of f, over open sets cover E*f,
(this condition is fulfilled if f, is a covering fibration). If g is surjective then ¢ need
not be an epimorphism even if both f; and f, are covering fibrations. E.g. take
a covering fibration f; over a space £ such that lﬂl = Df (i.e. a covering fibration
upon %) with the property that S, is empty for some U (e.g. see 40 B.11) and let
f, = ) : 2 — P; then there exists a unique g, namely f; !, g is surjective but @ is not an
epimorphism because Egpy = 0 and S,y =+ 0. On the other hand, ‘we shall prove that

If f; are covering fibrations and either ¢ is a monomorphism or {Eqy} is a sheaf
(subsheaf of &,), then g is surjective if ¢ is an epimorphism.

First we shall prove that if s is any continuous section of f, over an open set U,
then for each x in U there exists an open neighborhood U, of x such that that the
restriction s, of s to U, belongs to Egy , ie. s, = gor, for some continuous
section r, for f, over U,. If x € U then gy = sx for some y in E*f;, and we can
choose a continuous section t, of f, over an open set V, such that t.x = y; we
have (g o t,) x = sx, and hence g - t, and s agree on an open neighborhood U, of x.
Let r, be the restriction of z, to U,; evidently g o r, is the restriction of s to U,.
Now if {Egy} is projective then clearly s € Egy. If ¢ is a monomorphism, then the
family {r,} is uniquely determined, and r,, and r,, coincide in U, n U,, for each x,
and x,. It follows that there exists a continuous section r over U such that each r,
is a restriction of r (&, is a sheaf). Clearly ¢yr = s.

(e) Let f,, i =1, 2,3, be fibrations over a space # and &; be corresponding
sheaves of continuous sections. Let g; and g, be continuous mappings, g; of E*f,
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into E*f, and g, of E*f, into E*f,, such that 7' = f;! o g, f2* = f3' 0 g,. Con-
sider the composite g = g, o g;. It is clear that f7* = f7! . g. Let @, and ¢, be the
morphisms associated with g; and g,. It is easily seen that ¢, . ¢, is associated
with g.

40 B.13. Theorem. Let 2 be a space and let & be the class of all covering fibra-
tions over 2. For each morphism ¢ of &, into & ;, with f; in @ there exists a unique
mapping g of E*f, into E*f, such that @ys = g o s for each open set U and each con-
tinuous section s of f, over U; this mapping is called the mapping associated with
@ and denoted by g,. The relation {¢p — g,} is one-to-one and ranges on the class
of all continuous mappings g :E*f; - E*f, with f; in & such that fi' =
=f;'0g.If o = @200, then 9o = Gy, 0 9p,- A morphism ¢ is a monomorphism
or isomorphism if and only if g, is, respectively, injective or bijective. If ¢ is an
epimorphism then g, is surjective, but the converse assertion need not be true.

Proof: 40B.12.

The mappings g, are continuous. Now we shall prove that the fibrations g, Lare
covering fibrations.

40 B.14. Theorem. Let f, and f, be covering fibrations over a space 2. If h is an
inversely continuous fibration such that f, = h o f, (hence h is a fibration over E*f,
and E*f; = E*h), then h is a covering fibration.

Proof. We shall use 40 B.4. Let y be any point of E*h and choose a continuous
sections s of f, over an open set U and an x such that sx = y. The mapping r =
= h~! . sis a continuous section of f, over U. The sets Es and Er are open because
the f; are covering fibrations. It is easily seen that t = h~! : Es — E*f, is an injective
mapping, Et = Er, and r = to (s : U — Es). The mappings r and s : U — Es are
embeddings, and so is certainly ¢. By 40 B.4 k is a covering fibration.

Remark. It is easily seen that if f,, i = 1, 2, are covering fibrations and f, - f;
is defined, then f, o f; is a covering fibration.

A given sheaf & over a space 2 may be isomorphic with the sheaf of continuous
sections of various fibrations over £, e.g. if & is the sheaf of continuous sections of
a fibration which is not a covering fibration. If & is isomorphic with the sheaf of
continuous sections of a fibration f; and if f, is any covering fibration such that &,
is isomorphic with &, then &, and &, are isomorphic, say under ¢, and there exists
a mapping g associated with ¢ (40 B.12 (b)) which is a mapping of E*f, into E*f,.
If f, is a covering fibration then g is a bijective mapping (40 B.12(c), (d)), and further-
more by 40 B.14 g~ ! is a covering fibration, and hence a homeomorphism. Conversely
if g is a homeomorphism then ¢ is an isomorphism. Thus we have proved

40 B.15. Let f;, i = 1,2, be covering fibrations over a space . The sheaves &,
and &, are isomorphic if and only if there exists a homeomorphism g of E*f, onto

E*f, such that f{' = f;' o g (or equivalently, f, = g™ o f,).
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C. PRESHEAVES OF SPACES

40 C.1. Definition. A presheaf of closure spaces over a quasi-ordered set (A, £)
is a pair & = ({P.}, {fu}> such that ({|2,|}, {|fu|}> is a presheaf of sets over
{A, £),which will be called the underlying presheaf of sets and will be denoted by
|.SP I, and such that each mapping f,, is continuous. The set (4, <) is called the base
of & and the mappings f,, are called connecting mappings of &. The projective limit
of &,dznoted by ]351 &, is defined to be the projective limit of ISP | endowed with the
closure projectively generated by the family of all mappings pr, : ll_lll I.Sf'l - 2,
The mappings pr, : E@ & — P, will be termed the canonical mappings or canonical
projections of lim &. The inductive limit of &, denoted by lim &, is the inductive
limit of I.SP | endowed with the closure inductively generated by the family of map-
pings i, : &, — lim |.9’ | where i, is the canonical mapping of |ﬂa| into lim |5’ |; the
mapping i, : #, - lim & will be called the canonical mapping of %, intolim &.

Remark. If the expressions “closure space”, “closure’ and “continuous mapping’”’

tE 1

are replaced by “semi-uniform space”, “semi-uniformity”” and “uniformly continuous
mapping” or by “proximity space”, “proximity” and ‘‘proximally continuous map-
ping” we obtain the definitions of presheaves, and of their inductive and projective
limits, of semi-uniform.spaces and of proximity spaces. It should be noted that also
all the following theorems with their proofs (with the exception of 40 C.20, which deals
with local bases at points) remain true for semi-uniform spaces and proximity spaces,
if the terminology for closure spaces is replaced by the corresponding terminology
for semi-uniform spaces or proximity spaces. The reader is requzsted to modify all
definitions and results which follow for semi-uniform spaces and proximity spaces.

Most of results which follow extend the theorems already proved for presheaves
of sets to presheaves of spaces. The corresponding results for presheaves of sets will
be applied to the underlying presheaves of.sets and the remainder of the proof will
consist of a verification that a certain mapping is continuous. This verification of
continuity always depends on general results on continuity from Sections 32 and 33.

40 C.2. Theorem. If & = ({2}, {fu}) is a presheaf of closure spaces over
(A, £, then the projective limit of & is a subspace of the product space I1{2, [ ae
€ A}, and the inductive limit is the quotient space of the sum space {2, | a e 4}
under the smallest equivalence ¢ containing the relation o = {{{a, x), (b, y)>) |
| facx = focy for some c € A}, i.e.

1_ig35’=2{9,,|aeA}/g.

Proof. By definition the space lim & is projectively generated by the family
{pr, : lim |.9’| - 2P, | a€ A} which is the restriction to lim I.?I of the family
{pr,: H{lg‘,,l | be A} » 2, l a € A}. By definition, the former family projectively
generates the closure of lim &, and the latter family projectively generates the closure
of TI{#,}. Now by 32 A.13 lim & is a subspace of IT{#,}. To prove the second as-
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sertion, denote by {°f} the family of canonical mappings of the spaces 2, into lim&,
by {i,} the family of all canonical mappings of the spaces 2, into the sum £{2, | beA},
and by f the canonical mapping of Z{%?,|be A} onto lim & (thus f(b, x) =
= o[(<b, x))]). Since {*f} = fo[{i.}] and the familes {*f } and {i,} are inductive
generating families for closure spaces, the former by definition and the latter by
33 A3, f is an inductive generating mapping by 33 A6, ie. lim & = (Z{2,})/f =
= {Z.})e.

40 C.3. Example. Let {2, | a € A} be a family of closure spaces. Let < be the
identity relation on A and consider the presheaf & = ({2}, {f.,}> over {4, £,
where f,, is the identity mapping of £, onto 2,. Clearly hm S = 1'[{9 |a € A}
and the mapping {x — (x)} of Z{Z, |aeA} onto hmy is a homeomorphism

(compare with the corresponding results 40 A.4 and 40 A 16 for presheaves of sets).

40 C.4. Definition. Suppose that & = {{2,}, {f}> is a presheaf over {4, <).
A projective (inductive) family of continuous mappings {g, | ae A} is said to be
compatible for & if {|g,,| | a € A} is compatible for the underlying presheaf l.?[
(see 40 A.5, 40 A.20).

40 C.5. Theorem. Let & = {{2,}, {fu}> be a presheaf of spaces over (A, <).
(a) The family {f,} of all projections of lim & is compatible for &, and if {g,} is
any projective family of continuous mappings compatible for & then there exists

exactly one mapping g such that g, = f,0 g for each a; this can be written as
follows

(*) {9.} = [{fa}] - 95

the mapping g is continuous, and if {ga} is a projective generating family, then g
is a projective generating mapping.

(b) The family {°f} of canonical mappings into lim & is an inductive family
compatible for &, and if {g,} is any inductive family of continuous mappings
compatible for & then there exists exactly one mapping g of im & (into the com-
mon range carrier of all g,) such that g, = g o °f for each a in A; this can be
written as

(»*) {9} = 9-[{f}];
the mapping g is continuous, and if {g,,} is an inductive generating family, then g is
an inductive generating mapping.

Proof. (a) Thefamily{f,}is a projective generating family for closure spaces and
hence each f, is a continuous mapping and the family {| f,,|} is compatible for ],9’|
by 40 A.6. Thus {f,} is compatible for &. Now let {g,} be a projective family of
continuous mappings compatible for &, and consider the family {|g,|} which is
compatible for |,5’ | By 40 A.7 there exists exactly one mapping h such that {Igal} =
= [{|fu}] ¢ b. Put g = (gr h, D*g,, lim &>. We have {g,} = [{f.}]- g and clearly
g is the only mapping satisfying this condition. Since {f,} is a projective generating
family and each g, is continuous, g is necessarily continuous (by 32 A.8).
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(b) As in the proof of (a), by virtue of 40 A.22, there exists exactly one mapping h
such that {lga|} =ho [{I“fl}] Put g = (gr h, lim &, E*g,>. Clearly g is the only
mapping satisfying {g,} = g o [{*f}]. Finally, g is continuous by virtue of 33 A.5 be-
cause {%} is an inductive generating family for closure spaces and {g,} is a family of
continuous mappings.

40 C.6. Corollaries. (a) If {h,}'is a projective family of continuous mappings
compatible for & such that every projective family of continuous mappings com-
patible for & admits a unique factorization () with f, replaced by h, and with g
continuous then there exists exactly one homeomorphism k such that h, = f,o k
for each a.

(b) If {h,} is an inductive family of continuous mappings compatible for & such
that any other such family {g,} admits a unique factorization (xx) with °f re-
placed by h, and with g continuous, then there exists exactly one homeomorphism
k such that h, = k . °f for each a.

40 C.7. Definition. Let & = ({2}, {f,,}> be a presheaf of closure spaces over
<4, =)

(a) If « is a lower bound of a set B in {4, <) then {f,, l.b € B} is a projective
family of continuous mappings compatible for the restricted presheaf &5, and hence,
by virtue of 40 C.5, there exists exactly one mapping g of £, into l(l_g &g such that
each f,; is the composite of g followed by the canonical mapping of lim & into 2,
and the mapping g is continuous. This mapping will be called the canonical mapping
of P, into 11_12 Fp.

(b) The presheaf & will be called projective at o€ A if the following condition
is fulfilled:

If & = inf B and B is right saturated, then the canonical mapping g of £, into
lim #p is a homeomorphism.
(c) The presheaf & will be called projective if & is projective at each index o € 4.

(a') If « is an upper bound of a subset B of 4, then {f,, | b € B} is an inductive
family of continuous mappings compatible for the restricted presheaf &z and hence,
by virtue of 40 C.5, there exists exactly one mapping g of lim & into P, such that
each mapping f,, is the composition of the canonical mapping of P, into lim & fol-
lowed by g; this mapping g, which is continuous by 40 C.5, will be called the
canonical mapping of lim & into 2,.

(b") The presheaf & will be called inductive at o € A, if the following condition
is fulfilled:

If « = sup Band B is left saturated, then the canonical mapping g of lim &5 into
2, is a homeomorphism.

(¢') The presheaf & will be called inductive if & is inductive at each index a e A
with the exception of the least elements of A.

49—Topological Spaces
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40 C.8. Theorem. Let & = ({2}, {fs}> be a presheaf over (A, £>.If a is a
lower (upper) bound of B = A,then a mapping g of 2, (lim &) into lim &5 (2,)
is a canonical mapping if and only 1f|g| is the canonical mapping oflg’ | (lim ]le)
into lim |.5/’|B (IW |) If & is projective (inductive) at an index o € A, then the under-
lymg presheaf of sets I.V| is projective (inductive) at o, in particular, if & is pro-
jective or inductive, then so is I.?I

A natural question arises: if each C, is endowed with a closure operation, under
what conditions will {Cy} be a projective sheaf of closure spaces; in particular, for
which usual closures for spaces of mappings will the presheaf of spaces {CU} of con-
tinuous mappings be projective. We restrict ourselves to two examples.

40 C.9. Suppose that P is a set and 2 is a closure space. We shall prove that
{.@x | X eexp P} with restrictions as connecting mappings is a projective presheaf
over {exp P, o). Let Yeexp P and & c exp P be such that Y= % (i.e. Y =
= inf &) and & is hereditary (ie. right-saturatcd) and consider the canonical map-
ping g of 2" into lim {2¥ | X e &}.

It has already been shown that the underlying presheaf of sets {l.@xl |X eX } is
projective (see 40 A.10). It follows that the canonical mapping g is bijective. As
always, g is continuous (40 C.5). Thus to show that g is a homeomorphism it is enough
to prove that if a net N in lim {2¥ | X e X} converges to ¢, then g~! o N converges
to g~ lo. However, this is almost self-evident. Indeed, if N converges to g in
lim { 9% | X € &}, then pry o N converges to pryg in 9% for each X € &, in particular,
for each X = (x), xe Y. Now, pr,o N =pr,og~ '« N and pr,g ‘e = prie. It
follows that pr(g~" - N) converges to pr,(g ™ '¢) for each x € Y. Since 2" is endowed
with the product closure, g~! o N necessarily converges to g~ 'g (because all pro-
jections onto coordinate spaces converge to corresponding coordinates of g"g).

40 C.10. Now let 2 and 2 be closure spaces, and let {|Cy| | U € %} be the sheaf
(of sets) of continuous mappings of P into 2 (see 40 A12). Finally, let C be the set
ICU| endowed with the closure of pointwise convergence. Clearly {Cy | Ue}is
a presheaf of closure spaces on ?. We shall prove that {CU} is projective. Let ¥~
be a right-saturated collection of open sets whose infimum is W (thatis, V; = Ve ¥,
V, open implies V; € ¥, and W = (J¥"), and let g be the canonical mapping of Cy
into lim {C, | Ve ¥} Since |g| is the canonical mapping of |CW| into lim {lel | Ve
eV} = |lim {Cy | Ve ¥’} and {|Cy|} is projective, the mapping |g| is S bijective and
consequently g is also bijective. As always, g is continuous (by 40 C. 5) Therefore
it remains to prove that g~! is continuous, and for this it is enough to show that
if a net N = {N,} converges to a point ¢ in lim {Cy | Ve ¥} then the net g~'o N
converges to the point g ~'g. Suppose that N converges to g. It follows that for each V
in ¥, the net pr,, « N converges to the mapping pry ¢ in Cy; but C, is endowed with
the closure of pointwise convergence, and consequently, for each x in V, the net
{(pry N,) x} converges to (pry ¢) x in 2 (of course (pry, N,) x is the value of the map-
ping pry N, of Vinto 2 at the point x). Since Cy, is endowed with the closure of point-
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wise convergence, to prove that the net g~! o N converges to g~ 'g, it is enough to
show that, for each x in W, the net {(g”'N,) x} converges to the point (g~ '¢) x
in 2 (of course, (g ~'N,) x is the value of the mapping g ~'N, of Winto 2 at the point x
and (g~'g) x is the value of the mapping g~ !¢ of Winto 2 at the point x). Let x
be any point of W. We can choose a Vin ¥~ containing x. For each ¢ € C we have
pry (9(¢)) = ¢|V, and hence (¢9~'N,)|V=rpry N, and (g7'¢) |V =prye; in
particular
(97'NJ)x = (pry No)x, (97"'¢)x = (pry o) x.

However, as we noticed above, the net {(pryN,) x} converges to (pry ¢) x in 2.

40 C.11. Definition. Suppose that & and &’ are two presheaves over the same
quasi-ordered set {4, <> and & = {2}, {fu}), &' = {P}, {fis})- A morphism
of & into &’ is a family ¢ = {¢,} such that each ¢, is a continuous mapping of 2,
into 2, and || = {|o,|} is 2 morphism of |#] into [#’|. A morphism ¢ is an iso-
morphism if || is an isomorphism and {¢; '} is a morphism (i.e. all ¢, are homeo-
morphisms). The composite ¢ . Y of two morphisms {,} and {¢,} is the morphism
{(pa ° I,l’a}'

It may be noted that we do not define the notions of an epimorphism or a mono-
morphism. The results 40 A.28 — 40 A.30 concerning presheaves of sets are transferred
to presheaves of spaces as follows:

40 C.12. Theorem. With the notation of 40 C.11 let ¢ = {¢,} be a morphism
of & into &'.

(a) There exlsts exactly one mapping ¢ of lim & into lim & such that (pr, =

:lim &' > P)op = Pao o(pr,:lim & —» 2,) for each a. The 1 mappzng @ is conti-
nuous. The mapping (p is injective whenever all ¢, are injective, and (p is a homeo-
morphism whenever ¢ is an isomorphism.

(b) There exists exactly one mapping ¢ of lim & into lim &’ such that 0o =
= ' o @, for each a, where °f and "f denote the canamcal mappings into lim & and
lim &’ respectively. The mapping q) is continuous; (p is surjective provlded that all
@, are surjective, and ¢ @ is a homeomorphism provided that ¢ is an isomorphism.

Proof. Consider the underlying presheaves |.§f| and |.9’| and the underlying
morphism |¢| = {|oa} of |&| into |&|. Obviously, if {f,} are the families of pro-
jections of lim & and lim &, then {|£.]} and {|f;|} are the families of projections of
lim I.? | and lir hm |5" | respectlvely, and similarly for canonical mappings into inductive
limits. By 40 A.28 there exists exactly one mapping |<p] of lim |.5’| into hm |.? | and
exactly one mapping |(p| of lim |V| into lim I.Sf | makmg the followmg diagram
commutative:

|74 [

Wl e @

|l f

49*
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Consequently, there exists exactly one mapping (p of lim & into 11m &’ and exactly
one mapping go of lim & into lim &’ making the dlagram

fa L

]

fa Ei

S

14
—_—

commutative. Of course, Iq)] ](pl and |(p| |q;[ According to Theorem 40 A28
it is sufficient to prove that both ¢ and g are continuous. The continuity of ¢ follows
according to 32 A.8 from the facts that {f,} is a projective generating family and
fuo 'q; (= @, 0f,) is continuous for each a. Similarly, the continuity of ZE follows by
33 A5 from the facts that {°f} is an inductive generating family and ¢ o °f (= %" o ¢,)
is continuous for each a.

40 C.13. Theorem. Suppose that & = {{P,}, {fus}) is a presheaf of spaces over
{4, £) and &3 = {{2.},{g.a}) is a presheaf of spaces over {C, <).

(a) Let « be an order-preserving mapping of (C,<)> into {A, £> and
{h. | c € C} be a family of continuous mappings, with each h. a mapping of 2.,
into 2,, such that the diagram

—_—

h; W Ged T hd

_—

fa(c)a(d)

is commutative for each ¢ < d. There exists exactly one mapping h of !l_r_n & into
lim &, such that the diagram
h] pr. ]hc

_—

pra(c)

is commutative for each c in C, where pr, and pr,., denote the canonical projections
of lim &, into 2, and lim & into P,,, respectively. This mapping is continuous.

(b) Let B be an order-preserving mapping of (A, <) into {C, <) and {h,} be
a family, with each h, a continuous mapping of 2, into 2y, such that the digram

h,,] 9p(ap(0) Ih"

fab
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is commutative for each a < b. Then there exists exactly one mapping h of lim &

into lim & such that the diagram

B(a)
h,,I g I h
s
is commutative for each a € A, where °f and #®g denote the canonical mappings
of 2, into lim & and 2y, into lim &, respectively.
Proof. Consider the underlying presheaves | %| and || and apply 40 A.29 to the

families {|h| | c € C} and {|h,| | a € A}. The continuity is proved as in the preceding
theorem; the details are left to the reader.

Corollaries. Let & be a presheaf of spaces over (A, <) and let B = A. (a) There
exists exactly one mapping h of lim & into lim &y such that, for each b € B, the
composite h with the canonical projection of lim &% into 2, is the canonical pro-
Jection ofli@ & into P,. This mapping is continuous. (b) There exists exactly one
mapping k of im &y into im & such that, for each b € B, the composite of the
canonical mappings of 2, into lim &g followed by k is the canonical mapping of
P, into lim &. This mapping is continuous.

Proof Puta=g={b—>b | b e B} and apply the theorem (in case (a) & = &
and &, = &5, and in the case (b) & = Fpand &, = &).

40 C.14. Remark to Corollaries of 40 C.13.

(a) The mapping h is an embedding provided that B is left cofinal in 4 and h is
a homeomorphism whenever B is left cofinal and A is left-directed.

(b) If B is right cofinal in A, then the mapping k is a homeomorphism.

Proof. According to 40 A.30 applied to |.SP ], if B is left cofinal then h is injective
(because |h| is injective) and if in addition A is left directed, then h is bijective (be-
cause lh| is bijective); if B is right cofinal, then k is bijective (because lkl is bijective).
Hence it remains to show that h is a projective generating mapping if B is left co-
final, and k is an inductive generating mapping if B is right cofinal. Now f; o h =
= fy» k o°f" = *f (b e B), where f, and f; denote the projections of lim & and lim &,
into 2, respectively, and °f and ®f’ denote the canonical mappings of £, into lim & and
lim &5 respectively; by virtue of 32 A9 and 33 A.6 it is sufficient to show that
{fy| be B} and {f,|be B} are projective generating families and {’f | be B} and
{r | b e B} are inductive generating families. By definition of projective and in-
ductive limits, the family {f; | b € B} is a projective generating family and {*f’ | b€ B}
is an inductive generating family. In general {f, | be B} need not be a projective
generating family, but if B is left cofinal then {f,} is indeed a projective generating
family. In fact, {f, | a € A} is a projective generating family and both of the families
{f.| ae A} and {f, | b € B} projectively generate the same closure, because B = A
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and if a € A then f, = f,; o f, for some b < a with f,, continuous. Similarly we can
prove that {’f | b € B} in an inductive generating family.

Now we proceed to an investigation of properties invariant under projective and
inductive limits.

40 C.15. Theorem. If a class K of spaces is hereditary and closed under products,
then K is closed under the formation of projective limits, that is, the projective limit
of a presheaf of spaces from K belongs to K.If a class K of spaces is closed under
sums and under the formation of quotient spaces, then K is closed under the form-
ation of inductive limits, that is, the inductive limit of a presheaf of spaces from
K belongs to K.

Proof. By 40 C.2 the projective limit of a presheaf of spaces {2,} is a subspace of
the product space IT{#,} and the inductive limit of {#,} is a quotient of the sum space
={2.).

Corollary. The classes of all topological spaces, semi-separated spaces, separated
spaces, regular spaces and uniformizable spaces are closed under the formation
of projective limits. The classes of all discrete spaces, quasi-discrete spaces, locally
connected spaces and spaces admitting a determining sequential relation are closed
under the formation of inductive limits.

Up to now we have considered no class of spaces invariant under products and
formation of closed subspaces but not of arbitrary subspaces. Nevertheless there are
important classes with these properties, e.g. the class of all compact spaces. There-
fore, for the sake of completeness, we shall prove the following proposition which
gives a sufficient condition for a projective limit of a presheaf of spaces to be closed
in the corresponding product space.

40 C.16. If & = {{P,}, {fu}> is a presheaf of separated spaces over (A, <),
then the projective limit of & is a closed subspace of the product space 1'[{9’,,| aeA}.

Proof. The projective limit of & is the subspace of II{Z, | a € A} consisting of
all points x such that (f,, o 7,) x = m,x for each a < b ({r,} is the family of all pro-
jections of the product). Since all mappings under question are continuous and all
spaces &, are separated, lim & is closed by 27 A.7.

Corollary. Assume that a class K of separated spaces is closed under formation
of products and each closed subspace of each space from K belongs to K. Then the
projective limit of every presheaf of spaces from K belongs to K.

The inductive limit of a presheaf of topological spaces need not be a topological
space. For example, let A be a monotone ordered subset of some C(P) such that each
closure of A is topological but the least upper bound of A is not topological. Consider
the presheaf & = ({{P, a)}, {f.s}> over A where each f,, is the identity mapping
of {P,a) onto (P, b). By 40 C.5 lim & is homeomorphic with <P, sup 4}, and
consequently lim & is not a topological inductive limit of a presheaf of topological
spaces. It is to be noted that, similarly, the inductive limit of a presheaf of uniform
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spaces need not be a uniform space, and also the inductive limit of a presheaf of uni-
formizable proximity spaces need not be a uniformizable proximity space. Therefore
one can introduce, in a natural way, the notion of an inductive limit in the uniform
sense and also the corresponding notion for presheaves of uniformizable proximities.

40 C.17. Topological inductive limit. The topological inductive limit of
a presheaf & of a topological closure spaces is defined to be the topological modific-
ation of lim &. It follows that the underlying set of the topological inductive limit is
|11m & l = hm I.SF [ and the closure of the topological inductive limit is topologically
inductively generated by the family of all canonical mappings defined in the obvious
manner. The reader is asked to verify that all preceding results for inductive limit
remain valid for topological inductive limits of presheaves of topological spaces.
In what follows we restrict ourselves to inductive limits.

The concluding part is devoted to an examination of the consequences of an im-
portant additional assumption upon the base of a presheaf, namely of left directed-
ness or right directedness. Twice these assumptions have already been employed as
sufficient conditions: in 40 A.16 it has been shown that {(a, x) — (b, y) l JacX = focy
for some c} is an equivalence whenever the base is right-directed, and in 40 C.14 it
has been shown that the canonical mapping of the projective limit of a presheaf of
spaces over a left-directed set into the projective limit of a restricted presheaf over
a left cofinal subset is a homeomorphism. For convenience we shall introduce some
terminology.

40 C.18. Convention. A left-directed (right-directed) presheaf of sets or spaces
is a presheaf of sets or spaces over a left-directed (right-directed) set.
For presheaves of sets we shall prove the following result:

40 C.19. Let & = {{P,}, {fs}> be a presheaf of sets over (A, £).If & is left-
directed and F is a finite subset of l‘i_n_l &, then there exists an o in A such that the
restriction of the projection f, ofl‘i_@ & into P, to F is injective. If & is right-directed
and F is a finite subset of lim &, then there exists an o in A and a finite subset F,
of P, such that the restriction of the canonical mapping °f of P, into lim & to F, is
injective and maps F, onto F.

Proof. I. Suppose that F is a finite subset of hm &. For any two distinct points x
and y of F we can choose an a = a(x, y) in A'so that fax F fay. If (4, £ is left-
directed (in particular, non-void), we can choose an o in A preceding all a(x, y).
Clearly o possesses the required property. — II. Now let F be a finite subset of lim &.
For each x in F we can choose an a = a, in A so that *fy. = x for some y, in P,.
If (A, <) is right-directed then there exists an « in A following each a,, x € F.
Let F; be the set of all f, ,y,, x € F. Obviously F; and « possess the required pro-
perties.

If x is a point of the projective limit of a presheaf of closure spaces {2,} over
{4, £) and if {f,} is the family of projections, then, by virtue of 32 A.6, the col-
lection % of all sets of the form f,; '[U], U a neighborhood of f,x in 2, and a€ 4, is
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a local sub-base at x in ]1m &. Indeed, hm & is, by definition, projectively gener-
ated by the family {f,}. On the other hand, % need not be a local base at x; e.g.
consider a product of non-accrete spaces. Sometimes it may be useful to know that
% is a local base provided that (A4, <) is left-directed, as stated in the following
proposition.

40 C.20. Let & = {{P.}, {fas}) be a left-directed presheaf of closure spaces over
(A, £) and let {f,} be the family of all canonical projections. Then, for each x in
lim &, the collection U of all sets of the form f; '[U], where U varies over all neigh-
borhoods of f,x and a varies over all ae A, is a local base at x. If all spaces P, are
topological then (llm & is topological and) the collection of all sets of the form
f7Y[U], U open in 9",, a€ A, is an open base for lim &.

Proof. As we noted above, %, is a local sub-base at x. To prove that % is a local
base at x it remains to show that %_ is a filter base, that is, the intersection of any two
sets V; and V, from %, contains a Ve #,. Let V; = f; Y[U/], i = 1,2, where U, is
a neighborhood of f, x in Z,,. Since (4, £ is left-directed, we can choose an a
in A preceding both a; and a,. The mappings f,,, being continuous, the set U =
= (f2[U.] n f2l[U,]) is a neighborhood of f,x in #,. Put V = f;![U]. From
Sa, = faa,o fo We obtain V = V; n V,. The second statement is in an immediate con-
sequence of the first.

The assumption of right directedness does not have topological consequences for
neither the projective nor for the inductive limit.

- Remark. It has already been shown that the product of a family {#, | ae A} of
sets or spaces is the projective limit of the presheaf ({2,}, {f,;}> over the set A ordered
by the identity relation ), with identities as connecting mappings. Similarly, the sum
is evidently “almost” the inductive limit of this presheaf. On the other hand, if
P, = P for each a, then, in general, there exists no left directed presheaf {2.} such
that 2, = & for each ¢ and II{#,} = lim {2,}. For example, if the cardinal of ||
is finite, say n, then the cardinal of lim {.@ } is at most n by 40 C.19. On the other
hand, the cardinal of 1'[{9 }is infinite if the index set is infinite and 2 has at least
two elements. The same is true for the inductive limit,

40 C.21. It is easily seen that the product is the projective limit of finite partial
products and the sum is ““almost™ the inductive limit of finite partial sums. Indeed, let
{#,| a € A} be a family of spaces, and consider the presheaf & = ({2}, {f.4}> over
{C, o) where C is the collection of all non-void finite subsets of 4, 2, = 1'[{9’ I ae C}
and f_, is the canonical mapping of 2, onto 4, i.e. f.;x is the restriction of x to d
for each x. It is easily seen that II{?,} = lim &. For the sum the construction is
analogous. Clearly & = <{2.}, {f.u}> is a presheaf over {(C, <>, where C is again
the collection of all finite subsets of 4, 2, = Z{2, | a € C} and f, is the identity map-
ping of 2. into 2,. Evidently there exists a one-to-one mapping h of lim & onto
{2, | a € A} such that the element of lim & containing <a, {a, x>) € |Q,,| is carried
into <a, x) for each ae A and x e 2,.
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40 C.22. Theorem. Let K be a class of closure spaces. The following three condi-
tions on a closure space P are equivalent:

(a) 2 is homeomorphic with the projective limit of a left-directed presheaf of
subspaces of finite products of spaces from K;

(b) @ admits an embedding into the product of a family of spaces from K;

(c) The class & of all continuous mappings of & into finite products of spaces
from K distinguishes points and for each subset X of # and each xe P — X

there exists a ¢ in & such that ¢x ¢ ¢(X).
Proof. We shall prove (a) => (b) = (c) = (a). I. The implications (a) = (b) fol-
lows from the facts that the projective limit is a subspace of the corresponding product,

and the product of products of spaces from a given class of spaces is homeomorphic
with the product of a family of spaces from the same class.

II. Now suppose (b). Let & be an embedding of £ into a product 2 = I1{2, |a e
e A} where 2,eK for each a. If 7y denotes the projection of 2 onto 25 =
= I1{2, | a € B}, then clearly the mappings n(, o P, a € 4, distinguish the points
of # and belong to &, and, if x ¢ X, then we can take ng o & as ¢ where B is a suit-
able finite subset of A.

IIL It remains to show that (c) implies (a). Suppose (c) and choose a subset &,
of & so that condition (c) remains true if & is replaced by %, and consider the set 4
of all finite subsets of # ;. The set 4 is left-directed by the inverse inclusion = (because
P e A and hence 4 + @). By our assumption, the range carrier of each ¢ € #, is
a product

E*¢ = II{2,|ceC,}
where 2. € K and C, is a finite set. For each a € 4 put
2,=1{2,|ceC, pea}

and, if a > b, let f,, be the canonical projection of 2, onto #,. Clearly & =
= {{2.}, {fa} is a presheaf over {4, o). For each a in A let ¢, be the mapping
of 2 into 2, which assigns to each point x of £ the point {pr, ¢x | c€ C,, ¢ € a}
of #,. Clearly {q)a} is a projective family of mappings compatible for <. Now we
are prepared to define the required presheaf. For each a let K, be the subspace
(p,,[l.@l] of #,, and for each a o b, let f,, be the restriction of f,, to a mapping of .,
into 2 (this restriction exists, since {¢,} is compatible for &). It is obvious that
&' = ({2}, {fip}) is a presheaf over (4, o). We shall prove that lim &’ is homeo-
morphic to 2. Denote by ¢,, a € A the restriction of ¢, to a ma;;Ting of # into
(in fact, onto) ;. Since {¢p,} is compatible for &, {p.} is compatible for &'. By
40 C.5 there exists a continuous mapping f of £ into lim &' such that f, . f = ¢,
for each a in A, where f,, as usual, is the canonical projection of lim &’ into #;. Since
all mappings ¢, are surjective, f is also such. If x and y are two distinct points of 2
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then, by our assumption, there exists a ¢ in & ; such that ¢x =+ @y and hence @,x + @,y
for a = (q)) As a consequence fx =+ fy, which shows that f is injective. It remains
to prove that f~!is continuous. It is enough to show that x e(l.@l — X) implies

Sfx ¢ f[X]. Suppose x € |9’| — X. By our assumption we can choose a ¢ in &, so
that x ¢ o[ X] (in E*¢), and hence x ¢ ¢,[ X | for a = (¢). Since the projection f is
continuous and f . f, = ¢, necessarily fx ¢ f[X|; this concludes the proof.
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