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CHAPTER VII 

GENERATION OF UNIFORM 

AND PROXIMITY SPACES 

(Sections 36-40) 

The development of projective and inductive generation for semi-uniform spaces 
parallels that for closure spaces; for this reason, many details are left to the reader. 
While the projective and inductive generation for closure spaces were developed 
separately in two different sections, projective and inductive generation for semi-
uniform spaces as well as for proximity spaces will be given a parallel development, 
so that a certain duality between the projective generation and the inductive genera-
tion, which is not formulated precisely, will be pointed out. The last section concerns 
projective and inductive limits of presheaves of sets, closure spaces, semi-uniform 
spaces and proximity spaces. The results obtained are not applied to topologized 
algebraic structs. 

Particular attention is given to the interrelations between generations for closure 
spaces, semi-uniform spaces and proximity spaces. If / is a uniformly continuous 
mapping, then the transpose of / to a mapping for closure space, denoted by Ycu / , 
is continuous. It turns out that if {/„} is a projective generating family for semi-uni-
form spaces, then {ycu fa] is a projective generating family for closure spaces. On the 
other hand, if {/a} is an inductive generating family for semi-uniform spaces, then 
the transposed family {}>cu/a} n e e d not be an inductive generating family for closure 
spaces, and moreover (cf. 37 A.8) every semi-uniform space is a uniform quotient of 
a discrete uniform space while each quotient of a discrete space is a discrete space. 
We have known that the transpose of a uniformly continuous mapping/to a mapping 
for proximity spaces, denoted by yPU/, is proximally continuous. It turns out that 
if {/„} is an inductive generating family for semi-uniform spaces then the family 
{YPU/O} IS a n inductive generating family for proximity spaces; on the other hand, 
if {/a} is a projective genet ating family for semi-uniform spaces then the transposed 
family {yPU/a} need not be a projective generating family for proximity spaces 
(e.g. if {<%„} is a family of semi-uniformities for a set P, each inducing a proximity p, 
then {J : <P, inf {^a}> -> <P, is a projective generating family for semi-uniform 
spaces but inf {<%„} need not induce p, and therefore the induced family need not be 
a projective generating family for proximity spaces). 
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3 6 . O R D E R E D S E T S O F S E M I - U N I F O R M I T I E S 

The present section is devoted to an investigation of the class U of all semi-
uniformities ordered by the relation \li -* "V 11l is uniformly finer than y } . The 
section follows the same pattern as 31 A, B and similarly it is preparatory in char-
acter. The results obtained will be applied to projective and inductive generation for 
semi-uniform spaces (37). 

It may be appropriate to recall that semi-uniformities were first studied in 23, 
followed by the study of uniformities in 24, proximally coarse semi-uniformities in 25 
and the introduction of some extreme semi-uniformities (the Cech uniformity of 
a space and the fine uniformity of a space in 28, the Wallman proximity of a space in 
29); besides in a few places some other special semi-uniformities were considered. 

For convenience we shall review earlier material and often try to make the older 
notation, terminology and results more clear and more precise. 

In subsection A we shall prove that U is boundedly order-complete, and the canon-
ical mapping of U into C (which assigns to each 1l the closure operation induced by 
11) is completely lattice-preserving. The proof is based on a description of suprema 
and infima in U. In this connection the definition of fine semi-uniformities and coarse 
semi-uniformities are introduced. 

Subsection B concerns the ordered class u U of all uniformities. We shall prove that 
uU is completely meet-stable in U (but not completely join-stable), and the canonical 
mapping of i)U into uC is completely meet-preserving (but not join-preserving). We 
shall introduce the definition of a coarse uniformity (a fine uniformity was defined in 
28) although we are not able to prove anything about it here. Coarse uniformities will 
be studied in 41 D. 

A. ORDERED CLASS U 

By definition 23 A.3, a semi-uniformity for a set P is a filter 1l on P x P each ele-
ment of which contains the diagonal and if U e 11 then also l / _ 1 g 11. By definition 
23 C.1, a mapping / of a semi-uniform space <P, 11s) into another one <Q, iO is 
uniformly continuous if ( / x f)~l [F] e 11 for each F in If is a sub-base 
for tT (i.e. a sub-base for the filter tT), then (/ x / ) " ' [F] e 11 for each V in yo 
implies that ( / x / ) " 1 [F] e H for each Fin tT, and hence / is uniformly continuous 
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(23 C.2); this very important criterion of uniform continuity will be used without 
any reference. A semi-uniformity 1l is uniformly finer than a semi-uniformity Y, 
and "V is uniformly coarser than 11, if both 1i and "V are for the same set, say P, and 
the mapping J : <P, 11} ->• < P , - f } is uniformly continuous, i.e. if c 11. The re-
lation \ll -» V | "V is uniformly coarser than 1l\ is an order for the class U of all 
semi-uniformities. We shall use the "upward" terminology, e.g. we shall speak about 
lower bounds. If P is a set then the symbol U(P) denotes the ordered subset of U 
consisting of all semi-uniformities for P (23 C.11). The letter U also denotes the class 
of all semi-uniform spaces ordered by the relation [ 0 3. | the uniform structure 
of 0 is uniformly finer than that of 2} (23 C.11). 

36 A.l. Theorem. Let P be a set. The ordered set U(P) of all semi-uniformities 
for P is order-complete; the filter (P x P) (consisting of exactly one element, P x P) 
is the uniformly coarsest semi-uniformity for P (i.e., the greatest element of U(P)J, 
and (JP) is a base for the uniformly finest semi-uniformity for P (i.e., the least 
element of U(P)J. If \lla \ a e A) is a non-void family in U(P), then 

(*) sup {1la\aeA} = f\{lla \ a e A} 
and 

(**) \J{H„ | a e A} is a sub-base for inf \lia \ a e A}. 
Proof. I. Obviously (P x P) is a semi-uniformity for P which is contained in each 

semi-uniformity for P, and hence it is the uniformly coarsest semi-uniformity for P (note 
that (P x P) is a filter on P x P contained in each filter in P x P). Next, (JP) is 
a base for a semi-uniformity for P which contains each filter in P x P whose inter-
section contains )P and hence (JP) is a base for the uniformly finest uniformity for P. 

II. According to I, to prove that U(P) is order-complete it is sufficient to show, 
for instance, that each non-void family {1ta} in U(P) possesses a least upper bound. 
We shall prove that 1l = C]{^a} is the least upper bound of a non-void family 
\1la | a e A). First we must show that °ll is a semi-uniformity. Since each 11 a is a filter, 
necessarily 1l is a filter, and f]%a => JP for each a implies that (\1l => JP. Finally, 
if U e H, then U e 1la for each a in A, and hence, 11 a being semi-uniformities, 
U~1 e 1la for each a; it follows that L7-1 e 1l. Thus 11 is indeed a semi-uniformity. 
Since 1i c 1la for each a, 1l is uniformly coarser than each 1la, i.e. 1l is an upper bound 
of {l/a}. If Y is any upper bound of {lfa}, then Y <= 1la for each a in A and hence 
•V c (){<%„} = 11, which shows that -f is uniformly coarser than 11. Thus H is the 
least upper bound, which concludes the proof of order-completeness of U(P) and of 
formula (*). 

III. It remains to verify (**). By the corollary to 23 A.4, the union 110 of the 
family \flt„} is a sub-base of a semi-uniformity 11. Since Ha c 110 <= 11 for each a 
in A, H is a lower bound of {lfa}. If is any lower bound of {1fa}, then "V contains 
each 1la, and hence, also the union 1la of 11. Therefore, since 110 is a sub-base of 
11, 11 is uniformly coarser than V ; this shows that aU is the greatest lower bound 
of {*.}. 
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Remark. Sometimes it is convenient to know that the collection n{^a}> where 
11 a are semi-uniformities for a set P, consists of all sets of the form U{^a}> where 
UaeHa for each a. This is an immediate consequence of the fact that U e 1ia, 
U CZ V <= P x P imply Ve 11a. 

Recall that each semi-uniformity 11 for a set P induces a closure operation u such 
that \ll\ [x] is the neighborhood system at x in <P, m> for each x in P (23 A.3); 
we have 

uX = n w [x] (= n{I / [* ] \Ue1i}) 

for each X c P (by 23 B.5). By 23 B.3 a closure operation u is semi-uniformizable 
(i.e. it is induced by a semi-uniformity) if and only if x e u(y) implies y e u(x). 

36 A.2. Definition. The symbol y c u , abbreviated to y, denotes the single-valued 
relation which assigns to each semi-uniformity 11 the closure induced by 11. The 
mapping y : U -»• C is called the canonical mapping of U into C, and if P is a set 
then the mapping y : U(P) -> C(P) is called the canonical mapping of U(P) into 
C(P). If u is a closure operation for a set P, then U(P, u) denotes the set of all semi-
uniformities which induce u, i.e. U(P, u) = Y - 1 [(«)]• Thus u is semi-uniformizable if 
and only if U(P, u) + 0. The symbol y^u also denotes the relation {^P, 1ty • 
- <P, y 11S) | HE U}. 

By 23 C.7, if / : * 2. is a uniformly continuous mapping then / : y * -* y2. is 
a continuous mapping; in particular, if 11 is uniformly finer than then yK is finer 
than y f . It follows that the mapping y : U C is order-preserving. Now we shall 
prove essentially more. 

36 A.3. Theorem. The canonical mapping of U into C is completely lattice-
preserving. In particular, if P is a set, then the canonical mapping of U(P) into 
C(P) is completely lattice-preserving; moreover 

(*) y inf {Ha} = inf{y<} 
(**) y sup {%} = sup {y<%„} 

for each family {lia} in U(P) (not necessarily non-void). 
Proof. Clearly it is sufficient to prove formulae (*) and (**). If {lia} is empty, then inf 

{%„} = (P x P), inf {y 11 ̂  is the accrete closure for P and the accrete closure for P is the 
greatest lower bound of each empty family in C(P), in particular, of {yHa}. Similarly, 
if \1L„} is empty, then sup {HA} and sup {y 1IA] are the finest elements of U(P) and C(P) 
respectively, and the finest element of U(P) induces the finest closure for P. — I. Now 
let the index set be non-void. By 36 A.1 the union H of [H^ is a sub-base for inf {Ha}, 
and hence \1L\ [x] is a local sub-base at x in <P, y inf {HA}} for each x in P. On the 
other hand, [Ha] [x] being a local base at x in <P, y1ta) for each x in P and a in A, 
by 31 A.5 the collection "Vx = [x] | a 6 A} is a local sub-base at x in 
<P, inf {yHa}}. But obviously y x = \ l l \ [x] for each x in P, which establishes (*). 
The proof of (**) is quite similar. By 36 A.1 the intersection of {lta} is sup {1ta} and 
hence the collection [n{^ a}] [*] is the neighborhood system at x in y sup {lta}-
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On the other hand, [x] being the neighborhood system at x in <P, 1ia}, by 
31 A.4 the collection f ) { [^ J H I 0 6 A} is the neighborhood system at x in 
<P, sup y%a}y. But obviously 

for each x, which establishes (**). — II. An alternate proof of formula (**) may also 
be obtained from the following description of induced closures: yKX = 

Corollary (a). If <P, u> is a semi-uniformizable space, that is U(P, u) #= 0, then 
U(P, u) is order-complete, in particular, there exist the uniformly finest and coar-
sest semi-uniformities inducing the closure u. 

Proof. If {Wa} is a non-void family in U(P, u), then sup {<%„} and inf {<%„}, both 
taken in U(P), belong to U(P, u) by the theorem, and hence they coincide with 
sup {<%„} and inf (taken in U(P, u)). 

It may be noted that we proved essentially more than Corollary (a), namely 

Corollary (b). If is a non-void family in U(P, u) then the greatest lower 
bounds (least upper bounds) taken in U(P) and U(P, u) coincide, i.e. U(P, u) is 
completely lattice-preserving in U(P). 

Remark. Notice that U(P, u) is a closed interval in U(P). 
Corollary (c). If u is any closure for P then there exists a finest semi-uniformizable 

closure coarser than u as well as a coarsest semi-uniformizable closure finer than u. 
In other words, for each u in C(P) there exist both upper and lower modifications 
of u in the set Y^(P) of all semi-uniformizable closures for P. 

Proof. Let = inf [ f | yiV is coarser than «}, and 1l2 = SUP | is finer 
than u}. By the theorem the closures y ^ i and y^2 possess the required properties. 

Remark. Notice that U is an ordered subclass of the class of all sets ordered by=>; 
by 36 A.1 U is completely join-preserving (but not meet-preserving) in this ordered 
class. 

36 A.4. Definition. A semi-uniformity 1i for a set P is said to be fine or to be coarse 
if 11 is, respectively, the uniformly finest or coarsest semi-uniformity from U(P, y1f), 
that is, if 11 is the uniformly finest or coarsest semi-uniformity inducing the closure yIt-

It follows from Corollary (a) that, for each semi-uniformity H, there exists exactly 
one fine semi-uniformity and exactly one coarse semi-uniformity inducing the same 
closure as H. Now we shall describe them directly. 

36 A.5. Let 11 be a semi-uniformity for a set P. The coarse semi-uniformity 1ic 

inducing the same closure as consists of all relations U u ((P — X) x (P — X)), 
where U eH and X c P is finite. The fine semi-uniformity 11f inducing the same 
closure as 1l consists of all V a P x P such that, for each x in P, there exists a Ux 

in 11 such that Ux[x] c ( C n V~l) [x]. 
Proof. I. It is easily seen that 11 c and H s are semi-uniformities inducing the same 

closure as 11. — II. Let ~f" be any semi-uniformity inducing the same closure as 1l. 
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We must show that 1lc <=. "V <=• 11 f. The inclusion "V <= Hf if almost self-evident. 
Indeed, if F e "V, then we can choose a family \1ix | x e P} in 11 such that 1/X[x] <= 
c (F n F - 1 ) [x] for each x e P (because induces the same closure as 1l), and hence 
Veil f . To prove 1ic <= - f , suppose that U is any symmetric element of 11 and X is 
any finite subset of P (thus Ux = U u ((P — X) x (P — X)) is symmetric); it is 
to be proved that Ut e "f". If X = 0 then Ut = P x P and hence U1 e "V. Assuming 
X #= 0 we shall find an element F of V such that F cz U^. Since 11 induces the same 
closure as "V we can choose a family {Vx | x eX} in "V such that Fx[x] cz t/[x] for 
each x in X. We may and shall assume that each Vx is symmetric. Since X is finite, 
the intersection Vof {Vx \ x e X} belongs to "f and obviously Fis symmetric. We shall 
show that F <= Ut. If x e X then F[x] c: Vx[x] <= [/[x]. If x e (P - X) and y e 
e F[x] — (P — X), then y eX, x ) e F (F is symmetric) and hence <y, x> e U; 
since U is symmetric, <x, y} e U as well. Thus F[x] c i7 t[x] for each x, which proves 
that V c U i . 

Corollary (a). If P is a semi-uniformizable space, then the fine semi-uniformity 
of P consists of all semi-neighborhoods of the diagonal of the product space P x P, 
and the coarse semi-uniformity of P consists of all semi-neighborhoods of the diagonal 
containing a set of the form (P — X) x (P — X) where X is a finite subset of P. 

Proof . Recall that a semi-neighborhood of the diagonal of the product space 
P x P is a subset U of P x P such that (U n I / - 1 ) [x] is a neighborhood of x for 
each x in P (or equivalently, if U is a neighborhood of the diagonal in ind (P x P)). 
Notice that if 11 is a semi-uniformity inducing the closure of P, then U is a semi-
neighborhood of the diagonal if and only if for each x in P there exists a Ux in 11 
such that UJ[x] c ( [ / n i / _ 1 ) [x] and then apply the theorem. 

Corollary (b). The uniformly finest coarse semi-uniformity for a set P consists of 
all sets of the form 

JP u ((P - X) x (P - X)) 

where X varies over all finite subsets X of P. This semi-uniformity induces the dis-
crete closure. (Notice that this semi-uniformity is a uniformity.) 

Corollary (c). If °U is any semi-uniformity for a set P then the coarse semi-uni-
formity 11 inducing the same closure as 1l is the intersection (i.e. the least upper 
bound) of H and of the uniformly finest coarse semi-uniformity for P (i.e. the 
discrete coarse semi-uniformity for the set P). 

Corollary (d). A semi-uniformity 11 for a set P is coarse if and only if each element 
of 11 contains a set of the form (P — X) x (P — X) with X finite. 

Proof. Let 1lc be the coarse semi-uniformity inducing the same closure as 1l. 
By 36 A.5 the condition is necessary and sufficient for 1lc = 1i. 

Let us recall that a closure space <P, u> is said to be quasi-discrete if uX = 
= U{u(x) | x f° r e a c h subset X of P. By our convention a semi-uniform space 
<P, liy is said to be quasi-discrete if the induced space <P, f i t } is quasi-discrete. 
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36 A.6. Definition. A semi-uniformity aU for a set P will be called uniformly 
quasi-discrete if 1l possesses a base consisting of one element, that is, if f\1l be-
longs to 1l. 

For example, the uniformly finest and the uniformly coarsest semi-uniformities for 
a set P are uniformly quasi-discrete. 

36 A.7. Every uniformly quasi-discrete semi-uniformity is quasi-discrete. If P 
is a quasi-discrete semi-uniformizable space then the fine semi-uniformity of P 
is the only uniformly quasi-discrete semi-uniformity inducing the closure structure 
of P. 

Proof. Recall that by Theorem 26 A.9 a closure space is quasi-discrete if and only if 
at each point there exists a one-element local base. Now the first statement is obvious 
and the second one is proved as follows: let P be a quasi-discrete semi-uniformizable 
space and let Ux be the smallest neighborhood of x in P for each x in P; the set 
I {Ux | x e P} is evidently the smallest element of the fine semi-uniformity of P, and 
clearly the fine semi-uniformity for P is the only uniformly quasi-discrete semi-
uniformity unducing the closure structure of P. 

Corollary A semi-uniformity 1l is a uniformly quasi-discrete uniformity if and 
only if f)1i is an equivalence belonging to 1l. 

36 A.8. Theorem. Every semi-uniformity 1l for a set P is the greatest lower 
bound of a family of uniformly quasi-discrete semi-uniformities for P; furthermore, 
if® is a sub-base for 1i and, for each B in 88, 11 v is the semi-uniformity E{F| B n 
n B~l c F c P x P}, then 1l = inf {HB \Bs8S) and if ¿8 is a base, then 1i = 
= \Bz88\. - Obvious. 

Remark. A uniformity need not be the greatest lower bound of a family of uni-
formly quasi-discrete uniformities. One can prove that a uniformity 11 is the greatest 
lower bound of uniformly quasi-discrete uniformities if and only if 11 is uniformly 
totally disconnected, that is, if the equivalences form a base for 1l. 

36 A.9. Theorem. If { / : <P, 1lay -> <g, is a family of uniformly conti-
nuous mappings, then the mappings f : <P, sup {1ia}} -*• <Q, sup and f : 
: <P, inf {^fl}> -»• (Q, inf {ifa}> are also uniformly continuous. 

B. U N I F O R M I T I E S 

Recall that a uniformity is a semi-uniformity H such that each element of 1l con-
tains U o U for some U in 11. By 24 B.2, for each semi-uniformity 11 there exists a uni-
formly finest uniformity uniformly coarser than 1l\ this uniformity is called the uni-
form modification of 1i (24 B.1). Using this result we shall derive some results con-
cerning the ordered set of all uniformities. First we shall introduce some terminology 
and notation. 
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36 B.l. Definition. Denote by wU the ordered subclass of U which consists of all 
uniformities. Let u be the single-valued relation which assigns to each semi-uniformity 
11 the uniform modification of. this relation is called the uniform modification. 
If P is a set then u U(P) denotes the ordered set o U n U(P). If * is a closure space 
then oU(*) denotes the ordered set uU n U(*) (thus oU(*) may be void, and it is 
non-void if and only if 3P is uniformizable). The letter u also denotes the relation 
{<P, 11S) -> <P, VIT}}, and hence we can write u<P, 11S) = <P, We write 
U(P, u) instead of U(<P, «)). The subscripts U, C or P to « will be used to specify 
the notation for semi-uniform, closure or proximity spaces, respectively. 

It is evident that the uniform modification of a semi-uniformity H is the upper 
modification of 11 in the ordered class uU; thus Lemma 31 B.2 applies and we obtain 
the following theorem. 

36 B.2. Theorem. Let P be a set. The ordered set uU(P) is completely meet-stable 
and completely meet-preserving in U(P); the uniformly finest and uniformly coar-
sest semi-uniformities for Pare uniformities, and hence they are the uniformly finest 
and uniformly coarsest uniformities for P. Furthermore, uU(P) is order-complete 
and oU(P) = t>[U(P)]. The mapping u : U(P) -> uU(P) is completely meet-preser-
ving, i )«B = i) and Mil is uniformly coarser than 11 for each IT in U(P). If is 
any family in U(P) then 

» sup {11 a} = v sup {vHa} = sup {o1ia} 

where the last supremum is taken in uU(P). 

Corollary. The class vU is completely meet-stable and completely meet-preserving 
in U, and uU = En. The class uU is boundedly order-complete and contains each 
uniformly discrete or uniformly accrete semi-uniformity. We have » « o = u, vH is 
uniformly coarser than 1T for each 1L in U and the mapping » : U uU is sur-
jective and completely meet-preserving. 

Proof. As noted above, for each 11 in U(P) there exists an upper modification 
of 11 in uU(P). Since U(P) is order-complete, from lemma 31 B.2 we obtain all the 
statements of the theorem with the exception of one, namely that the finest semi-
uniformity is a uniformity; but this is obvious because (Jp) is its base and JP 0 JP = 
= JP-

According to 36 B.2 the greatest lower bounds of a family {1TA} of uniformities 
taken in uU(P) and in U(P) coincide. By virtue of 36 A.1 we obtain that \J{Ha} is 
a sub-base for inf {Haj taken in o U(P). On the other hand, sup {lfaj taken in U(P) 
is C\{fy„} by 36 A.1, and it is easily seen that C\{Ha} need not be a uniformity (see 
24 ex. 6 ); therefore f){l/a} is not sup {Haj taken in oU(P). Of course, by the fore-
going theorem, «(f) {*%„}) is sup {Hfaj taken in uU(P). Thus we have proved 

36B.3. Let {1faj be a family in uU(P). The union of {<%„} is a sub-base for the 
greatest lower bound of {lta} in uU(P),and v(C\{li„}) is the least upper bound of 
{Htt} in D U ( P ) . 
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The uniformly finest uniformity uniformly coarser than each member of a given 
family of uniformities can be described simply in terms of a uniform collection of 
pseudometrics. Recall that (by 24 B.8) a uniform collection of pseudometrics for a 
set P is a non-void collection M of pseudometrics for the set P such that each pseudo-
metric d for P belongs to Ji whenever either d = dx + d2 with dx and d2 in Ji or 
for each positive real r there exists a in Ji and a positive real s such that d^x, y) < s 
implies d(x, y) < r. For each 1l in U(P) the collection yfll of all uniformly continuous 
pseudometrics for <P, Hy is a uniform collection of pseudometrics. 

36 B.4. Theorem. Let M be the class of all uniform collections of pseudometrics 
ordered by the inverse inclusion => and let p be the single-valued relation which 
assigns to each ® e U the collection of all uniformly continuous pseudometrics 
(with respect to 1l). Then eM for each 1l in U, the mapping fi : U M is 
completely join-preserving (in particular, order-preserving) and surjective, the 
mapping (i:«U-+M is an order-isomorphism, in particular, M is boundedly 
order-complete. For each Ji in M the set contains exactly one uniformity 
1l, and consists of those semi-uniformities V such that vV = 1l. If 
{Jt„} is any family in M such that sup {Jfa} exists, then inf {Jia} exists and 

(*) sup {jttt} = (\{jiay, 

(**) inf {Jia\ is the smallest uniform collection of pseudometrics containing 

The proof, which follows from results of 24 B, is left to the reader as a useful exer-
cise. 

By 36 A. 3 the canonical mapping of U into C is completely lattice-preserving. 
The following result concerns the mappings y : u U C and y : u U -> uC. Recall 
that uC is the class of all uniformizable closures, and uC is completely meet-stable 
in C by 31 B.4. 

36 B.5. Theorem. The canonical mappings y : i)U C and y : uU oC are 
completely meet-preserving. If is a uniformly accrete or a uniformly discrete 
uniformity, then y 11 is, respectively, an accrete or a discrete closure. 

Pro of. The mapping y : uU -> C is the composite of two completely meet-preserving 
mappings, namely J : uU -> U (by 36 B.2) followed by y : U ^ C (by 36 A.3). Thus 
y : i) U C is completely meet-preserving. The range uC of the completely meet-
preserving mapping y : uU -» C is completely meet-stable in C (by 31 B.2) and hence 
the range-restriction y :«U -» «C is completely meet-preserving. The proof of the 
remaining statements is evident. 

Corollary. If P is a set then y inf {1i„} with the infimum taken in o i l , inf {yHa} 
taken in C(P), and inf {y1fa} taken in vC(P) coincide for each family {Ha} in v U 
(not necessarily non-void). 

36 B.6. Remark. It should be noted that the canonical mappings y : u U -»• C and 
y : u U -> oC are not completely join-preserving. In the former case it is sufficient to 
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keep in mind that the least upper bound in C of a family of uniformizable closures 
need not be uniformizable (if u = sup {ua} is not uniformizable and if H = sup (1faj 
in u U such that y1ta = ua for each a, then y1l is strictly coarser than u because y1l 
is uniformizable and coarser than u). In the latter case consider a uniformizable clo-
sure operation u for a set P and the set « U n U(P, u). This set has no greatest 
element if <P, «> is not locally compact (41 D.6) and hence the supremum of this 
set in uU induces a closure strictly coarser than u. 

36 B.7. For each 1l in U the closure yuH (i.e., the closure induced by the uniform 
modification of 11) is coarser than the closure Myli (i.e., the uniformizable modifica-
tion of the closure induced by 1l). In fact, yx>H is a uniformizable closure coarser than 
the closure y 11. We shall show that yu® may be strictly coarser than «yH (and hence 
the mappings « o y : U C and y ° v: U -»• Cdo not coincide); in addition, the closure 
y 11 may be uniformizable. Let <P, u) be an infinite separated uniformizable space such 
that each neighborhood of any point is infinite (e.g. the space of reals) and consider the 
coarse semi-uniformity 1l of <P, u>. By 36 A.5 each element of 11 contains a set 
(P — X) x (P — X) with X finite. We shall prove that \>H is uniformly accrete (and hence 
y\>1l is accrete). It is sufficient to show that the complement of any neighborhood of 
any point of (P,yv%} is finite. Let W be a neighborhood of x in (P,yv1i} and 
choose a U in x>H such that U o [/[jc] c W. The set Č7[x] is a neighborhood of x in 
<P, yvli} and so certainly in <P, w); thus U[x~\ is infinite. If X is a finite set such that 
(P - X) x (P - X) c U, then U o U[x] = U[U[xJ\ => P - X because (P - X) n 
n U[x] 4= 0. Thus W=> P - X. 

36 B.8. The example in 36 B.7 makes it possible to show that the canonical mappings 
y : vU C and y : uU uC are not join-preserving (also see 36 B.6). The 
semi-uniformity 11 (in the example of 36 B.7) is the supremum in U of any uniformity 
•f inducing u and of the coarse semi-uniformity if of P endowed with the discrete 
closure (by Corollary (c) of 36 A.5). It follows from Corollary (b) of 36 A.5 that iT 
is a uniformity. The supremum of "V and iV in uU is the uniform modification of the 
supremum taken in U, and hence is X>1L. We have proved (in 36 B.7) that VLL is the 
uniformly accrete uniformity for P. Thus y i s the accrete closure for P. On the 
other hand the supremum of yV and yW in C as well as in UC is u = y f . 

In 28 A.1 the definition of a fine uniformity and a fine uniformity of a space was 
introduced. In 36 A.4 the definitions of a fine semi-uniformity and a coarse semi-
uniformity were introduced. 

36B.9. Definition. A coarse uniformity is a uniformity H with the following pro-
perty: if a uniformity ir induces the same closure as 11 then ~f~ is uniformly finer 
than H. 

36 B.10. If 1l is a fine semi-uniformity, then the uniform modification \>1i of 11 
is a fine uniformity and every fine uniformity is the uniform modification of a fine 
semi-uniformity (namely, of the fine semi-uniformity inducing the same closure). 
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In particular, if a fine semi-uniformity is a uniformity, then it is a fine uniformity. 
— Almost evident. 

36 B.l l . If 1l is a coarse semi-uniformity, then the uniform modification o°U of 11 
is a coarse uniformity, in particular, if a coarse semi-uniformity is a uniformity, 
then it is a coarse uniformity. 

Proof. I. By the Corollary (d) of 36 A.5 a semi-uniformity 11 is coarse if and 
only if each element of 11 contains a set (P — X) x (P — X) with X finite. It follows 
that if 1/ is a coarse semi-uniformity, then each semi-uniformity uniformly coarser 
than 11 is also coarse. Thus, if 11 is a coarse semi-uniformity, then the uniform modific-
ation x>1l of H is also a coarse semi-uniformity. Obviously, if a coarse semi-uniformity 
11 is a uniformity, then 11 is a coarse uniformity. The assertion follows. 

II. The second statement is obvious, as stated in I, but it may be useful to notice 
that it is a consequence of the first statement. 

While every fine uniformity is the uniform modification of some fine semi-uni-
formity, with some trivial exceptions a coarse uniformity is not the uniform modifica-
tion of any coarse semi-uniformity. As noted in the proof of the foregoing proposi-
tion, a semi-uniformity uniformly coarser than a coarse semi-uniformity is a coarse 
semi-uniformity, and hence, if a coarse uniformity H is the uniform modification 
of a coarse semi-uniformity, then necessarily 1l is a coarse semi-uniformity. Since 
by the foregoing proposition any uniformity which is a coarse semi-uniformity is 
then a coarse uniformity, we obtain that a coarse uniformity 11 is the uniform modific-
tion of a coarse semi-uniformity if and only if 1l is a coarse semi-uniformity. Coarse 
semi-uniformities were described in 36 A.5. A similar characterization of coarse uni-
formities will be given in the exercises to 41. In the concluding theorem of this section 
all the separated closures induced by a uniformity which is a coarse semi-uniformity 
will be described. A similar description of closures induced by a coarse uniformity 
will be given in 41 D. 

36 B.12. Theorem. The closure structure of a separated space is induced by a 
coarse semi-uniformity which is a uniformity if and only if the following condition 
is fulfilled: either âP is discrete, or 0> has exactly one accumulation point, say x, 
and the complements of neighborhoods of x are finite. 

Proof. I. If 3P is a discrete space, then the coarse semi-uniformity 1l inducing the 
closure structure of 0 has ihe collection of all relations Vx = J ^ u ((¡0\ — X) x 
x (\âP\ - X)), X finite, for a base (Corollary (b) of 36 A.5), and hence 11 is a uniform-

ity (Vx o Vx = If 0 is a space with exactly one accumulation point, say x, and 
all the complements of neighborhoods of x are finite, and if 11 is the semi-uniformity 
having the collection of all relations Vv = (U x U) u J ^ , U varying over all neighbor-
hoods of x, for a base, then clearly K is a uniformity, 11 induces the closure structure 
of and 1l is a coarse semi-uniformity because each element of 1i contains a set 
(|0>\ - X) x (\â?\ - X) with X finite. - II. To prove "only if", suppose that the 
closure structure of a separated non-discrete space 0 is induced by a coarse semi-

44—Topological Spaces 
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uniformity 11 which is a uniformity. We have proved in 36 B.7 that if each neighbor-
hood of a point x is infinite, then the complement of each neighborhood of x is finite. 
Since * is semi-separated, if a point x is not isolated, then each neighborhood of x is 
infinite and the complement of each neighborhood of x is finite. It follows that there 
exists at most one point of 3P which is not isolated is separated). On the other hand, 
by our assumption there exists at least one point which is not isolated. 

Remark. In the exercises we shall describe all spaces whose closure structure is 
induced by a coarse semi-uniformity which is a uniformity. 
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37 . P R O J E C T I V E A N D I N D U C T I V E G E N E R A T I O N 
F O R S E M I - U N I F O R M S P A C E S 

In 32 we investigated closure spaces projectively generated by a family of mappings 
ranging in closure spaces, and in 33 we investigated closure spaces inductively gener-
ated by a family of mappings the domain carriers of which were closure spaces. In 
the present section we shall do the same for semi-uniform spaces. Although projective 
and inductive constructions for closure spaces were studied separately, the projective 
and inductive construction for semi-uniform spaces will be treated in a parallel manner 
as far as possible, and moreover, corresponding results for projective and inductive 
constructions will be similarly labelled. , 

As in the case of closure spaces, projectively generated semi-uniform spaces inherit 
many properties of the range carriers of generating mappings, in particular the property 
of being a uniform space. Further, if a semi-uniform space <P, is projectively 
generated by a family {/„ : <P, %)> -* (Qa, f a y } , then the induced closure space 
<P, is projectively generated by the family {/„ : <P, yH} -> (Qa, yf a}}. On the 
other hand, inductively generated semi-uniformities inherit very few properties of the 
domain carriers of generating mappings. It will be shown (37 A.8) that every semi-
uniform space is inductively generated by a mapping the domain carrier of which 
is a discrete uniform space. It follows that the property of being a uniform space is 
not inherited, and if a semi-uniformity is inductively generated by a mapping f , 
then the induced closure need not be inductively generated by / transposed to 
a mapping of induced closure spaces. The points in which the projective and inductive 
constructions differ will be discussed separately. Because of the importance of uniform 
spaces we shall introduce the notion of a uniformity inductively generated in the 
uniform sense by a family of mappings; this is defined to be the finest uniformity 
making all given mappings uniformly continuous, and this is easily seen to be the 
uniform modification of the semi-uniformity inductively generated by the same family 
of mappings. In 33 D we defined the inductive product and topological inductive 
product of closure spaces. The corresponding concepts for semi-uniform spaces will 
be introduced in the exercises only. 

44* 
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A. G E N E R A L I T I E S 

37 A.l. Definition. A semi-uniformity 11 for a set P is said to be projectively 
generated by a family of mappings {/„}, and {/„} is said to be a projective generating 
family for semi-uniform spaces with domain carrier P, if P i s the common domain 
carrier of all fa and 11 is the uniformly coarsest semi-uniformity for P such that all 
mappings /„ : <P, IIs) —> E*f a are uniformly continuous. Similarly, a semi-uniformity 
% for a set P is said to be inductively generated by a family of mappings {/„} and 
{/„} is said to be an inductive generating family for semi-uniform spaces with 
common range carrier P, if P is the common range carrier of all fa and 11 is the 
uniformly finest semi-uniformity such that all mappings /„ : D*f a <P, 11s) are uni-
formly continuous. A semi-uniform space <P, is said to be projectively (in-
ductively) generated by a family of mappings {/„}, and { f a } is said to be a projective 
(inductive) generating family for <P, 11s), if <P, 11} is the common domain carrier 
(range carrier) of all fa and 11 is the semi-uniformity for P projectively generated (in-
ductively generated) by the family {gr fa : P E*/„} ({gr fa : D*/„ -»• P})- Finally, 
a projective (inductive) generating family of mappings for semi-uniform spaces is 
a family {/„} with a common domain carrier (range carrier) which is projectively 
(inductively) generated by the family {/„}. The definitions just stated are carried over 
to collections of mappings and single mappings in such a way that a collection 2F 
has a property if and only if the family {/1 / 6 J5"} has the property $ and a map-
p i n g / has a property if and only if the singleton ( / ) has the property 

We begin with existence, uniqueness and a description of generated semi-uni-
formities. 

37 A.2 proj. Theorem. Any projective family of mappings for semi-uniform spaces 
projectively generates exactly one semi-uniformity. If a semi-uniformity 1l is pro-
jectively generated by a non-void family {/„} and each 1la is projectively generated 
by fa, then 1l = inf {Ha}, that is, n{^a} a sub-base for 11. If a semi-uniformity 1l 
is generated by a mapping f:P~* <<2,10, then the set of all (f x / ) _ 1 [F], 
Ve"V,is a base for 1l. It follows that if a semi-uniformity 11 is projectively generated 
by a non-void family of mappings { f a : P -> <Qa, | a e A}, then the set of all 
( f a

 x /«)"' \y]> aeA, Ve-ra, is a sub-base for 1l. 

37 A.2 ind. Theorem. Any inductive family of mappings for semi-uniform spaces 
inductively generates exactly one semi-uniformity. If a semi-uniformity 11 is 
inductively generated by a family {/„} and 1la is the semi-uniformity inductively 
generated by fa, then 1l = sup {lia} ( = Cii^a})-If a semi-uniformity H is inductive-
ly generated by a mapping f : (Q, "Vy -*• P, then 11 is the collection of all vicinities 
U of the diagonal JP such that (f x / ) _ 1 [( /] e ^ , that is, 

(1) 11 = E{t7 | JP c U c P x P, ( f x f ) ' 1 [U~] e-r) . 

It follows that if a semi-uniformity 1l is inductively generated by a family of map-
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pings {/„ : (Q„, V P \ a e A}, then 1l consists of all vicinities U of the diagonal 
JP such that (/„ x fa)~1 [ [ / ] e 'fa for each a in A, that is, 

( 2 ) « = E { ( / | j f c [ / c P x ? , ( f a x fa)~l [[/] 6 ra for each a e A}. 
Proof of 37 A.2 proj. I. Uniqueness is self-evident. 
II. Existence: Let {/„ : P (Qa, "f | a e A) be a projective family for semi-

uniform spaces and let us consider the set W of all if e U(P) such that each map-
ping fa -» (Q.a,"f is uniformly continuous. By 36 A.9 sup ¥ e V and 
by definition obviously sup ¥ is the projectively generated semi-uniformity. 

III. Now let !P0, a e A, be the set of all if e U(P) such that the mapping fa : 
: <P, i f ) -> <gfl, f a ) is uniformly continuous. By II sup Wa is the semi-uniformity 
projectively generated by fa and obviously 1' = C)^a \ a e ^4}. It follows that sup x¥ = 
= inf {sup Wa) and this is the required formula H = inf {Hfaj. The fact that 
(J{%„ | a e A] is a sub-base of 1l follows from 36 A.1. 

IV. It remains to verify the description of the semi-uniformity projectively generated 
by a single mapping / : P -» (Q, "fy in terms of "f. Let ^ be the collection of all 
( / x / ) " ' [K], Ve"f. It is easily proved that is a base of a semi-uniformity 
clearly 11, is a filter base and each element of contains the diagonal }P, and finally, 
if Ve is symmetric then the set ( / x / ) _ 1 [ F ] is also symmetric. The mapping 
/ : <P, IP) ^ <g, "fy is uniformly continuous and if / : <P, tT> -»• (Q, tT> is uni-
formly continuous, then each ( / x / ) " 1 [F], Ve must belong to i f , i.e. if •=> 11 
this shows that the semi-uniformity 1l with the base 1ly is the uniformly coarsest 
semi-uniformity making / continuous. 

Proof of 37 A.2 ind. I. Uniqueness is again clear and the existence and the formula 
11 = sup {lta} is similar to the corresponding proofs for the projective construction; 
if <P and <Pa are sets of all semi-uniformities making respectively all fa, a e A, or fa 

continuous, then inf <P = H, inf <PX = 1la and <P — D{^a} which gives the formula. 
II. By 36 A.1 sup {<%„} = Cl{lia} and consequently formula (l) implies (2). 
III. It remains to prove (1); we shall show that 1l given by (l) is inductively gener-

ated by / : <Q, "fy ->• P. The reader will find no difficulty in showing that 11 is a semi-
uniformity and that the mapping / : < Q , " f y -* <P, liy is uniformly continuous. 
If if is any semi-uniformity for P such that the mapping / : (Q, " f y -*• <P, i f y is 
uniformly continuous, then ( / x / ) - 1 \W~\e"f for each W in if and thus each 
element of if belongs to 1l\ i.e. if c: that is, if is uniformly coarser than 1l. 

Corollaries proj.: (a) A semi-uniformity for a set P projectively generated by an 
empty family is the uniformly coarsest semi-uniformity for P, that is, the unifor-
mly accrete semi-uniformity for P. 

(b) Let {/„ | a e A] be a family of mappings of a semi-uniform space HP into 
semi-uniform spaces and let At be a subset of A such that the range carrier of each 
fa with a in A — Ax is a uniformly accrete space. Then 0* is projectively generated 
by the family {/„ | a e A} if and only if it is projectively generated by the family 
{fa I a e ¿1}. 
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(c) Let { f a | aeA}, A =(= 0, be a family of mappings of a semi-uniform space 
<P, Hy into semi-uniform spaces, and be a family such that ^ is a sub-base 
for the semi-uniformity of E */„. Then (SP, "Uy is projectively generated by the family 
{fa} l / and only if the set of all ( f a x / „ ) _ 1 [F] , VeV'a, aeA, is a sub-base for °U. 

(d) The product of a family of semi-uniform spaces is projectively generated by 
the family of all projections. 

(e) If 2 is a subspace of a semi-uniform space 3P, then J : 2 -* 0> is a projective 
generating mapping. 

Proof. Corollary (a) is evident and Corollary (b) follows from the fact that every 
mapping of a semi-uniform space into a uniformly accrete semi-uniform space is 
uniformly continuous. Corollary (c) is a straightforward consequence of the de-
scription of projectively generated semi-uniformities. Finally, the product semi-
uniformity was defined (23 D.10) to be the semi-uniformity whose sub-base is the 
collection (of all (na x 7ta)_1 [F], where %a is a projection into the a-th-coordinate 
space and F is any element of the semi-uniform structure of the a-th-coordinate 
space; according to the description of projectively generated semi-uniformities, this 
collection is a sub-base of the semi-uniformity projectively generated by the family 
of all projections. It is to be noted that proposition 23 D.11 states explicitly that the 
product semi-uniformity is the uniformly coarsest semi-uniformity for the product 
of the underlying sets making all projections uniformly continuous; hence Corollary (d) 
has already been proved. Statement (e) is evident. 

Corollaries ind.: (a) A semi-uniformity for a set P inductively generated by an 
empty family is the uniformly finest semi-uniformity for P, that is, the uni-
formly discrete semi-uniformity (in fact, uniformity) for P. 

(b) Let { f a \ ae A} be a family of mappings of semi-uniform spaces into a semi-
uniform space 0 and let A± be a subset of A such that the domain carrier of each 
fa with a in A — Ax is a uniformly discrete semi-uniform space (in fact, uniform 
space). Then the space 3? is inductively generated by the family {/„ | a e A} if and 
only if 0> is inductively generated by the family { / a | a e At}. 

(c) The sum of a family of semi-uniform spaces (Definition 23 D.8J is in-
ductively generated by the family of all canonical embeddings. 

Proof. Corollary (a) is obvious and Corollary (b) follows from the fact that every 
mapping of a uniformly discrete semi-uniform space into any semi-uniform space is 
uniformly continuous. Finally, Corollary (c) is obtained by comparing the definition 
of the sum semi-uniformity (23 D.8) with the description of inductively generated 
semi-uniformities. It may be noted that, in fact, Corollary (*c) has already been proved 
in 23 D.9. 

Let {/„} be a family of uniformly continuous mappings with a common domain 
carrier <P, %y and let us consider the semi-uniformity ~f~ for P projectively generated 
by a family of mappings {gr/fl : P E*/a}- (The existence of "V follows from 
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37 A.2 proj.) Let h be the identity mapping of <P, onto <P, y > and for each a 
let ga be the mapping <gr fa, <P, "f"), E*/„>• Clearly h is a one-to-one uniformly con-
tinuous surjective mapping, {ga} is a projective generating family for semi-uniform spa-
ces and fa = gaoh for each a. In particular, every uniformly continuous mapping ad-
mits of a factorization / = g o h where h is a one-to-one uniformly continuous 
surjective mapping and g is a projective generating mapping for semi-uniform spaces. 
It may be in place to note that, in accordance with the general rule for the use of 
square parentheses, the family {ga o h) can be written as [{g„}] o h and hence, as in the 
case of a single mapping, we obtain formally that every projective family {/„} of uni-
formly continuous mappings admits a factorization {/„} = [{ga}] o h where {ga} is 
a projective generating family for semi-uniform spaces and h is a one-to-one uniformly 
continuous surjective mapping; such a decomposition will be called a projective de-
composition of {/„}. Similarly, we shall show that every inductive family {/„} of 
uniformly continuous mappings with a common range carrier <P, admits an 
inductive factorization { f a } = h o [{ga}], where his a. one-to-one uniformly continu-
ous surjective mapping and {ga} is an inductive generating family for semi-uniform 
spaces. The existence of an inductive factorization is proved as follows: let "V be the 
semi-uniformity for P inductively generated by the family {gr/a : D*fa -»• P} and put 

h = <Jp, <p, - 0 , <P, * » , 9a = <gr/„ D * f „ <p, ry>. 

Clearly h and {ga} possess the required properties. Thus we have proved: 

37 A.3. Theorem.Projective f a c t o r i z a t i o n : Every projective family {/„ | a g A} 
of uniformly continuous mappings admits a projective factorization, that is, 
there exists a uniformly continuous bijective mapping h and a projective 
generating family for semi-uniform spaces {ga} such that ga 0 h = fa for each a 
in A; this can be written as {/„} = [{#„}] oh. If h is an identity mapping then this 
factorization is called the canonical projective factorization. 

I n d u c t i v e f a c t o r i z a t i o n : For every inductive family { f a } of uniformly con-
tinuous mappings there exists an inductive factorization of {/„}, that is, a uniformly 
continuous bijective mapping h and an inductive generating family {ga} for semi-
uniform spaces such that fa = h0gafor each a in A, that is, { f a } = h 0 [{ga | a e 4}]; 
if h is an identity mapping then this factorization is called the canonical inductive 
factorization. 

37A.4proj. Theorem. Suppose that { f a \ a e A) is a family of mappings of 
a semi-uniform space 9 into semi-uniform spaces and the range carrier of each 
fa is projectively generated by a family of mappings {gab \ b g Ba}. Then the spaced 
is projectively generated by the family {/„} if and only if it is projectively gener-
ated by the family {gab a f a \ a e A, b e Ba}. 

37A.4ind. Theorem. Suppose that { / a | a e A} is a family of mappings into 
a semi-uniform space 0 and the domain carrier of eachf„isa semi-uniform space 
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inductively generated by a family of mappings {gab | b e Ba}. Then the space 3P is 
inductively generated by the family { f a | a e A} if and only if 0* is inductively 
generated by the family {/a o gab \ a e A, b e Ba}. 

The proof of both theorems is a matter of a simple calculation based on the de-
scription of generated semi-uniformities and therefore the details will be left to the 
reader. 

Proof of 37 A.4 proj.: I. First suppose that the set A and also all sets Ba, a e A, 
are non-void. For brevity denote by "V a and Wab the semi-uniform structures of 

E*/a ( = D*gab) and E*gab respectively. By 37 A.2 proj., it follows from our as-
sumptions that 

(3) for each a the set r ' a of all (gab x gab)~l [W], We1fab, b e B„, is a sub-
base for "fa . 

Now, again by 37 A.2 proj., the fact that H is projectively generated by the family 
{gab o /„} is equivalent to the following assertion: 

(4) the set of all (gab 0 f a x gab o/a)~1 [W], We iTab, b e Ba, a e A, is a sub-base 
for <%. 

By corollary (c) of 37 A.2 proj., the fact that is projectively generated by {/„} is 
equivalent to the assertion (keep in mind that each ^ is a sub-base of V a by (3)): 

(5) the set of all (/„ x fa)~1 [7] , V e a e A, is a sub-base for 
Since (gab 0 / . x gab o/ , )"1 [X] = ( f a x / J " 1 [{gab x g^1 [Xj] for eachX, the 

equivalence of (4) and (5) follows from (3). 
II. If A = 0 then the families {/„} and {gab o fa} are both empty and the statement 

follows from corollary (a) of 37 A.2 proj. 
III. The general case will be reduced to cases I and II. Let At be the subset of A 

consisting of all a such that Ba 4= 0. By corollary (a) of 37 A.2 proj. the range space 
of each fa with a in A — A t is uniformly accrete and consequently, by corollary (b), 
9 is projectively generated by the family {/„ | a e A} if and only if it is projectively 
generated by { f a \ a e Ai}. However, the families {gab 0fa\beBa,aeA} and {gab a 
o / „ | b e Ba, aeAt} coincide. As a consequence, if Ay 4= 0 then the statement 
follows from I and in the other case from II. 

Proof of 37 A.4 ind. The proof is simpler than that of 37 A.4 proj. because we 
need not examine separately the case where A or some Ba are empty. By our assump-
tion and 37 A.2 ind., for each a in A, a vicinity U of the diagonal in D*fa belongs to 
the semi-uniformity of D*/a if and only if (gab x gab)~l [[/] belongs to the semi-
uniformity of D*gab for each b e Ba. Now again by 37 A.2 ind., stating in symbols 
that * is inductively generated by {/„} or { f a o gab}, we obtain the theorem im-
mediately. 

From the theorems 37 A.4 proj. and ind. we can show that a semi-uniform space 
projectively or inductively generated by a non-void family of mappings is projectively 
or inductively generated by a single mapping, namely by the reduced product or the 
reduced sum of the family in question. Clearly also every empty generating family 
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may be replaced by any constant mapping. As a consequence, projective and inductive 
constructions can be reduced to the corresponding construction for a single mapping 
and to the construction of the reduced product of mappings or the reduced sum of 
mappings respectively. 

Corollary proj. Let f be the reduced product of a non-void projective family 
{/„| a e A} of mappings for semi-uniform spaces with a common domain carrier 8? 
which is a space, i.e. D*/ = D*/« = 0>, E*/ = Il{E*/fl} and fx = {fax \ a eA}. 
Then 8P is projective!y generated by {/„} if and only if 0 is projectively generated 
byf. 

Corollary ind. Let f be the reduced sum of a non-void inductive family { f a } of 
mappings for semi-uniform spaces such that the common range carrier is a space 
0>, i.e. D*/ = E{D*/a}, E*/ = E*f a = 0> and f(a, x> = fax. Then 0 is inductively 
generated by {/„} if and only if 0 is inductively generated by f . 

Proof of Corollary proj. According to Corollary (d) of 37 A.2 proj. the family 
{pr„ : E*/ —>• E*/„} is a projective generating family. Since 

.fa — (Pra : E*/ -*• E*/a) of 

for each a, 37 A.4 proj. applies. 
Proof of Corollary ind. According to Corollary (c) of 37 A.2 ind. the family 

{inja : D * f a -> D*/} is an inductive generating family. Since 

/ f l = / o ( i n j f l : D * / a - D * / ) 

for each a, 37 A.4 ind. applies. 

37 A.5 proj. Theorem. A semi-uniform space 8P is projectively generated by a 
family of mappings { f a | a e A\ of 0 into semi-uniform spaces if and only if the 
following condition is fulfilled: 

A mapping f of a semi-uniform space 2L into 0 is uniformly continuous if and only 
if all composites fa o f , as A, are uniformly continuous. 

37 A.5 ind. Theorem. A semi-uniform space 0 is inductively generated by a 
family of mappings {/„ | a e A} of semi-uniform spaces into 0 if and only if the 
following condition is fulfilled: 

A mapping f of 0 into a semi-uniform space SL is uniformly continuous if and 
only if all composites f of„, a e A, are uniformly continuous. 

The proof is again a matter of a simple calculation based on the description of 
generated semi-uniformities and therefore the details will be left to the reader. 

Proof of 37 A.5 proj. I. The statement is trivial if /lis empty. — II. Suppose that 0 
is projectively generated by the family {/„} and A =(= 0. If / is uniformly continuous 
then all the mappings fa o f are uniformly continuous as composites of uniformly 
continuous mappings. Conversely, let all compositions fa of be uniformly continuous. 
If U is any element of the semi-uniform structure of then we can choose a finite 
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subset A' of A and a family {Va \ a e A'} such that f|{(/a * /«)"1 [Va] | a e A'} <= U 
and each Va is an element of the semi-uniform structure of the range carrier of /„ 
(by 37 A.2). Clearly 

(/ x f)~l [t/] = n { ( / a of x fa af)-> [Va-] \aeA'} . 

Since the composites fa 0 / , a e A', are uniformly continuous, the right side belongs 
to the semi-uniform structure of D*/, and consequently, the left side also belongs 
to the semi-uniform structure of D*/. Since U was chosen arbitrarily in the semi-
uniform structure of f is uniformly continuous. — III. Now suppose that the con-
dition is fulfilled. If / is the identity mapping of 0 onto then / is a uniformly con-
tinuous mapping and hence, according to the condition, all composites faof are uni-
formly continuous; but / a = /„ for each a and hence each fa is uniformly continu-
ous. Let [{gfl}] o h be the canonical projective factorization of {/a}. It is enough to 
prove that h is a uniform homeomorphism. Since h is a one-to-one uniformly con-
tinuous mapping onto, it remains to show that h_1 is uniformly continuous. Put 
/ = in the condition. Since /„ 0 h'1 = ga for each a and all ga are uniformly 
continuous, ft-1 is necessarily uniformly continuous by the condition; this concludes 
the proof. 

Proof of 37 A.5 ind. I. The statement is trivial if A = 0. - II. Suppose that 0> is 
inductively generated by a non-void family {/„}. If / is uniformly continuous then 
all the mappings f °fa are continuous as composites of uniformly continuous map-
pings. Conversely, if all composites f ofa are uniformly continuous, then from the 
description 37 A.2 of inductively generated semi-uniformities it follows at once that f 
is uniformly continuous (compare with the corresponding fact in the proof in 37 A.5 
proj.). — III. Now assume the condition. Substituting / = <JP, 3P, we obtain 
from the condition that all / o / a , and hence all f a = f o f a , are uniformly continuous. 
Consider the canonical inductive factorization h o [{#„}] of {/„}. Substituting 
/ = /j_ 1 we find that / i - 1 is uniformly continuous because all h ~ l o f a = ga are 
uniformly continuous. It follows that h is a uniform homeomorphism and hence 
fa = 9a f° r each a \ this concludes the proof. 

The next pair of theorems corresponds to theorems 32 A.13 and 33 A.7 for closure 
spaces. 

37 A.6 proj. Theorem on commutativity. If a semi-uniform spaced is projectively 
generated by a family of mappings {/„}, then each subspace £1 of S? is projectively 
generated by the family {ga} where each ga is the domain-restriction of fa to 2., 
and also by the family {ha} where each ha is the restriction to a mapping of 2. into 
the subspace Ega of E*fa. 

37 A.6 ind. Theorem on partial commutativity. If a semi-uniform space 8P is 
inductively generated by a family of mappings {/„}, then each subspace OL of 0 is 
inductively generated by the family {ga}, where each ga is the restriction of fa to 
a mapping of the subspace f~\|j2|] of D*fa into the subspace 2- of 
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Proof of 37 A.6 proj. The identity mapping/of SL into * is a projective generating 
mapping (by Corollary (e) of 37 A.2 proj.). Since ga = faof for each a, {ga} is a pro-
jective generating family by 37 A.4 proj. Let ka be the identity mapping of the sub-
space Ega of E*/a into E*/a. Each of the mappings ka is a projective generating map-
ping (again by Corollary (e) of 37 A.2 proj.) and ga = ka o ha for each a. Again by 
37 A.4 proj. the family {ha} is a projective generating family. 

Proof of 37 A.6 ind. Let Ra = / a
- 1 [ |3 | ] . If U c |D*/a | x |D*/a | , then 

(ga x ga) [U n (Ra x Ka)] = (/a x /„) [[/] n (\<Z\ x |a|). 

Now 37 A.6 ind. follows from the description of inductively generated uniformities 
(37 A.2 ind.) and the definition of a subspace (23 D.1). 

Remark. One can easily prove 37 A.6 proj. without any reference to 37 A.4 proj. 
and Corollary (e) of 37 A.2 proj. On the other hand 37 A.6 ind. cannot be derived 
from the foregoing general results. The reason for this is that a subspace is defined 
"projectively", not "inductively". 

37 A.7. Up to now the theory of projectively and inductively generated semi-
uniformities have been parallel. Now we shall state two distinctions in the theory 
of these concepts. 
(a) If {/„} is a projective generating family of mappings for semi-uniform spaces and 

the range carrier of each fa is a uniform space, then the common domain carrier is 
a uniform space; stated in other words, a projectively generated semi-uniform space 
inherits the property of being a uniform space from the range spaces (see 37 B.1). On 
the other hand, if / is an inductive generating mapping for semi-uniform spaces and 
the domain carrier of / is a uniform space, then the range carrier of / need not be a 
uniform space. 

(b) If {(fa, (P,Wy, (Qa, ' f a } } | a e A} is a projective generating family for semi-
uniform spaces, then the family {</a, (P, yli}, (Qa, yfa}y \ a e A} is a projective 
generating family for closure spaces; in other words, if a semi-uniformity 11 for a set P 
is projectively generated by a family {/a : P -»• (Q, then the closure yll in-
duced by 1l is projectively generated by the family {/a : P (Qa, yf~a}} (see 

37 B.6). For inductive generation a similar result does not hold. 
Therefore in the following we shall study projective and inductive generation 

separately. We shall begin with the projective generation. Nevertheless it may be in 
place to present a general example showing that statements (a) and (b) concerning 
inductive constructions are actually true. 

37 A.8. Theorem. Every semi-uniform space is inductively generated by a sur-
jective mapping whose domain is a discrete uniform space; stated in other words, 
if (P, 11} is a semi-uniform space, then there exists a discrete uniform space 
(Q, "Vs) and a surjective mapping f of (Q, V} into (P, 1l) such that f is an inducti-
vely generating mapping, i.e. (P, 11s) is inductively generated by f . 
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Proof . I. Suppose that <R, is a semi-uniform space and (.X ,̂ X2) is a disjoint 
cover of R such that W\XC\ n X2 #= 0 for each Win HT (and hence Xx n * 0 
for each Win W). It is clear that for a given (R, such a cover need not exist. On 
the other hand there exist <.R, iF> and Xu X2 such that (R, "Wy is a discrete uniform 
space. For example, if R is an infinite set (for instance N) and "W is the uniformly 
coarsest uniformity for R which induces the discrete closure for R (that is, the sets of 
the form ((J? — X) x (R — X)) u J^, X finite, form a base for iV) then each disjoint 
cover (Xu X2) consisting of infinite sets has the required property. 

II. Now let <P, IIs) be a semi-uniform space. Consider the sum Q of the constant 
family {R | z e P x P} and the single-valued relation / on Q to P which assigns to 
each <z, r> e Q, where z = <x1; x2>, the point x( if r eX ; . Preceding the construc-
tion of the required "V for Q, we denote by R'z, z e P x P, the set E{<z, r> | r e R], 
by f'z the restriction of / to R'z and by iTz the semi-uniformity for R'z inductively 
generated by the canonical mapping {r -* <z, r)} of R onto R'z, that is, iT'z is the 
collection of all sets Wz = E{«z, x>, <z, y» | <x, y> e W}, We HT. 

III. Cons t ruc t ion of For each U in 11 and each family {W'z | z eP x P}, 
where W'z e iT'z, put V(U, { W'z}) = (j{Xz \ z e P x P} where Xz = WzifzeU and 
Xz is the diagonal of R'z x R'z otherwise. It is easily seen that 

(*) ( / x / ) i v { u , { w > } ) \ = i / u r ' 
for each U in 11 and each family {W'z}. Next, if 1

0
 2W'Z = 3W'Z for each z, then 

evidently V(U, = (V(U, „ (V(U, {2 W'2})), and if all W'z are symmetric 
then also V(U, {W'z}) is symmetric. Thus the collection of all V(U, { i s a base of 
a semi-uniformity "V for Q, and is a uniformity if i f is a uniformity. From (*) it is 
clear that </, <Q, Y ) , <P, 11S)) is an inductively generating mapping. 

IV. The reader can easily verify that the relativization of "V to R'z is iV"z if z e f | 
and is the finest uniformity for R'z otherwise. 

V. Clearly the set U {K x K \zeP x P} belongs to - f . It follows from IV that 
if </?, Wy is discrete, then the space <Q, y y is discrete. 

We shall introduce the terminology which enables us to formulate 37 A.7 more 
precisely. 

37 A.9. Definition. The projective progeny (inductive progeny) of a class K 
of semi-uniform spaces, denoted by projy K or simply proj K (inda K or simply 
ind K) is the class of all semi-uniform spaces projectively (inductively) generated by a 
family of mappings with range carriers (domain carriers) in K. A class K of semi-
uniform spaces is said to be projective-stable or inductive-stable if, respectively, 
proj K = K or ind K = K. As in the case of closure spaces the terminology intro-
duced is applied to classes of semi-uniformities. 

Statement (a) of 37 A.7 can be formulated as follows: the class oU is projective-
stable but not inductive-stable. Let K be any class of semi-uniform spaces. It follows 
from 37 A.7 (b) that y c u [projy K] is the projective progeny of the class y c u [X] of 
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closure spaces (37 B.7), but y c u [indu K] need not be the inductive progeny of the 
class y c u [X] (substituted = uU). 

37 A. 10. Theorem. The projective (inductive) progeny of any class of semi-
uniform spaces is projective-stable (inductive-stable), that is to say, 

proj proj K = proj K , ind ind K = ind K 

for any class K of semi-uniform spaces. 
Proof. 37 A.4. 
37 A. l l . Theorem. Let K be a class of semi-uniform spaces and let L be the class 

consisting of semi-uniform structures of spaces of K. Then K is projective-stable 
(inductive-stable) if and only if the following two conditions are fulfilled: 

(a) L is completely meet-stable (completely join-stable) in U and contains all 
uniformly accrete (uniformly discrete) semi-uniformities. 

(b) I f f is a projective (inductive) generating mapping for semi-uniform spaces 
and E*feK (D*feK) then D*feK (E*fsK). 

The proof is left to the reader. 
Remark. Notice that condition (a) is equivalent to the statement that every semi-

uniformity has an upper (lower) modification in L. 

i 
B. PROJECTIVE GENERATION 

37 B.l. Theorem. Every semi-uniformity projectively generated by a family of 
mappings into uniform spaces is a uniformity, i.e., the class uU is projective-stable. 

Proof. Suppose that a semi-uniformity 11 for a set P is projectively generated by 
a family of mappings {/a | a e A) into uniform spaces. If 11 a is the semi-uniformity 
projectively generated by fa, a e A, then 1l = inf {1ia} by 37 A.2 proj. Since the 
greatest lower bound of a family of uniformities is a uniformity (36 B.2), to prove that 
11 is a uniformity it will suffice to show that a semi-uniformity 11 for a set P projective-
ly generated by a single mapping/ into a uniform space (Q, is a uniformity. By 
37 A.2 proj. the collection cf all ( / x / ) _ 1 [F], Ve - f , is a base for 11. Consequently, 
to prove that 11 is a uniformity it will suffice to show that each V = ( / x / ) _ 1 [F], 
Ve-T, contains a V[ a V[ for some V[ = ( / x / ) _ 1 [ F j with Vl in "V. Evidently, 
if V1 o V1 a Fthen V[ o V[ e F', which completes the proof. 

37 B.2. Theorem. In order that a mapping f of a uniform space (P,1t} onto 
another <Q, "f") be a projective generating mapping it is necessary and sufficient 
that a pseudometric dfor <P, 11s) be uniformly continuous if and only if d = o 
o ( / x / ) for some uniformly continuous pseudometric dt for <Q, T^"), or stated in 
other words, if n<P, IIs) is the range of the relation {i^ 0(f x / ) | dt e 

This is a straightforward consequence of 37 A.2 proj. and earlier results. 
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Corollary. A semi-uniform space is a uniform space if and only if it is projectively 
generated by a family of mappings into metrizable uniform spaces. 

37 B.3. Theorem. A semi-uniformity projectively generated by a family of map-
pings into proximally coarse semi-uniform spaces is proximally coarse. 

Proof. A semi-uniformity 1l is proximally coarse if and only if the finite square 
elements of H form a base for 11. Using this fact, it is easily shown that a semi-
uniformity projectively generated by a single mapping into a proximally coarse semi-
uniform space is a proximally coarse semi-uniformity, and then the theorem 
follows from Theorem 37 A.2 pro), asserting that the semi-uniformity projectively 
generated by a family of mappings {fa} is the greatest lower bound of semi-uniformities 
projectively generated by single mappings /0 , and from the description of infima 
in Theorem 36 A.1 (see also 38 B.12). 

Corollary. The product of a family of proximally coarse semi-uniform spaces 
is a proximally coarse semi-uniform space. 

37 B.4. Theorem. Each of the following three conditions is necessary and suf-
ficient for a semi-uniformity It for a set P to be a totally bounded uniformity: 

(a) 1l is projectively generated by the family of mappings {/ | / e U*(<P, 11s), R)} 
(b) H is projectively generated by. a family of bounded functions. 
(c) H is projectively generated by a family of mappings into proximally coarse 

uniform spaces. 
Proof . Evidently (a) implies (b), and it follows from 37 B.1 and 37 B.3 that (c) 

is sufficient. We shall show that (b) implies (c), and (a) is necessary. — I. (b) => (c): 
Assume that <P, IIs) is projectively generated by a family {/„} of bounded functions 
and consider the family {ga} where each ga is the range-restriction of /„ to the sub-
space E\fa of R. By 37 A.6 the space <P, IIs) is projectively generated by {ga}. Each 
set E,fa is bounded in R and therefore each space E*ga is proximally coarse (by 
25 B.16). — II. (a) is necessary: Assume that 11 is a proximally coarse uniformity and 
consider the semi-uniformity "f projectively generated by the family {/ : P -*• 
-> R | / e U*«P, R)}. By 37 B.1 and 37.B.3, "T is a proximally coarse uniformity. 
We shall prove that f = H. Both uniformities are proximally coarse and therefore 
it is sufficient to show that the proximity p induced by 11 coincides with the proximity q 
induced by y (by 25 B.9). Both proximities are uniformizable and therefore it is 
sufficient to show that a bounded / : <P, IIs) -> R is proximally continuous if and 
only / : <P, "Vs) -* R is proximally continuous, or equivalently, a bounded / : 
: <P, IIs) -* R is uniformly continuous if and only if / : <P, "Vs) -» R is uniformly 
continuous. Evidently "V <= 1i (i.e. "V is uniformly coarser than 11) and hence "if" is 
obvious. On the other hand, if a bounded / : <P, IIs) -» R is uniformly continuous 
then / : <P, "Vs) -> R is uniformly continuous because V is, by definition of "V, pro-
jectively generated by such functions. 

Remark. The necessity of (a) will be an immediate consequence of 39 B.7. 
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If {(/a' (Qa> ̂ o ) )} is a projective family for semi-uniform spaces, then we can 
consider the projective family {</„, P, <Qa, y f a » } for closure spaces, and it is natural 
to ask whether the closure induced by the semi-uniformity projectively generated 
by the former family coincides with the closure projectively generated by the latter 
family. The answer is positive. Before presenting the proof some notation and termino-
logy may be in place. Recall that y c u ^ , o r simply "i^l, denotes the closure induced 
by W and see 7 B.6. 

37 B.5. Definition. y c u , abbreviated to y, denotes the single-valued relation which 
assigns to each mapping / for semi-uniform spaces the mapping / : y c uD*/ ->• 

y c yE*/ for closure spaces which is said to be the transpose off to a mapping for 
closure spaces. If {/„} is a family of mappings for semi-uniform spaces then {y/fl} is 
the transpose of {/„} to a family of mappings for closure spaces. 

Evidently, i f / is uniformly continuous, then the transposed mapping/ is continuous. 
Now we shall prove 

37 B.6. Theorem. If {/„} is a projective generating family for a semi-uniform 
space then the transposed family {ycu/a} is a projective generating family for 
the closure space ycu^. 

Proof. It will suffice to prove the theorem for a single mapping. Indeed, if aUa is 
projectively generated by /„ and ua is projectively generated by y/a, then inf {<%a} is 
projectively generated by {/„} (by 37 A.2 proj.), inf {ua} is projectively generated by 
{?fa}, (32A.4) and by 36 A.3, if y< â = ua for each a, then yinf{^ a} = inf{ua}. 
Suppose that / is a projective generating mapping for semi-uniform spaces; write 
<P, = D*/, = E*/> u = til, v = y-T. To prove that u is projectively 
generated by / : P -» <2, u> one may merely compare the description of by means 
of "V (37 A.2 proj.) with the description of neighborhoods relatively to a closure pro-
jectively generated by a mapping by means of neighborhoods in the range carrier 
(32 A.6). 

From 37 B.6 we immediately obtain the following result. 

37 B.7. Theorem. If K is a class of semi-uniform spaces then y c u [proj0 iC] is 
the projective progeny of the class yCu[-K] of closure spaces. 

Corollary. If a class K of semi-uniform spaces is projective-stable then the class 
y c u [ K ] of closure spaces is projective-stable. 

Example. The class uU is projective-stable and hence the class y c u[uU] = uC 
is projective-stable. 

37 B.8. Theorem. Let K be a class of semi-uniform spaces and let Kx be the class 
of all uniformly accrete semi-uniform spaces. A semi-uniform space 3P belongs to 
proj K if and only if 0 is homeomorphic to a subspace of the product of a family 
of spaces from K u Kt. 

Corollary. A class K of semi-uniform spaces is projective-stable if and only if 
K contains all uniformly accrete spaces, K is hereditary and completely pro-
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ductive, and, of course, K contains all the uniform homeomorphs of each of its 
elements. 

Proof. Let K2 be the class of all spaces satisfying the condition. Clearly K2 <= 
c proj K. Suppose that 9 e proj K and {/„} is a projective generating family for & 
such that E*/„ e K for each a. If A is empty then 0 is a uniformly accrete space and 
hence 9 e K2. Assuming A 4= 0 consider the reduced product / of {/„}; by Corollary 
of 37 A.4, / is a projective generating mapping. Let J be the set endowed with 
a uniformly accrete semi-uniformity and let g be the reduced product of J : 9 2 
and/ . Clearly g is a projective generating mapping. Since g is injective, g is a uniform 
embedding. 

C. I N D U C T I V E G E N E R A T I O N 

By 37 A.8 the class uU of all uniform spaces is not inductive-stable, and moreover, 
U is the inductive progeny of uU (37 A.8 implies that U is contained in the inductive 
progeny of the class of all discrete uniform spaces). Thus if {fa} is an inductive gener-
ating family for semi-uniform spaces then (ycu/„} need not be an inductive generating 
family for closure spaces. Let {/„} be an inductive generating family for a semi-
uniform space <P, and let 11 a be inductively generated by fa : D*fa ->• P; from 
37 A.2 we have 11 = sup {Haj. Consider the closure ua inductively generated by 
fa '• Ycu®*/a P and the closure u inductively generated by {/„ : y C U D * / A -* P}; from 
33 A.4 we have u = sup {wa}. If ua = y c u 11a for each a then u = y c u 11 because 
Ycu : U C is completely lattice preserving(36 A.3). It follows that if the transpose of 
each mapping fa : D*fa -> <P, 11^ to a mapping for closure spaces is an inductive 
generating mapping for closure spaces, then the transpose{ycu/a} of the family {/„} 
is an inductive generating family for closure spaces. Thus the fact that the transpose 
of an inductive generating family of mappings for semi-uniform spaces to a family of 
mappings for closure spaces need not be an inductive generating family for closure 
spaces lies in the fact that the transpose y c u / of an inductive generating mapping / 
for semi-uniform spaces need not be an inductive generating mapping for closure 
spaces. Inductive generating mappings for semi-uniform spaces will be studied in 
37 D, to which we also leave the discussion of transposed families of mappings. 

Considering that uniform spaces form the most important class of semi-uniform 
spaces, we shall introduce the concept of an inductive generating family for uniform 
spaces. The results concerning inductive generating families for uniform spaces will 
be proved directly and also by a reduction to analogous results for inductive generat-
ing families for semi-uniform spaces; in the first case the proofs are similar to those 
concerning the corresponding results for inductive generating families for semi-
uniform spaces, and in the latter case the reduction is dependent upon the properties 
of the uniform modification and the almost self-evident proposition 37 C.1. Compare 
this development with thé similar one for inductive generating families for topological 
spaces in 33 B. 
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37 C.l. If 11 is the uniformly finest semi-uniformity for a set P rendering all given 
mappings /„ : (Q, "V -> P uniformly continuous, then the uniform modification 
Mil of 11 is the uniformly finest uniformity for P rendering all the above mappings 
uniformly continuous. 

37 C.l. Definition. A uniformity 11 for a set P is said to be inductively generated 
in the uniform sense by a family of mappings {/„} if P is the common range carrier 
of all/a, the domain carrier of each/fl is a semi-uniform space and 1l is the uniformly 
finest uniformity for P such that all enriched mappings <gr /„, D*fa , <P, <35?) > are 
uniformly continuous. A uniform space is said to be inductively generated in the 
uniform sense by a family {/„}, and { f a } is said to be an inductive generating family 
in the uniform sense for <P, 11s), if <P, IIs) is the common range carrier of all fa and 
the uniformity 11 is inductively generated in the uniform sense by the family 
{<gr fa, D*fa, P>}. An inductive generating family for uniform spaces is a family 
{fa} with a common range carrier <P, 11s) which is inductively generated in the 
uniform sense by the family {/„} (thus 11 is a uniformity). All the terminology intro-
duced is carried over to collections of mappings and single mappings. 

Now 37 C.1 can be restated as follows. 

37 C.3. If { ( f a , a, *>} is an inductive generating family for semi-uniform spaces, 
then { ( f a , 2„, «*>} is an inductive generating family for uniform spaces; in other 
words, if 0* is inductively generated by the former family then the uniform modific-
ation of 0> is inductively generated in the uniform sense by the latter family. 

Corollary. If {/„} is an inductive generating family for semi-uniform spaces and 
the common range carrier of the fa is a uniform space, then { f a } is also an inductive 
generating family for uniform spaces. 

It should be noted that an inductive generating family {fa} for uniform spaces need 
not be an inductive generating family for semi-uniform spaces. Indeed if / is the 
identity mapping of a semi-uniform space onto its uniform modification v>8P, then 
clearly / is an inductive generating mapping for uniform spaces but / is not an in-
ductive generating mapping for semi-uniform spaces provided that 9 4= 

Before proceeding, some comments on the definitions may be in place. 
Remarks, (a) Now we are in the same situation as in Section 33 when we had 

proved the fundamental theorems about inductive generation for closure spaces and 
we had noticed that the property of being a topological space is not inherited by in-
ductively generated spaces. Because of the importance of topological spaces we intro-
duced the definition of "a closure operation topologically inductively generated by 
a family of mappings" as the finest topological closure rendering all given mappings 
continuous. Similarly we introduced the definitions of "a topological inductive gener-
ating family" and "a topological inductive generating family for a space". In ac-
cordance with our previous terminology it would be more consistent to say "a uni-
formity uniformly inductively generated by a family {/„}", instead of "a uniformity 
inductively generated in the uniform sense by a family {/„}" and a "uniform inductive 

45—Topological Spaces 
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generating family for a space instead of "an inductive generating family in the 
uniform sense for a space 0 " . However, there are serious reasons for avoiding this 
terminology. The words uniform and uniformly are used to indicate that a notion 
relates to semi-uniform spaces and not merely to uniform spaces, for example, "uni-
formly continuous mapping", "uniformly discrete semi-uniform space". Next, and this 
is in accordance with the current use of the word uniform, we desire that is uni-
formly should imply is e.g. if P is uniformly discrete, thenP is discrete. 
On the other hand if a uniform space 0 is inductively generated by a family {/„}, then 
0 is inductively generated in the uniform sense by {/a} but the converse is not true. 
Finally, it is convenient to leave the term uniform generating family for a special 
type of generating families. 

(b) The theory which follows, and also the corresponding terminology, would be 
more lucid if only uniform spaces were considered. Nevertheless, the notion of a 
semi-uniform space is basic and in the most general situation it expresses the intuitive 
content of the notion of a structure describing "uniformness". Furthermore, a 
semi-uniformity inductively generated by a family {/a} can be easily obtained from 
the semi-uniform structures of the domain carriers of /„; we can say that % is the 
image of these semi-uniformities. For uniformities no such a single description exists; 
however, the theory can easily be reduced to that for semi-uniform spaces. On the 
other hand uniformities form the most important class of semi-uniform spaces be-
cause the class of all uniformities is the greatest class having some important addi-
tional properties (extension theorem 27 B.15 and so on). We shall study the inductive 
generation of uniform spaces from this point of view. 

(c) If {/„} is an inductive generating family for uniform spaces, then the common 
range carrier of each /„ is a uniform space, but the domain carriers are not required 
to be uniform spaces. It is worth noticing that the following proposition is true. 

37 C.4. A family {/„} is an inductive generating family for uniform spaces if 
and only if the family (<gr fa, uD*/a, E*/„>} is an inductive generating family 
for uniform spaces. 

37 C.5. Theorem. Suppose that P is a set and { f a \ a e A} is a family of mappings 
of semi-uniform spaces into P. Then there exists exactly one uniformity, say 
inductively generated in the uniform sense by {/„}: a pseudometric d for <P, is 
uniformly continuous if and only if the pseudometric do(fa x / a ) is a uniformly 
continuous pseudometric for D *fafor each a in A. If °Ua is inductively generated by 
fa, then is the uniformly finest uniformity uniformly coarser than each <^a, that is, 

is the least upper bound of {v<%„} in uU(P). 
Proof. The uniqueness is evident. Now let "V and "Va, a e A, be semi-uniformities 

inductively generated by the family {/a} or by the mapping fa, respectively. By 37 C.1 
= vf is inductively generated in the uniform sense by {/a} and °Ua = o f a is in-

ductively generated in the uniform sense by /„; in particular we obtain the existence of 
uniformities inductively generated in the uniform sense. By 37 A.2 ind. the semi-
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uniformity 'V is the least upper bound of the family { f a\ in U(P). By virtue of 36 B. 2 
we find that 1l = xif is the least upper bound of {Ha} in uU(P). Finally, the de-
scription of uniformly continuous pseudometrics for <P, liy follows from the de-
scription 37 A.2 ind of "f and the fact that d is uniformly continuous for <P, "Vy if 
and only if it is uniformly continuous for <P, u tT> = <P, liy. 

Direct proof . Let Jf be the set of all pseudometrics for P such that each d o 
o (/ a x /„) is a uniformly continuous pseudometric for D*fa for each a in A. It is 
easily seen that Jl is a uniform collection of pseudometrics for P and the correspond-
ing uniformity is inductively generated in the uniform sense by {fa}. Now let Ma, 
a e A, be the collection of all pseudometrics d for P such that d o (/„ x / a) is uniformly 
continuous for D*/a. Since we have proved that Jia = |i1la for each a and clearly 
j ( = (\{Jta), it follows that 11 = sup {<%„} in oU(P). 

Corollary. Let { f a \ a s A} be a family of mappings of semi-uniform spaces into 
a semi-uniform space SP and let Ax be a subset of A such that the domain carrier 
of each fa, as A— Au is a uniformly discrete uniform space. Then { f a | a e A} is an 
inductive generating family for uniform spaces if and only if { f a \ a s At} is such. 

37 C.6. Let us consider a family {/„} of mappings of semi-uniform spaces ranging 
in a semi-uniform space <P, K} and let "V be the uniformity for P inductively 
generated in the uniform sense by the family {gr/„ : D*/„ P}. Put 

h = J : < p , t o -> <p, my, ga =/„: D*f a ^ < p , - r y . 

Thus {ga} is an inductive generating family for uniform spaces, h is a bijective map-
ping and f„ = h o ga for each a; this could be written as 

(*) {fa} = h o [{,.}]. 
This factorization (*) will be called the canonical inductive factorization in the 
uniform sense of the family {/„}. If <P, H} is a uniform space, then obviously the 
mapping h is unifoimly continuous if and only if all fa are uniformly continuous. 
Of course, the assumption that 11 is a uniformity is essential. Let us also consider the 
canonical inductive factorization (see 37 A. 3) 

(**) {fa} = h'o[{g'a}-] 
of {/„}• By 37 C.3 we have 

9a=<lp,**9o, »E *g'a>og'tt 

for each a and 
h = h' o <JP, vD*h', D*h'} . 

37 C.7. Theorem. In order that a family { f a | a s A} of mappings of semi-uniform 
spaces into a uniform space (P, %y be an inductive generating family for uniform 
spaces it is necessary and sufficient that 

a mapping f of <P, 1iy into a uniform space <Q, "f~y be uniformly continuous if 
and only if each composite f o /„ , a s A, is uniformly continuous. 

45' 
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Proof. Let us consider the canonical inductive factorization {/,} = h 0 [{ga}]. 
By 37 A.5 a mapping / oh into a semi-uniform space is uniformly continuous if and 
only if all mappings ( / 0 h) o ga are uniformly continuous. But fohoga=fofa and 
consequently 

(*) A mapping f oh is uniformly continuous if and only if all mappings / ofa are 
uniformly continuous. 

According to 37 C.1, {/„} is an inductive generating family for uniform spaces if 
and only if the common range carrier <P, (= E*h) of all fa is the uniform modific-
ation of the common range carrier of each ga, say <P, "V>, which coincides with 
D*h. However, in order that <P, 11s) be the uniform modification of <P, ~f") it is 
necessary and sufficient that a mapping / of <P, IIs) into a uniform space be uni-
formly continuous if and only if the mapping / o h is uniformly continuous. Combin-
ing this with (*) we obtain the statement. 

Direct proof. I. Necessity. Suppose that {/„} is an inductive generating family 
for uniform spaces. If / : <P, <$0 ->• <g, "Vs) is uniformly continuous, then each 
mapping / of a is uniformly continuous as the composite of two uniformly continuous 
mappings (notice that <Q, V> need not be a uniform space here). Conversely, sup-
pose that all composites f ofa are uniformly continuous and <£), "Vs) = E*/ is 
a uniform space. To prove that / is uniformly continuous it is enough to show that 
d o ( / x / ) is a uniformly continuous pseudometric for <P, IIs) provided that d is 
uniformly continuous pseudometric for <Q, "Vs). Let d be any uniformly continuous 
pseudometric for (Q, "Vs). Since d a ( / x / ) is a pseudometric for <P, IIs) and 
<P, H") is inductively generated in the uniform sense by the family {/a}, to prove that 
d o ( / x / ) is uniformly continuous it is enough to show (by 37 C.5) that each 
(d o ( / x / ) ) o (/a x / a) is a uniformly continuous pseudometric for D*fa . However, 
(d o ( / x / ) ) o (/„ x /„) is equal to d o (/<>/„ x jo fa), and the latter pseudometric 
is uniformly continuous because d is a uniformly continuous pseudometric and f ofa 

is a uniformly continuous mapping. 

II. Sufficiency. Suppose that the condition is fulfilled and let us consider the 
canonical inductive factorization in the uniform sense (see 37 C.6) {/„} = L [{ga}] 
of {/„}. I f / is the identity mapping of the common range carrier <P, of all fa onto 
itself, then the condition yields that all / 0 /„ = fa are uniformly continuous, and con-
sequently by 37 C.6, h is uniformly continuous. If we put / = h~l then / ofa = ga 

and hence all f ofa are uniformly continuous. By the condition, / = h~] is uniformly 
continuous. Since both h and h~1 are uniformly continuous, h is a uniform homeo-
morphism, and the graph of h being the identity relation JP, we obtain fa = ga for 
each a. 

Remarks, (a) Notice that it follows from the preceding result that the following 
condition is necessary and sufficient for a uniform space <P, 11s) be the uniform 
modification of a uniform space <P, V >: a mapping / of the space <P, into 
a uniform space 8% is uniformly continuous if and only if the mapping/ : <P, IIs) 01 
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is uniformly continuous, (b) It should be noted that we can introduce the definition of 
an inductive generating family in a subclass K of U; then the concept of an inductive 
generating family for uniform spaces would be a special case K = uU. We leave to 
the reader the task of verifying that the preceding theorem follows from the fact that 
uU is projective-stable (compare with 33 B). 

37 C.8. Theorem. Let {/„ | a e A} be a family of mappings of semi-uniform spaces 
which range in a semi-uniform space <P, liy and let the domain carrier of each 

fa be inductively generated in the uniform sense by a family {gab | beBa}. Then 
{/„} is an inductive generating family for uniform spaces if and only if {/„ o gab} 
is such. 

Proof. Let us consider the following canonical inductive factorizations (not in the 
uniform sense!): 

{gab | b e Ba} = hao [{,g'ab | b e Ba}] , 

{faoha\aeA} = ho[[f'a\ae A}~\ . 

It follows that h o f'a o g'ab = fa o gab for each a in A and b in B. Since {f'a} and all 
{g'ab | b e J3fl} and hence also [f'a a g'ab} are inductive generating families for semi-
uniform spaces, by 37 C.3 the family {/„ o gab] is an inductive generating family for 
uniform spaces if and only if the space <P, H)(= E *fa 0 gat) is the uniform modifica-' 
tion of the common range carrier <P, f7") of all f'a o g'ab. By our assumption and 
37 C.1 each mapping ha is the identity mapping of each E*g'ab, b e Ba, onto its uni-
form modification. It follows that {/a} is an inductive generating family for uniform 
spaces if and only if {/„ o ha} is such. Finally, by 37 C.3 and 37 C.4 we find that 
{fa ° ha] is an inductive generating family for uniform spaces if and only if <P, 
is the uniform modification of <P, "f"}, which completes the proof. 

Direct proof. According to the preceding theorem it is sufficient to show that 
the statement "<P, is a uniform space, and a mapping/ of <P, IIs) into a uniform 
space is uniformly continuous if and only if all the mappings / 0 fa are uniformly 
continuous" is equivalent to the statement "<P, is a uniform space, and a map-
ping/ of <P, fy} into a uniform space is uniformly continuous if and only if all the 
mappings / ° (/„ o gab) are uniformly continuous". For each a the family {gab} is an 
inductive generating family for uniform spaces and therefore, again by the preceding 
theorem, the mapping / o /„ is uniformly continuous if and only if all the mappings 
(/ o fa) ° 9ab, b e Ba, are uniformly continuous (notice that this conclusion remains 
valid if we assume that {gab | b e Ba] is an inductive generating family; we must use 
37 A.5). Since / o (/fl • gab) = (/»/„) o gab, the proof is complete. 

37 C.9. In 37 C.8 the assumption that {gab \ b e Ba} is an inductive generating 
family for uniform spaces can be replaced by the following formally weaker as-
sumption: If a e A, then {gab | b e Ba} is an inductive generating family for uniform 
spaces or an inductive generating family for semi-uniform spaces. 
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Proof. The direct proof of the preceding theorem applies in this more general 
situation. On the other hand we shall show that 37 C.9 is an immediate corollary of 
the preceding theorem. Put 

9a„ = 9at • D*gab uE*gab, fa = fa • u D * / . - E*/„ • 

By 37 C.4 the family {/„} is an inductive generating family for uniform spaces if and 
only if {f'„} is such. Apply 37 C.8 to {g'ab} and {f'a} and notice tha t / , o gab = f'a c g'ab. 

As a straightforward consequence of 37 C.9 we obtain the following theorem which 
shows that the inductive generation for uniform spaces by a non-void family can be 
reduced to the construction of the sum semi-uniformity and the inductive generation 
for uniform spaces by a single mapping. 

37 C.10. Theorem. Let {/„ | a e A} be a non-void family of mappings of semi-
uniform spaces into a semi-uniform space <P, 11s). Then {/„} is an inductive generat-
ing family for uniform spaces if and only if the reduced sumf of {/„} is an inductive 
generating mapping for uniform spaces. 

Proof. We have D*f = E{D*/„} and f(a, x) = fax. Thus / o ia = fa for each a 
where ia is the canonical embedding of D*fa into D*/. Since {ia} is an inductive gener-
ating family for semi-uniform spaces, the statement follows from 37 C.9. 

37 C.ll . If <0, f > is a subspace of a semUuniform space <P, 11s), {/„} is an 
inductive generating family for <P, 11s) and is the subspace of D*fa whose under-
lying set is / a

_ 1 [e] , then (Q, Y ) is inductively generated by the family { f a : 01 a 

<Q, lO}. A similar result does not hold for the inductive gjneration for uniform 
spaces. E.g. let <0, y > be a subspace of a semi-uniform space <P, such that 
<g, utT> is not a subspace of <P, u^T). Then J : <Q, -»• <g, utT) and J : 
: <P, -* <P, are inductive generating mappings for uniform spaces and so on. 

D. QUOTIENTS 

As in the case of closure spaces and topological spaces, we shall introduce the 
definitions of a quotient, and of a quotient in the uniform sense, of a semiruniform 
space under a mapping or an equivalence. 

37 D.l. Definition. Let <P, be a semi-uniform space. If / is a mapping whose 
domain carrier is <P, <25?>, then the quotient of <P, °Uy under/, denoted by <P, ^ > / / 
(the quotient in the uniform sense of <P, IIs) under/, denoted by <P, >/„/), is the 
set E/ endowed with the semi-uniformity inductively generated (with the uniformity 
inductively generated in the uniform sense) by the mapping / : <P, E/. If g is 
an equivalence on <P, IIs) then the quotient of <P, IIs) under g, denoted by <P, W)[g, 
(the quotient in the uniform sense of <P, 11s) under g, denoted by <P, is the 
space <P, %}ln (<P, ^>/„7i), where 7r is the canonical mapping of <P, IIs) onto P/g. 
More specifically we shall often write uniform quotient instead of quotient. 

As a corollary of 37 C.1 we obtain: 
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37 D.2. If 0> is any semi-uniform space, f is a mapping with D*/ = 0 and q is 
an equivalence on then 

9 \ J = « ( * / / ) 

0>juQ = \>(0>IQ) . 
The quotient of a semi-uniform space under an equivalence was defined as the 

quotient under a certain mapping, and hence any investigation of quotients under equi-
valences reduces to an investigation of quotients under mappings. On the other hand 
the theorem which follows shows that any investigation of quotients under mappings 
also reduces to an investigation of quotients under equivalences. Hence we shall state 
various results for SPjq or * / / , leaving the formulation for the other quotient to the 
reader. 

37 D.3. Let f be a mapping of a semi-uniform space 9 into any struct and let Q 
be the equivalence {x y \fx = f y } . Then there exist uniform homeomorphisms h 
and htt such that 

(*) <gr / ,* ,* / /> = hon 
(**) <gr / ,* ,* /„ /> = fc.on. 

where n and nv are the canonical mappings of 0> onto 0/q and 0>juq. In particular, 
SPjf is uniformly homeomorphic to SPjg and */„/ is uniformly homeomorphic to 

Proof. Equation (*) defines exactly one mapping h which is bijective, and also 
(**) defines exactly one mapping h0 which is bijective; moreover, if we denote the 
left side of (*) and (#*) by g and gv then also n = h~l o g, nv = h'1 o gv. Since n 
and g are inductive generating mappings for semi-uniform spaces and 7iu and gu are 
inductive generating mappings for uniform spaces, we obtain from 37 A.5 and 37 C.7 
respectively that the mappings h and h~l, hv and h~* are uniformly continuous; this 
completes the proof. 

To the projective concept "a uniform embedding into a space", i.e. a projective 
generating mapping for semi-uniform spaces which is also injective, there corresponds 
the inductive concept "a mapping of a space 9 onto a quotient of i.e. an induc-
tive generating mapping for semi-uniform spaces with D*/ = 9 such that / is surjec-
tive. As an example we shall describe the inductive progeny of a class (compare with 
37 B.8). 

37 D.4. Theorem. Let K be a class of semi-uniform spaces and let Kt be the 
class of all uniformly discrete spaces. The inductive progeny of K consists of quot-
ients of sums of families in K u Kt. 

Proof. Let K2 be the class which consists of all spaces satisfying the condition. 
Clearly K2 <= ind K. Let 3P be any space of ind K and let {/„} be an inductive generat-
ing family for * with domain carriers inK. The reduced sum / of {/„} is an inductive 
generating mapping for Let 2 be the uniformly discrete space such that \SP\ = 
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The reduced sum g of J : 2 -* 8? and / is an inductive generating mapping for and 
clearly g is surjective. Thus 0> e K2. 

37 D.5 Corollary. A class K of semi-uniform spaces is inductive-stable if and only 
if K contains all uniformly discrete spaces, K is closed under arbitrary sums and 
all quotients of spaces of K belong to K. 

37 D.6. By 37 A.8 every semi-uniform space is the quotient of a discrete uniform 
space. It follows that, in general, 8P\g + even if * is a uniform space, and 
Ycu(^/e) 4= Ycu ^ ¡ 8 - T w o questions naturally arise: under what necessary and suf-
ficient conditions on * = <P, 11} and g do the equalities 

<P, *>/<? = <P, ®>lttQ 

Ycu«-P> ® > / e ) = Y c u < ^ ® > I q 

hold. The most important sufficient conditions require compactness and other 
related concepts, and therefore will be not treated here (consult the exercises to 41). 
At present we shall restrict ourselves to a general discussion. It should be noted that 
according to the introduction to 37 D the solution of the problem whether the trans-
pose of an inductive generating family for semi-uniform spaces to a family of map-
pings for closure spaces is an inductive generating family is easily reduced to the 
problem whether y c u ( D * f j f a ) = ycuD*/„//„ for each a. 

37 D.7. Theorem. In order that the quotient of a semi-uniform space <P, 11s) 
under an equivalence q be a uniform space it is necessary and sufficient that for 
each U in 1l there exist a [ / j in 1l such that Ux o g o <= g 0 U o g. 

Proof. Write <Q, "V"} = <P, %}[g. First we shall show that 
(*) "T consists of all (n x n) [U], U e%. 
We know that "V consists of all vicinities V of the diagonal of Q x Q such that 

(n x 7t)-1 [K] e It. Since 7t is surjective, coincides with all V <=. Q x Q such that 
(71 x 7T)_1 [F] E 11. Since (TI X 71) [(TI X TI)"1 [Vj] = V for each F c P x P , the 
auxiliary statement follows. 

Let us consider the semi-uniformity 1l' projectively generated by the mapping 
n : P -* <Q, tT). Evidently, if 1l' is a uniformity then y is a uniformity, and it follows 
from the fact that uU is projective-stable, that if V is a uniformity then 11' is a uni-
formity. Thus 11' is a uniformity if and only if "V is such. Now prove that 11' is a uni-
formity if and only if the condition of 37 D.7 is fulfilled. First we shall show that 

(**) 1l' has for a base the collection of all g a U o g, U e H. 
The semi-uniformity 1l' has the collection of all (71 x n)~1 [F], F e f , for a base, 

and hence by (*), the collection of all (7: x 7t)_1 [(71 x 71) [t/]], U e 11, is a base for 
11'. On the other hand 

(71 x T t ) " 1 [(TE x n ) [ [ / ] ] = U { I ? [ > ] X E | > ] | < * , y> e V} = g o U o g 

because g is symmetric. The proof of (**) is complete. 
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Now 1l' is a uniformity if and only if for each U in 11 there exists a U1 in 11 such that 

(QoUioe)o(QoU1oQ)c:QoUoQ, 

i.e. QoU1oQ°UioQc:goUoQ (we have g ° g = g). However if W cz g 0 U o g 
then g o g cz g CU 0 g because g o g c,U o g o g = g oU o g. The proof is com-
plete. 

The quotient of a uniform space need not be a uniform space, in other words, the 
condition of 37 D.7 need not be fulfilled. Nevertheless, Theorem 37 D.7 is rather 
general, and therefore it seems to be useful to illustrate this theorem with simple 
example. It will be based on the following proposition. 

37 D.8. A quotient of a semi-pseudometrizable semi-uniform space is semi-
pseudometrizable. In addition, if d semi-pseudometrizes <P, 1l}, and g is an equi-
valence on <P, 1l}, then the quotient <P, 1l}\g is semi-pseudometrized by 

D = {<X, Y> - dist (X, Y)} 

Proof. As above let <Q, V} stand for <P, 1l}\g, and % for the canonical mapping 
of <P, 11} onto <<2, ^O- Obviously D is a semi-pseudometric for <Q, ~f}. For each 
positive real r put Ur = E{<x, y) | d(x, y) < r} and Vr = E{<Z, Y> | D(X, Y) < r}. 
Since evidently D(X, Y> < r if and only if d(x, y) < r for some x in X and y in Y, 
we have (n x n) [t/ r] = Vr for each positive real r. The semi-uniformity "V con-
sists of all (71 x 7t) [U], U e H, and consequently, {Ur | r > 0, r e R} being a base 
of 11, {Vr | r > 0, r e R} is a base of y ; in other words, D semi-pseudometrizes "V. 

37 D.9. Example. Suppose that a semi-uniform space <P, 1l) is semi-pseudo-
metrized by d and let D be the semi-pseudometric for 0/g defined in 37 D.8. By 24 A.3 
D is a uniformly equivalent to a pseudometric if and only if for each r > 0 there exists 
an s > 0 such that D(X, Y> < s, D<Y, Z) < s imply that D(X, Z> < r. Notice 
that this condition coincides with the condition of 37 D.7. 

We now proceed to an examination of the validity of the second formula of 37 D.6. 
In what follows, unless otherwise stated, <P, 11} will be a semi-uniform space, g will 
be an equivalence on <P, 11}, % will be the canonical mapping of <P, 11} onto the quo-
tient space <P, 1l}\g which will be denoted by <g, - f } . We have shown that 

(1) R = E { ( t t x jt) [17] | U e 1l\ . 

By the definition of induced closures , 

(2) E{((7t x n) [t/]) [(AT)] \ U e1t) 

is the neighborhood system at the point X in <Q, YcuO-
It is easily seen that ((TT X TI) [t/]) [(X)] = it[U[X]] for each X e Q and U <= 

cz P X P (notice that XeQ=> 7t_1[(Z)] = X), and hence we have that 

(3) E{7i[t7[A']] ] U e 11) is the neighborhood system at X in (Q, Y c u r > . 
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It follows from (3) that the closure y c u y depends only on the proximity induced 
by H; more precisely, 

37 D.10. If Hi and H2 are two proximally equivalent semi-uniformities for 
a set P, then the closure spaces Ycu((^> and Ycu(^> ^2) | q) coincide for 
each equivalence g on P. 

Proof . If Hi and H2 are proximally equivalent, then the collections E{J7[AT] | U e 
e Hi} and E{t/[X] | UeH2} coincide for each X c P. 

Now let us return to our problem. Denote by v the closure inductively generated 
by the mapping n : <P, y c u ^ ) -»• Q, in other words, v is defined by <Q, v} = 
= <P, Yc\jHy I g• By the description of neighborhoods in quotients of closure spaces, 

(4) the collection E{7t[G] | G is a neighborhood of the set X in <P, y c u H ) j 

is the neighborhood system at the point X e Q in <Q, v). 

It follows from (3) and (4) that y c u y = v provided that every neighborhood G 
of each X e Q contains a t/[X] for some U eH (remember that every U\X\, U eH, 
is a neighborhood of X). Stated in other words, y c u y = v provided that every neigh-
borhood of each set X e Q in <P, ycuH} is a proximal neighborhood relative to the 
proximity induced by H. It is useful to state the result which has just been proved 
as a theorem. 

37 D.ll . Theorem. In order that y c u « P , H} / g) = yCU<P, H} / g it is suf-
ficient that every neighborhood in <P, y c l t H y of every set x e P,bea proximal 
neighborhood, i.e. contain a set of the form (7[e|V]] for some U in H, in other 
words, 

E{(U o . g ) [ * ] I U e H } 

be a base for the neighborhood system of the set g[x] in <P, ycuH) for each x e P. 
Corollary. If the sets xeP, are closed in <P, y c u H } , <P, y c u ^ > is a normal 

space and H is a semi-uniformity inducing the Čech proximity for <P, YCu^O> 
then the equality holds. In particular, if the sets ť?[x], xe P are closed, <P, y C u ^ ) 
is a normal space and H is the fine or the Čech uniformity for <P, y t h e n 
the equality holds. 

Remark. The condition in Theorem 37 D.11 is not necessary. A more detailed 
discussion is given in 39 D. 
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38. O R D E R E D SETS OF P R O X I M I T I E S 

This section is concerned with the development of order properties of the ordered 
class P of all proximities. The results of this section will be applied to projective and 
inductive generation for proximity spaces in 39. 

In subsection A we shall prove that P is boundedly order-complete and we shall 
describe infima and suprema in P. In subsection B we shall prove that the canonical 
mapping of U into P (which assigns to each semi-uniformity °U the proximity induced 
by is completely join-preserving (but not meet-preserving), and the canonical map-
ping of P into C (which assigns to each proximity p the closure induced by p) is 
completely lattice-preserving. In this connection the following concepts will be intro-
duced: proximally fine semi-uniformity (proximally coarse semi-uniformities were 
introduced in 25 B), fine proximity and coarse proximity. Subsection C concerns the 
class oP of all uniformizable proximities. We shall prove that uP is completely meet-
preserving and completely meet-stable in P, the canonical mapping of uU into uP is 
completely join-preserving (but not meet-preserving), and the canonical mapping of 
«P into uC is completely meet-preserving (but not join-preserving). The following 
concepts will be introduced: proximally fine (coarse) uniformity, fine (coarse) uni-
formizable proximity. 

A. O R D E R E D CLASS P 

By definition 25 A.1, a proximity for a set P is a relation p for exp P and exp P 
satisfying certain conditions. A proximity space is a pair <P, p} such that P is a set 
and p is a proximity for P. If p is a proximity for P then UDp = P- By definition 
25 A.7, a mapping / of a proximity space <P, p) into another one (Q, q) is said to be 
proximally continuous if Xp Y implies f[X\ qf\Y\ A proximity p is said to be pro-
ximally coarser than a proximity q, and q is said to be proximally finer than p, if both 
proximities are for the same set, say P, and the identity mapping of <P, q} onto 
<P, p> is proximally continuous; stated in other words, p is proximally coarser than q 
if and only if AT^Fimplies XpY(i.e. q <= p) and U^q = (JDp. 

The relation {p q | p is proximally finer than q} is an order; the class of all 
proximities ordered by this relation is denoted by P, and if P is a set then P(P) de-
notes the ordered subset of P consisting of all proximities for P. 
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It is to be noted that the order structure of P coincides with the restriction of the 
inclusion <=, and hence P(P) is an ordered subset of <exp (exp P x exp P), <=>. 

38 A.l. Theorem. Let P be a set. The ordered set P(P) is order-complete. The 
proximally finest proximity for P consists of all <X, 7) such that X c. P, Y cz P, 
X r\ Y 4= 0. The proximally coarsest proximity for P consists of all pairs <X, Y> 
such that P X 4= 0 4= Y cz P. If | a e A} is a non-void family in P(P), then 

sup {pa | a e A} = \J{pa \ a e A} . 

Proof. I. Let us consider the relations p = {Z -v Y\ X cz P, Y cz P, X n Y 4= 0} 
and p" = {X Y | P X 4= 0 4= Y cz P}. It follows from the definition of pro-
ximities that p cz p cz p" for each proximity p for P(p' <= p follows from (prox 3) 
and p cz p" from (prox l)). As a consequence, to prove that p' is the proximally finest 
proximity for P and p" is the proximally coarsest proximity for P it remains to show 
that both p' and p" are proximities. The verification of the corresponding conditions 
(prox i) is simple and may be left to the reader. — II. Now let {pa | a e A} be a non-
void family of proximities for P and consider the relation p = \j{pa | a e A}. The 
reader may show without difficulty that p is a proximity for P. Clearly p is the least 
upper bound of {pa} in P(P). — III. The ordered set P(P) is order-complete because it 
possesses a least element and a greatest element by I, and every non-void family has 
a least upper bound. 

38 A.2. Corollary. The set P(P) is completely join-stable in the ordered set 
<exp (exp P x exp P), c:). 

38 A.3. On the other hand P(P) is not meet-stable in <exp (exp P x exp P), cz ) 
whenever P has at least three points. Indeed, if x0, xu x2 are distinct elements of 
P and Pi, i = 1, 2, are proximities for P such that (x0) pt (x;) and (x0) non p{ (xy) for 
i 4= j, j = 1, 2, and p = px n p2, then (x0) non p (xř), i = 1, 2, but (x0) p (xu x2). 
Thus p does not fulfil (prox 4) and hence p is not a proximity. 

38 A.4. If {pa} is a non-void family in P(P) and p = fl{p0} a proximity, then 
p is the infimum of {pa} in P(P). 

It is easily seen that p fulfils conditions (prox l) —(prox 3). By 38 A.3 condition 
(prox 4) need not be fulfilled. If the family {pa} is range down-directed, then (prox 4) 
is fulfilled (and hence p is a proximity). In fact, if X non p Xh i = 1,2, then X non pai 
for some ah and {pa} being down-directed, there exists an a so that pa is proximally 
finer than pat, i = 1, 2; clearly X non pa Xh i = 1,2, and hence X non pa (X1 u X2) 
and hence X non p (Xt u X2). 

For the sake of completeness we recall a direct description of inf {pa} which was 
established in 25 E.7. 

38 A.5. If p is the infimum of a non-void family {pa} in P(P) then XpYif and only 
if X c. P, Y c P and the following condition is fulfilled: If is a finite de-
composition of X and {Yj} is a finite decomposition of Y, then XiP„Yj for some i, j 
and each a. 
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38 A.6. Theorem. Let p be the supremum of a non-void family {pa} in P(P) and 
let X be a subset of P. A set U is a proximal neighborhood of X in <P, p} if and 
only if U is a proximal neighborhood of X for each a. Stated in other words, if 1l is 
the set of all proximal neighborhoods of X in <P, p> and if 1la is the set of all 
proximal neighborhoods of X in <P, pa) for each a, then 11 = f){l/a}. 

Proof. By 38 A.1 we have (P - U) non p X if and only if (P - U) non pa X for 
each a. 

If It is the set of all proximal neighborhoods of a set X in <P, p>, then 11 is a filter 
on P which is proper if and only if X 4= 0. 

38 A.7. Theorem. Let p be the infimum of a non-void family {pa} in P(P) and let 
X cz P. If 1laY is the collection of all neighborhoods of an Y in <P, pay and 1iY = 
= U {ltaY}, then the set of all with Uie1iXi and {X, } a finite cover of X is 
a sub-base for the filter consisting of all proximal neighborhoods of X in (P, 

This is an immediate consequence of 38 A.5. In conclusion we shall state an im-
portant result, leaving the proof to the reader. 

38 A.8. Let {pa} be a family in P (P), {qa} be a family in P (Q) and let f be a map-
ping of P into Q. If all the mappings f: <P, pa) <Q, qa) are proximally con-
tinuous, then the mappings f : <P, sup {i>„}> -» <Q, sup {qa}) and f : <P, inf {pfl}> -* 
-* (Q, inf {qa}y are also proximally continuous. 

B. I N T E R R E L A T I O N S BETWEEN U, P AND C 

If 11 is a semi-uniformity for a set P, then 

p = E « X , Y)\X c P,Y<= P,Ue1i U[X] n Y * 0} 

is a proximity for P which is said to be induced by 1l (cf. 25 A.l). If p is a proximity 
for a set P then the relation {X -» uX | X <= P}, where uX = E{x | (x) p X}, is a 
closure operation for P which is said to be induced by p (25 A.1). Finally, let us recall 
that every semi-uniformity 11 for P induces the closure [X -+ uX}, where 

uX = E{x | U e 11 => l/[(x)] n X * 0} , 

which is denoted by y c u® or merely yll, and the relation \1l -> y1l\ is denoted by 
Ycu or merely y. The mapping y : U -» C which is termed the canonical mapping 
of U into C was examined in 36 A. 

38 B.l. Definition. Let yp u be the single-valued relation which assigns to each 
semi-uniformity the proximity induced by 1l, and let yCP be the single-valued relation 
which assigns to each proximity p the closure induced by p. The symbols yp u and yCP 

will also be used to denote the relations {<P, liy <P, yPU®)} and {<P, p) -> 
-» <P, YCPP>}- The restrictions of the mappings yp u : U -> P and yCP : P -> C will be 
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called the canonical mappings; e.g. if Pis a set then the mapping y p u : U(P) -> P(P) 
will be called the canonical mapping of U(P) into P(P) and yCP : P(P) -> C(P) will 
be called the canonical mapping of P(P) into C(P). 

For convenience our earlier results will be restated as follows: 

38 B.2. Theorem. The range of y p u is the class of all proximities and ycu = 
= y C P o Ypu- In particular, given a set P, the canonical mapping of U(P) into P(P) is 
surjective and the canonical mapping of U(P) into C(P) is the composition of the 
canonical mapping of U(P) onto P ( P ) followed by the canonical mapping of P(P) 
into C(P). 

Proof. The fact that each proximity is induced by a semi-uniformity was explicitly 
stated in 25 B.9. It is to be noted that the proof of this was performed by the construc-
tion of the proximally coarse semi-uniformity inducing a given proximity. The equal-
ity Ycu = YCP 0 Ypu w a s explicitly stated in 25 A.2; its proof is almost self-evident. 

It has already been proved that the canonical mappings YPU an<l YCP a r e order-
preserving. Now we shall prove essentially more for Ycp a s well as for Ypu- Recall 
that, by 36 A.3, the canonical mapping of U(P) into C(P) is completely lattice-
preserving. The next theorem asserts that the same is true for ycp and the theorem 
following it asserts that ypu : U(P) -> P(P) is completely join-preserving. On the 
other hand, Ypu does not preserve infima since, in general, there exists no finest 
semi-uniformity inducing a given proximity. 

38B.3. Theorem. If P is a set then the canonical mapping of P(P) into C(P) is 
completely lattice-preserving. The canonical mapping of P into C is completely 
lattice-preserving. 

Proof. Evidently the two statements are equivalent. We shall prove first statement. 
Let P be a set, {p„} be a non-void family in P(P), ua be induced by pa. We must show 
that sup {«„} is induced by sup {pa} and inf {«„} is induced by inf {pa}. First let 
p = sup {pa}, u = sup {ua}. If (x) pX, then (x) paX for some a (by 38 A.1), hence 
x e uaX which implies x e uX. Conversely, if x e uX, then x e uaX for some a (by 
31 A.2) and hence (x) pa X which implies (x) p X. Thus (x) p X if and only if x G UX. 
Now let p = inf {pa}, u = inf {«„} and let x be any element of P. Remember that 
proximal neighborhoods of a point coincide with neighborhoods in the induced 
closure space. Let °lla be the neighborhood system of x in <P, wa> for each a; thus 
<%a is the set of proximal neighborhoods of x in <P, pa>. By 31 A.5 the union of 
{<%„} is a local sub-base at x in <P, m> and by 38 A.7 the same collection is a sub-base 
for the filter of all proximal neighborhoods of x in <P, p). Consequently U <= P 
is a proximal neighborhood of x in <P, p> if and only if U <= P is a neighborhood 
of x in <P, «), and therefore u is induced by p. 

38B.4. Theorem. Let P be a set. The canonical mapping of U(P) into P(P) is 
completely join-preserving. The canonical mapping of U into P is completely 
join-preserving. 
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Proof. Evidently both statements are equivalent. We shall prove the first. Suppose 
that {<%„} is a non-void family in U(P), <?/ = sup {lia}, pa is induced by for each a 
and p is the supremum of {pa} in P(P). We must show that p is induced by i.e. 
XpYif and only if X <= P, Y <= P and U[X] n Y 4= 0 for each U in W. By 36 A.1 we 
have % = f|{^a} and by 38 A.1 p = If XpY, then XpaY for some a and hence 
[7[X] n 7 4= 0 for each U in and hence, each U in <= If X non pY, then 
X non pa y for each a, and hence there exists a family {[/„} such that Ua e 
Ua[X] n y 4= 0; clearly U = belongs to and C/[A"] n F n y} = 
= 0. The proof is complete. 

Recall that if 0 is a closure space then the symbol U(^) denotes the ordered set 
of all semi-uniformities inducing the closure structure of 0. A similar notation will be 
introduced for proximities on closure spaces and semi-uniformities on proximity 
spaces. 

38 B.5. Remark. Let P be a set. If it is a closure for P then P(P, u) denotes the 
ordered set of all proximities inducing u. If p is a proximity for P, then U(P, p) de-
notes the ordered set of all semi-uniformities which induce p. If 0 = <P, u) or 
0 = <p, p> then P(0) or U(0>) stands for P(P, u) or U(P, p), respectively. 

The set U(P, p) is always non-void because each proximity is induced by a semi-
uniformity. On the other hand, a set P(P, u) is non-void if and only if U(P, w) is 
non-void i.e. u is semi-uniformizable. In addition, by 38 B.2, 

|U(P,«)| = U{ |U(P,p) | |p 6 P(P,u)} 
for each closure it for P. 

38 B.6. Theorem. If 0 = <P, u> is a closure space, then the set P(0) is completely 
lattice-stable in P (P) and hence completely lattice-preserving in P(P) . 

Proof. If {pa | a e 4̂} is a non-void family in P(P, it) then pa induces u for each a, 
and by 38 B.3, sup {pa} induces sup {it | a e A] = u and inf {pa} induces inf {u | a e 
s A] = u, and hence sup {pa} as well as inf {pa} belong to P(P, it). 

Corollary. For each closure space 0 the ordered set P(0) is order-complete. 
In particular, if P(0) # 0, i.e. 0* is semi-uniformizable, then P(0) has a smallest 
and a greatest element. 

Recall that a semi-uniformity is said to be fine (coarse) if °U is the uniformly 
finest (uniformly coarsest) semi-uniformity inducing the closure Similarly we 
shall introduce the concepts of a fine and a coarse proximity. 

38 B.7. Definition. A proximity p is said to be fine (coarse) if p is the proximally 
finest (proximally coarsest) proximity inducing the closure yp. 

It follows from the corollary to 38 B.6 that if 0 is a semi-uniformizable closure space 
then the greatest element (least element) of P(0) is the unique coarse (fine) element 
of P(0). We shall prove somewhat more. 

38 B.8. If u is a closure for P then there exists a proximally finest proximally 
fine (coarse) continuous proximity for <P, u>. 
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Proof. Let v be the semi-uniformizable modification of u. The unique fine element 
of P(P, v) and the unique coarse element of P(P, v) have the required properties. 

38 B.9. Theorem. In order that a proximity p for a set P be fine it is necessary 
and sufficient that XpY imply that either (x) pYfor some xe X or Xp (y)for some 
y e Y. In order that a proximity pfor a set P be coarse it is necessary and sufficient 
that every two infinite subsets of P be proximal in <P, p>. 

Proof. Let p be a proximity for a set P and let u be the closure induced by p, 
i.e. x E uX if and only if (x)p X. Let qx consist of all <X, 7> such that X and Fare 
not semi-separated in <P, u> and let q2 consist of all <X, 7 ) such that X <= P, 
7 c: P and either both sets X and 7are infinite or X qxY. It is easily seen that qx is 
the proximally finest continuous proximity for <P, u) and q2 is the proximally coars-
est proximity inducing u. It is easily seen that p = qx (p = q2) if and only if the con-
dition of the first (the second) statement is fulfilled. 

38 B.10. Theorem. If p is a proximity for a set P, then the set U(P, p) is complete-
ly join-stable and completely lattice-preserving in U(P). 

Proof. Let {<%a | a e A} be a non-void family in U(P, p). Each %a induces p and 
hence, by 38 B.4, sup {<%a} induces sup {p | a e A} = p. 

To prove that U(P, p) is completely lattice-preserving in U(P) it is sufficient to 
show that U(P, p) is interval-like in U(P); but this is evident. 

Corollary. If * is a proximity space then the ordered set U(*) is boundedly 
order-complete and has a greatest element. — Remember that U(*) is non-void. 

We have introduced the concept of a proximally coarse semi-uniformity (25 B.8). 
By 25 B.7 a semi-uniformity aU is proximally coarse if and only if °U is the greatest 
element of U(P, p) where p is the proximity induced by "U. For the sake of complete-
ness we shall state the characterization 25 B.8 of proximally coarse semi-uniformities. 

38 B . l l . Theorem. A semi-uniformity °U is proximally coarse if and only if the 
finite square elements of H form a base for °U. 

38 B.12. Theorem. Let P be a set. The set T of all proximally coarse elements 
of U(P) is completely meet-stable in U(P), and the canonical mapping of T into 
P(P) is an order-isomorphism. 

Proof. I. The canonical mapping of Tinto P(P) is bijective and order-preserving 
and therefore an isomorphism. — II. Now let \fUa | a e A} be a non-void family in T 
and let y a be the collection of all finite square elements of aUa for each a. Thus y „ 
is a base for °Ua. The union y of ya is a sub-base for inf {Haj. Since y consists of 
finite square vicinities, the smallest filter base containing y also consists of finite 
square vicinities and therefore, by 38 B.11, inf {<%fa} is proximally coarse. Thus Tis 
completely meet-stable in U(P). An alternate proof follows from 25 B.20. 

Remark. The supremum in P(P) of proximally coarse semi-uniformities need not 
be a proximally coarse semi-uniformity (see 25 ex. 9). On the other hand, if the 
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supremum of a family of proximally coarse semi-uniformities is a uniformity 11, 
then H is proximally coarse because 1l is totally bounded and a totally bounded uni-
formity is proximally coarse. 

38 B.13. Remark. The mapping y : U -> P is not meet-preserving, i.e., if H and 
y are semi-uniformities for a set Q and p and q are proximities induced by 11 and "f 
respectively, then inf(^ , y ) need not induce inf (p, q) (even if p = q). This was 
shown by Example 25 B.10 where we proved that if P is an infinite set, i f x is the 
uniformly finest uniformity for P, #"2 is the uniformly finest proximally coarse 
uniformity for P, then f ( x f 2 and i f 2

 x are proximally equivalent and 
inf ( i f ! x if 2, if 2 x i f x ) is the uniformly finest uniformity for P x P which 
induces the proximally finest proximity for P x P; but i f 2 x if x as well as 
if x x i f 2 induces a proximity which is not the proximally finest proximity for 
P x P. 

On the other hand, the following proposition holds. 

38 B.14. If at least one of the semi-uniformities H or "f is proximally coarse, 
then the proximity induced by i n f ( ^ , y ) coincides with theinfimum of the pro-
ximities induced by H and y . 

Proof. Suppose that 11 is proximally coarse and H' is the set of all finite square 
elements of 11. The set if of all U n V, U e%', Ve"f, is a base for inf(^, y ) . 
If p is induced by H, q is induced by y and r = inf (p, q), then each element of 1l 
as well as each element of "f is an r-proximal vicinity. Since each element of 1i' is 
finite square, by. 25 B.6 each element of if is an r-proximal vicinity. Consequently 
if is a base for a proximally continuous semi-uniformity for <P, r). It is evident 
that inf (ll, y ) always induces a proximity proximally finer than r, and therefore 
inf (ll, y ) induces r. 

Corollary. Let P be a set and let {lia} be a non-void family in U(P). If all the °Ua, 
excepting at most one, are proximally coarse, then inf (HaJ induces inf {pa}, where 
pa is induced by Hafor each a. - 38 B.12, 38 B.14. 

38 B.15. Definition. A semi-uniformity 11 is said to be proximally fine if is the 
uniformly finest semi-uniformity inducing the proximity induced by 

Evidently any fine semi-uniformity is proximally fine. It follows that if p is a fine 
proximity then there exists a proximally fine semi-uniformity which induces p; it 
coincides with the fine semi-uniformity which induces the closure induced by p. In 
general a proximity need not be induced by a proximally fine semi-uniformity; e.g. 
in 38 B.13 the proximity induced by if ^ x if 2 is induced by no proximally fine semi-
uniformity. 

38 B.16. A semi-uniformity for a set P is proximally fine if and only if 11 
contains each vicinity Vof the diagonal of P x P which has the following property: 
For each X <= P there exists a U in 11 such that I7[X] c V\X\ 

46—Topological Spaces 
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Proof. Let p be the proximity induced by 11. The property of Vstated is equivalent 
to the fact that V is a p-proximal vicinity. It follows from 38 B.14 that 1l is proximally 
fine only if 11 consists of all p-proximal vicinities. On the other hand "if" is evident. 

C. U N I F O R M I Z A B L E P R O X I M I T I E S 

Recall that a uniformizable proximity is a proximity induced by a uniformity. We 
begin with a review of some earlier results. 

38 C.l. (a) Each of the following conditions is necessary and sufficient for a pro-
ximity p for a set P to be uniformizable: 

(a) every two non-proximal subsets of <P, p> have disjoint proximal neighbor-
hoods (25 B.2); 

(p) p = E{<X, Y> | X c P, Y <z P, f e P« P , p\ R) => dist ( / [* ] , / [Y]) = 0} 
(25 C.5); 

(y) the coarse semi-uniformity inducing p is a uniformity (25 B.9). 
(b) If p is a proximity then there exists a proximally finest uniformizable pro-

ximity proximally coarser than p (the so-called uniformizable modification of p) 
(25 C.2). 

(c) If y is the proximally coarse semi-uniformity inducing the same proximity 
as a semi-uniformity 11, then the uniform modification of "f induces the same pro-
ximity as the uniform modification of °U (25 C.2). 

Recall that the symbol uC (uU) denotes the ordered subclass of C (U) consisting 
of all uniformizable closures (uniformities). The symbol «u has been used to denote 
the uniform modification, that is, the single-valued relation which assigns to each 
semi-uniformity 11 the uniformly finest uniformity uniformly coarser than 1l\ the 
symbol u c denotes the uniformizable modification for closures, that is, the single-
valued relation which assigns to each closure u the finest uniformizable closure 
coarser than u. It should be noted that as u0 as well as u c are sometimes ab-
breviated to o. 

38 C.2. Remark. uP denotes the ordered class of all uniformizable proxim-
ities; if P is a set then uP(P) denotes the ordered subset of P(P) consisting of all uni-
formizable proximities, and i)P(P, u), u being a closure for P, denotes the ordered set 
of all uniformizable proximities inducing the closure u. Finally, if p is a proximity 
for a set P, then «U(P, p) denotes the ordered set of all uniformities inducing the pro-
ximity p. The uniformizable modification for proximities, denoted by up or simply u, 
is the single-valued relation which assigns to each proximity p the proximally finest 
uniformizable proximity proximally coarser than p, i.e. vp is the upper modification 
of p in uP. The symbol uP also denotes {<P ,p) -» <P, uPp> | <P, p> e P}. 

38 C.3. Theorem. Let P be a set. The ordered set uP(P) is completely meet-stable 
and completely meet-preserving in P(P)and the proximally coarsest and proximally 
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finest proximities for P are uniformizable, and hence they are the proximally 
coarsest and proximally finest uniformizable proximities for P. Furthermore, uP(P) 
is order-complete and uP(P) = u[P(P)]. The mapping u : P(P) -> uP(P) is completely 
lattice-preserving, « o « = « and vp is proximally coarser than p for each p in 
P(P). If {pa} is any family in P(P) then 

u sup {pa} = « sup {vpa} = sup {up„} 

where the last supremum is taken in uP(P). 

Corollary. The class »P is completely meet-stable and completely meet-preserving 
in P, and v>P = Eu. The class uP is boundedly order-complete and contains each 
proximally accrete or proximally discrete proximity. We have o o o = », up is 
proximally coarser than p for each p in P, and the mapping « : P -» oP is sur-
jective and completely lattice-preserving. 

Proof. By 38 C.1 (b) each element of P(P) has an upper modification in uP(P), 
by 38 A.1 the set P(P) is order-complete. Lemma 31 B.2 applies, and we obtain all 
the statements except that each proximally discrete proximity is uniformizable; how-
ever, this follows readily from 38 C.1 (a) (a) and the description of proximally discrete 
proximities (38 A.1). 

It has already been shown (36 B.7) that y c u c u0 4= u c o Ycu> but (y c u o »0) % is 
always coarser than (uc 0 y c u ) °U. 

38 C.4. Theorem. The uniform modification of a semi-uniformity H induces the 
the uniformizable modification of the proximity induced by "U, in symbols, 

Y p u o » u = Dp o Y p u • 

Proof. Let % be a semi-uniformity for a set P and let "f be the coarse semi-uniform-
ity inducing the same proximity as H. It is enough to show that the uniform modific-
ation of "V induces the same proximity as the uniform modification of 
however, this was recalled in 38 C.1. 

38 C.5. Remark, (a) yCp o»p 4 « c ° YCP- point of fact, assuming YCP »»P = 
= uc o YCp> w e immediately obtain from 38 C.4 that y c u o «u = o c o ycu; but this 
is not true as noted above. 

(b) Since uP(P) = up[P(P)] for each set P, it follows from 38 C.4 that vU(P, p) = 
= Uu[U(P, p)] provided that p is a uniformizable proximity. On the other hand it is 
not true that uP(P, m) = up[P(P, u)] even if « is a uniformizable closure (by (a)). 

38 C.6. Theorem. Let P be a set. The canonical mapping of uU(P) into »P(P) 
(i.e. the mapping yPU :«U(P) t)P(P)/) is completely join-preserving, and 

YPU SUP {Ha | a e A} = sup { y p u ^ 0 \ a e A ] 

for each family {Ha} in uU(P), where the supremum on the left side is taken in 
wU(P) and that on the right side in uP(P). The mapping y : uU -> »P is completely 
join-preserving. 

46« 
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Přoof. Denóte by H or the supremum of taken in uU(P) or U(P), re-
spectively, and by p or pi the supremum of {yPU^a} taken in UP(P) or P(P) respective-
ly. By 38 B.4 we have Ypu^i = Pi- Since = x>u1ii and p — upp,, we obtain from 
38 C.4 that y p u ^ = p. 

Remark. In general the canonical mapping y :'ull(P) -v uP(P) is not meet-
preserving. By 38B.13 there exist two proximally equivalent uniformities whose 
infimum induces a strictly proximally finer proximity. 

38 C.7. CoroUary. For each proximity p the ordered set v i l (P, p) is boundedly 
erderrcomplete, and v\i(P,p) is completely join-stable and completely join-preserv-
ing in UU(P) . 

38 C.8. Theorem. Lei P be a set. The canonical mapping y : I)P(P) -> UC(P) is 
completely meet-preserving, and 

(*) ' Y mf {pa} = inf {iPa} 

for each family {pa} (not necessarily non-void) in UP(P), where the infimum on the 
left side is taken iň ÚP(P) and that on the right side in UC(P). 

Corollary. The canonical mapping y : UP -*• UC is completely meet-preserving. 

Próóf: By 38 C.3 (31.B.4) the greatest lower bounds in UP(P) (UC(P)) coincide with 
those in P(P) (C(P), respectively). On the other hand, by 38 B.3 the relation (*) 
holds if, the greatest lower bounds are ta^en in P(P) and C(P) respectively. 

38 C.9. Corollary. For each closure u for a set P the ordered set »P(P, u) is 
boundedly order-complete and the set UP(P, u) is completely meet-stable and com-
pletely meet-preserving in UP(P). 

Remark. The set «P(P, u) is non-void if and only if u is uniformizable. If UP(P, u) 
is non-void, then (by38,£,9) there exists a finest element of uP(P, u), the so-called 
Čech proximity of <P, u> (see 28 A.1). On the other hand, the coarsest element need 
not exist, e.g. if <P, u> = Q (see 41 D.6). 

38 G.10. Definition. A proximally, fine (coarse) uniformity is a uniformity ^ such 
that °U is the uniformly finest (coarsest) uniformity inducing the proximity yll. 
A fine (coarse) uniformizable proximity is a uniformizable proximity p such that 
p is the proximally finest (coarsest) uniformizable proximity inducing the closure yp. 

Thus the term fine uniformizable; proximity is an alternate name for the Čech pro-
ximity. 

38 C . l l . (a). A uniformity °U is a proximally coarse semi-uniformity if and only 
if % is a proximally coarse uniformity, (b) If a proximally fine semi-uniformity 
is a uniformity, then 11 is a proximally fine uniformity (but a proximally fine 
uniformity need not be a proximally fine semi-uniformity). (c) If a fine (coarse) 
proximity p is uniformizable, then p is a fine (coarse) uniformizable proximity; 
but a fine (coarse) uniformizable proximity need not be a fine (coarse) proximity. 
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Proof. I. If a uniformity °U is a proximally coarse semi-uniformity, then obviously 
11 is a proximally coarse uniformity. If 1l is a proximally coarse uniformity, then 11 is 
a proximally coarse semi-uniformity, by 38 C.1 (c). 

II. The first statements of (b) and (c) are evident. 
III. Let <P, «} be a subspace of R, where P is the set consisting of zero and all 

points of the form lfn, n = 1, 2,.... It is easily seen that the fine proximity of <P, u> 
differs from the fine uniformizable proximity of <P, u> (i.e., the Cech proximity of 
<P, «» . 

IV. An example of a coarse uniformizable proximity which is not a coarse pro-
ximity can be obtained as follows: take a coarse uniformity H which is not a coarse 
semi-uniformity; clearly the proximity induced by 1i is a coarse uniformizable pro-
ximity but not a coarse proximity. An example of a proximally fine uniformity which 
is not a proximally fine semi-uniformity can be obtained as follows: take a pseudo-
metrizable uniform space <P, 11s) which is not uniformly quasi-discrete; H is a pro-
ximally fine uniformity but not a proximally fine semi-uniformity, see ex. 4. 

38 C.12. A uniformity 1l is a proximally coarse uniformity if and only if 11 is 
totally bounded. Indeed, a uniformity H is a proximally coarse uniformity if and only 
if H is a proximally coarse semi-uniformity (by 38 C.11 (a)), and a uniformity 11 is 
a proximally coarse semi-uniformity if and only if 1l is totally bounded (by 25 B.12). 

38 C.13. A description of proximally fine uniformities was given in 25 B.22. 
Observe that the uniform modification of a proximally fine semi-uniformity is a pro-
ximally fine uniformity. 

38 C.14. A proximity p is a proximally fine uniformizable proximity (i.e., 
a Cech proximity) if and only if p is the uniformizable modification of a fine 
proximity. 

Proximally coarse uniformizable proximities will be described in 41 D. 
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39. P R O J E C T I V E A N D I N D U C T I V E G E N E R A T I O N 
F O R P R O X I M I T Y S P A C E S 

The projective and inductive generation for closure spaces or semi-uniform spaces 
was studied in 32, 33 and 37. The present section concerns projective and inductive 
generation for proximity spaces. Whereas the proofs and examples in 32, 33 and 37 
were given with all the details, and some theorems were proved twice, the proofs 
in this section are rather short and, possibly, rather concise. Particular attention 
is given to interrelations between the generation of closure spaces, semi-uniform spa-
ces and proximity spaces (for a summary see 39 C.6). The reader familiar with the 
fundamentals of the theory of categories is invited to carry over generations and the 
interrelations between the generation for various kind of spaces to the theory of 
categories (e.g. with given functors into the category of sets); the proofs persist. 

A. G E N E R A L I T I E S 

39 A.l. Definition. A proximity p for a set P is said to be projectively generated 
by a family of mappings {/„ | a e A} if {/„} is a projective family of mappings for 
proximity spaces with a common domain carrier P or <P, and p is the proximally 
coarsest proximity for P such that all the mappings/„ : <P, p} -* E*fa are continuous; 
in this case the family {/„} is said to be a projective generating family for <P, p}. 
A proximity space <P, p) is said to be projectively generated by a family of map-
pings { f a } if {/„} is a projective generating family for <P, p} and <P, p} is the common 
domain carrier of all fa. A proximity p for a set P is said to be inductively generated 
by a family { f a } if {/„} is an inductive family of mappings with a common range 
carrier P or <P, p> and p is the proximally finest proximity such that all the mappings 
fa P> are continuous; in this case {/fl} is said to be an inductive generat-
ing family for <P, p}. A proximity space is said to be inductively generated by 
{fa} if {fa} is an inductive generating family for <P, p) and <P, p) is the common 
range carrier of all the fa. The definitions just stated are carried over to collections 
of mappings and single mappings in such a way that a collection has a property 
if and only if the family {/ | / e J*} has the property ^J, and a mapping / has a pro-
perty <p if and only if the singleton ( / ) has the property 
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39 A.2. Examples, (a) The empty set 0 is a projective generating family for each 
proximally accrete space and an inductive generating family for each proximally 
discrete space, (b) A proximity space <P, p> inductively generated by a family of 
constant mappings is a proximally discrete space, and a proximity space projectively 
generated by a family of constant mappings is a proximally accrete space (remember 
that every constant mapping for proximity spaces is proximally continuous), (c) A pro-
ximity space projectively generated by a family of mappings into proximally accrete 
spaces is a proximally accrete space, and a proximity space inductively generated by 
a family of mappings of proximally discrete spaces is a proximally discrete space 
(remember that a mapping/for proximity spaces is proximally continuous whenever 
E*/ is proximally accrete or D*/ is proximally discrete), (d) A proximal homeo-
morphism is both a projective generating mapping and an inductive generating map-
ping. (e) If {pa} is family in P(P), then inf {pa} is projectively generated by the family 
{J : P -» <P, pa}} and sup {pa} is inductively generated by the family {J : <P, pa} -> 

39 A.3 proj. Theorem. Every projective family of mappings for proximity 
spaces with a common domain carrier P which is a set, projectively generates 
exactly one proximity p for P. If p is projectively generated by a single mapping 
f:P->(.Q, q>, then XpY if and only if X e P, Y <= P and f[X~] qf[Y~\. If a pro-
ximity p for a set P is projectively generated by a family { f a } and if each pa is pro-
jectively generated by the mapping /„, then p is the infimum of {pa}. 

39 A.3 ind. Theorem. Every inductive family of mappings {/„} for proximity 
spaces with a common range carrier P which is a set, inductively generates 
exactly one proximity for P. If p is inductively generated by a single mapping 
f • <Q, <1> -»• P, then XpY if and only if X <= P, Y c P and either X n Y 4= 0 or 
/ - 1 [ X ] q / - 1 [ Y ] . If a proximity p for a set P is inductively generated by a family 
{fa} and pa is inductively generated by the mapping fafor each a, then p is the 
supremum of {pa}. 

Proof of 39 A.3 proj. I. Uniqueness is clear. 
II. Let / be a mapping of P into a proximity space (Q, q} and let p be the set of all 

(X, Y> such that X c P, Y c P and f\X~] qf[X~\. We shall prove that p is the pro-
ximity projectively induced by / . The proof of the fact that p is a proximity for P 
is left to the reader because the verification of the conditions (prox i) is straight-
forward. If XpY, then/fX] g/[Y] (by the definition of p) and hence the mapping 
/ : (P, p) -* <Q, q) is proximally continuous. If r is a proximity such that the 
mapping/ : <P, r> (Q, q) is proximally continuous, then A>Yimplies/[-X"] # / [Y] 
and hence XpY, which shows that p is the proximally coarsest proximity which rend-
ers / continuous. 

III. Let {/„} be a projective family for proximity spaces with a common domain 
carrier P, which is a set, and let pa be the proximity projectively generated by /„. 
We shall prove that p = inf {pa} is projectively generated by {pa}. The mapping 
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9a = fa'- (P, p} is proximally continuous for each a because ga is the compo-
site of two proximally continuous mappings, namely J : <P, p~) <P, pa} and fa : 
: <P, Pa) -* E*fa . On the other hand, if r is a proximity such that each fa : <P, r ) 
-* E*/a is proximally continuous, then r is proximally finer than each pa, and hence 
r is proximally finer than inf {pa} = p. 

Proof of 39 A.3 ind. We shall only prove that if / is a mapping of a proximity 
space <2, q) into a set P then the set p of all (X, Y> such that X a P, F c P and 
either X n Y4= 0 o r / - ' [A" ] :[Y], is the proximity inductively generated by / . 
It is easily seen that p is a proximity for P. If X1qY1, then f\X^\ p/[Yj because 
/ " ' [ / M ] => Xi> f ' V i Y j ] => Yu and hence X.qY, implies f~1[f[X1'J] q 
f Thus the mapping / : (Q, q} -*• <P, p> is proximally continuous. If 
r is a proximity for P such that / : (Q, q) -*• <P, r) is proximally continuous, and 
if XpY, then either X n Y + 0, in which case XrY because r is a proximity, or 
f'^X] g / _ 1 [ Y ] , in which case / [ / " ' [A 1 ] ] r / [ / _ 1 [ X ] ] and hence also XrY be-
cause X =>/ [ / _ 1 [X]] and Y=> / [ / " ' [ Y ] ] . Thus ZpYimplies XrY, and hence r is 
proximally coarser than p. 

39 A.4 proj. Theorem. Let [fa] be a projective family of mappings for proximity 
spaces with a common domain carrier 0 which is a space. Then {/,} is a projective 
generating family for proximity spaces if and only if the following condition is 
fulfilled: 

A mapping f of a proximity space into 0 is proximally continuous if and only if 
all the mappings fa o f are proximally continuous. 

39 A.4 ind. Theorem. Let {/„} be an inductive family of mappings for proximity 
spaces with a common range carrier 2P which is a space. Then {/„} is an inductive 
generating family for proximity spaces if and only if the following condition is 
fulfilled: 

A mapping f of & into a proximity space is proximally continuous if and only if 
all the mappings f o fa are proximally continuous. 

Proof of 39 A.4 proj. I. Suppose that 0 is projectively generated by {/„} a n d / is 
a mapping of a proximity space 2, into 8?. If / is proximally continuous, then all the 
fa o / are proximally continuous as composites of proximally continuous mappings. 
Conversely, suppose that all the fa of are proximally continuous. Write 2 = <Q, q}, 
0 = <P, p}. Consider the proximity r inductively generated by / : (Q, q) P. To 
prove that / is continuous it is sufficient to show that r is proximally finer than p, 
and to prove that r is proximally finer than p it is sufficient to show that each map-
ping / „ : <P, r> -> E*/a is proximally continuous. Suppose XrY; we must show that 
the sets/„[A-] and /0[Y] are proximal in E*/„. If X n Y 4= 0 then fa[X] n / a[Y] * 0 
and therefore the sets /„[A] and /„[Y] are proximal in E*/. If X n Y = 0, then 
/ _ 1 [ X ] qf-^Y] (by 39 A.3 ind) and hence, faof being proximally continuous, the 
images under /„ of of the sets Xt = f~l[X.] anc* Yi = / " :[Y] must be proximal in 
E*/«• Since evidently /0[A] ^ / „ [ / [ X j ] and /„[Y] ^ / „ [ / [Y/ j ] , we obtain that 
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/„[X] and /„[ Y] are also proximal in E*/; this establishes the proximal continuity 
o f / . : <P, r> - E*/a. 

II. Suppose that the condition is fulfilled. Taking / = J : * -*• * we see that all 
the mappings /„ = /„ ° / are proximally continuous. Write * = <P, p>. If r is a pro-
ximity for P such that all the mappings fa : <P, r ) ->• E*/a are proximally continuous, 
then J : <P, r> -»• <P, p) is proximally continuous because fa : <P, r ) -> E*/„ = 
= fa ° (J : {-P. J") ->• <P, p>), and therefore r is proximally finer than p. Thus * 
is projectively generated by the family {/„}. 

Proof of 39 A.4 ind. I. Suppose that * is inductively generated by {/„} a n d / is 
a mapping of * into a proximity space SL. If / is proximally continuous then all the 
/ „ / . are proximally continuous as composites of proximally continuous mappings. 
Conversely, assume that all the mappings / 0 fa are proximally continuous. We must 
show that / is proximally continuous. Write * = <P, p), H = <Q, q} and let r be 
the proximity projectively generated by / : P ->• <Q, q}. It is sufficient to prove that 
p is proximally finer than r, and hence, that each mapping fa : D*fa ->• <P, r> is 
proximally continuous. 

Assume that X and Y are proximal in D*fa . We must show fa\_X~\ r fa[Y~\. Since 
f ofa is proximally continuous we have / [ /„[X]] g / [ / a [ y ] ] and therefore, r being 
projectively generated by / : P -» <Q, q}, fa\X~\ rf0[Y]. 

II. Suppose that the condition is fulfilled. Taking / = J : * -»• * we obtain that 
each f„ is proximally continuous. If r is a proximity for \8P\ such that all fa : D*fa -> 

r ) are proximally continuous, then J : * -»• r ) is proximally continuous 
(by the condition) and hence * is inductively generated by {/„}. 

From theorem 39 A.4 we immediately obtain the following important theorem 
on the associativity of projective and inductive constructions. 

39 A.5 proj. Associativity theorem. Let {/„ | a e A} be a projective family for 
proximity spaces and let the range carrier E*fa be projectively generated by a 
family {gab | b s Ba) for each a in A. Then {/„} is a projective generating family for 
proximity spaces if and only if the family {gab ofa \ a e A, be Ba} is a projective 
generating family for proximity spaces. 

39 A.5 ind. Associativity theorem. Let {/„ | a e A] be an inductive family for 
proximity spaces and let the domain carrier D*fa be inductively generated by a 
family {gab \ b e Ba] for each a in A. Then {/„} is an inductive generating family 
for proximity spaces if and only if the family { f a a gab | a e A, be Ba} is an in-
ductive generating family for proximity spaces. 

Proof of 39 A.5 proj. Applying 39 A.4 proj. to each D*gab we find that fa of is 
proximally continuous for each a if and only if the mapping gab o fa o / is proximally 
continuous for each a e A and b e B„. Again by 39 A.4, {/„} is a projective generat-
ing family if and only if {gab o /„} is a projective generating family. 

Proof of 39 A.5 ind. Applying 39 A.4 ind. to each D*fa we see that, given a map-
ping / of the common range carrier of all fa into a proximity space, then all the 
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f ofa are proximally continuous if and only if all the / o /„ ° gab are proximally con-
tinuous. Now the conclusion follows from 39 A.4. 

39 A.6. Examples , (a) Every surjective projective generating mapping is in-
ductive generating. In fact, if / : <Q, q} -> <P, p> is a surjective projective generat-
ing mapping, XpY and X, = / _ 1 [ X ] , Y, = f'^Y], then / [ Z t ] = X, / [ Y j = Y, 
because/is surjective, and hence XlqYl because/is a projective generating mapping. 
Thus XpY implies / - 1 [ X ] g / ~ L[Y], which means that / is an inductive generating 
mapping. 

(b) Every injective inductive generating mapping is a projective generating 
mapping. Use the fact that / ~1 [ / [ ^ ] ] = X i f f is injective. 

(c) If <P, p> is a proximity space, then the relativization q of p to a subset Q 
of P is projectively generated by J : Q -»• <P, p>; stated in other words, if Q cz P 
then J : <Q, q} -* <P, p) is a projective generating mapping if and only if <Q, q} 
is a subspace of <P, p). Remember that the relativization of p to a subset Q of P is 
is defined to be p n (exp Q x exp Q), i.e. XqY if and only if X <= Q, Y <= Q 
and XpY. 

(d) If f is a proximally continuous mapping of <P, p ) into <0, q) and if there 
exists a proximally continuous mapping g : <Q, q) -* <P, p ) such that f o g = J : 
: <2. (Q> then f is a surjective inductive generating mapping. 

(e) If f is a proximally continuous mapping of <P, p> into <g, q) and i/ i/iere 
ex/sis a proximally continuous mapping g of a subspace of <Q, q) into <P, p ) suc/z 
ifcai g of = J : <P, p> -> <P, p>, i/ien / is an injective projective generating map-
ping, i.e. a proximal embedding (first notice that f is injective). 

(f) If f and g are proximally continuous mappings and if f o g is a proximal 
homeomorphism (in particular, D*/ = E*g), then f is a surjective inductive generat-
ing mapping and g is an injective projective generating mapping (i.e. a proximal 
embedding). 

39 A.7 proj. Commutativity. If {/0} is a projective generating family for a pro-
ximity space <P, p ) and q} is a subspace of <P, p) , then {ga} is a projective 
generating family for <Q, q) where ga = /„ : <2, q> E *fa for each a. 

39 A.7 ind. Partial commutativity. If (Q, q ) is a subspace of a proximity space 
<P, p ) and {/„} is an inductive generating family for <P, p>, then {ga} is an inductive 
generating family for where ga is the restriction of f to a mapping of the 
subspace/_1[Q] of D*fa into <Q, q> /o r eac/i a. 

Proof of 39 A.7 proj. The identity mapping/ of <Q, q) into <P, p) is a projective 
generating mapping (by 39 A.6 (c)) and hence { f a o f } is a projective generating 
family (by 39.A 5). Clearly / . „ / = ga. 

Proof of 39 A.7 ind. We have XqYif and only if X <= Q, Y <= Q and XpY; and 
if X <= Q, Y c Q then the sets/a"'[Z] and/f l

_1[Y] are proximal in D*fa if and only if 
the sets g~*[X~\ = f~x\X] and g~l[X] = f~\X~] are proximal in D*ga. The state-
ment follows from the following description of inductively generated proximities. 
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39 A.8. In order that a proximity space <P, p) be inductively generated by a 
family of mappings {/„ : <Q, qa) ->• <P, p>} it is necessary and sufficient that 
XpY if and only if X c P, Y <= P and either X n Y #= 0 or / a

_ 1 [X] <7a/~'[Y] /or 
some a. 

Proof. If pa is inductively generated by fa : <Qa, qa} -> P then p = sup {pa} is 
inductively generated by { f a : <Qa, g„> P} (cf. 39 A.3). We have p = \j{pa} (by 
38 A.1) and XpaYif and only if X <= P, Y c P and either X n 7 =t= 0 or /a

_1[X] 

y r w 

Remark. Notice that the proofs of 39 A.7 proj. and 39 A.7 ind. are entirely dif-
ferent. This follows from the fact that a subspace can be defined projectively (an 
identity mapping is a projective generating mapping, see 39 A.6 (c)) but not induct-
ively. 

39 A.9. Definition. Let {<Pa, pa>} be a family of proximity spaces. The product of 
{<Pa, Pa)}, denoted by II{<Pa, pa>}, is defined to be the proximity space <n{Pa}, p} 
where p is the proximity projectively generated by the family {pra : n{Pa} -* <Pa, pa}}. 
The sum of the family {<Pa, pa>}, denoted by £{<Pa, pa>}, is defined to be the pro-
ximity space <E{Pa}, p} where p is the proximity inductively generated by the family 
{inja: <Pa, pa> - l{Pa}}. 

As an immediate consequence of Definition 39 A.9 and Theorems 39 A.4 and 39 A.5 
we obtain the following important results. 

39 A.10 proj. Let f be a mapping of a proximity space into the product * of 
a family {*a} of proximity spaces. Then f is continuous if and only if all (pra : 
: * -» *a) of are continuous, andf is a projective generating mapping if and only if 
{(pra : SP -» * a ) o f } is a projective generating family. 

39 A.10 ind. Let fbea mapping of the sum SP of a family {*a} of proximity spaces 
into a proximity space. Then f is proximally continuous if and only if all the 
mappings f o (inja : * a -» are proximally continuous, andf is an inductive gene-
rating mapping if and only if { / o (inja : * a -> * ) } is an inductive generating family. 

39 A. l l . Definition. The product of a family {/a} of mappings for proximity spaces 
is the mapping of n{D*/a} into n{E*/a} whose graph is the relational product of the 
family {gr/a}. The reduced product of a projective family {/a} of mappings for 
proximity spaces with common domain carrier 0> = <P, p> is the mapping of 3P 
into Il{E*/a} whose graph is the reduced relational product of {gr/,}, i.e. fx = {/ax}. 
The sum of a family {/„} of mappings for proximity spaces is defined to be the map-
ping of £{D*/a} into £{E*/a} whose graph is the relational sum of {gr/,}, and the 
reduced sum of an inductive family { f a } of mappings for proximity spaces with 
common range carier 3P = <P, p) is the mapping of E{D*/a} into * whose graph 
is the reduced relational sum of {gr fa}. 

Theorems 39 A.10 can be restated as follows: 
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39 A.12 proj. The reduced product f of a family of mappings {fa}for a proximity 
space is proximally continuous (a projective generating mapping) if and only if all 
fa are proximally continuous ({f„} is a projective generating family). 

Indeed, / a = (pra : E*/ —• E*/a) 0 / for each a. 

39 A.12 ind. The reduced sumf of a family of mappings {f„}for proximity spaces 
is proximally continuous (an inductive generating mapping) if and only if all the 
fa are proximally continuous ({fa} is an inductive generating family). 

Indeed, f.o (inja : D*/a D*/) = fa for each a. 
For an examination of products and sums of mappings we shall need the following 

result. 

39 A.13 proj. If 8? is the product of a family {*a} of proximity spaces and 
pra : 9&>a is surjective (in particular if \S?\ 4= 0J, then pr„ is an 
inductive generating mapping. 

39 A.13 ind. If 8P is the sum of a family {*„} of proximity spaces, then each 
in^ : * is a projective generating mapping (and hence an embedding). 

Proof of 39 A.13 proj. Suppose that / = pre : * is surjective. If \&\ = 0, 
then \8Pa\ = 0 and the statement is trivial. Assuming 4= 0 choose an x in \3P\ and con-
sider the mapping g of into * which assigns to each y e the point gy whose 
a-th coordinate is y and the other coordinates coincide with those of x. Thus f o g 
is the identity mapping and pra 0 g : * - » * a is constant for each a =(= a. Since all 
(pra : * -» * a ) o g are proximally continuous, the mapping g is proximally conti-
nuous. By 39 A.6 (d) the mapping / is an inductive generating mapping. 

Proof of 39 A.13 Ind. Let g be the mapping <a, x) -> x of the subspace inja |* a | 
of * onto By 39 A.4 and 39 A.7 ind. the mapping g is proximally continuous 
because clearly g a (inj„ : -» 0>) = J : By 39 A.6 (e) the mapping inj, : 
: -* 8P is a proximal embedding. 

39A.14proj. Theorem. Let f be the product of a family {/a} of mappings for 
proximity spaces. If all the fa are proximally continuous, then f is proximally con-
tinuous. Conversely, if D/ =|= 0 and f is proximally continuous, then all the fa are 
proximally continuous. 

39A.14ind. Theorem. Let f be the sum of a family {/a} of mappings for pro-
ximity spaces.. The mapping f is proximally continuous if and only if all the map-
pings fa are proximally continuous. 

Proof of 39 A.14 proj. If Df = 0 t h e n / is proximally continuous. It remains 
to show that, if Df 4= 0, then / is proximally continuous if and only if all the map-
pings fa are proximally continuous, and this follows from the following obvious 
equality: 

(pra : E *f -> E*/a) o f = f . o (pra : D *f D */„) . 
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Indeed, if / is proximally continuous, then the left side is proximally continuous 
and hence fa is continuous because (pr„ : D*/ D*/a) is an inductive generating 
mapping by 39 A.13 proj. If each/ a is proximally continuous, then / is continuous 
by 39 A.4 proj. because {pra : E*/ —>• E*/a} is a projective generating family. 

Proof of 39 A.14 ind. Notice that 

/ c (injri : D V . - D*/) = (inj. : E*/a -> E * / ) . 

If each /„ is proximally continuous then the right side is proximally continuous, and 
therefore / is proximally continuous by 39 A.4 because {inja: D*/a -> D*/} is an 
inductive generating family. If / is proximally continuous then the right side is pro-
ximally continuous for each a, and therefore fa is continuous because (inja : E*/a -> 
-» E*/) is a projective generating mapping (by 39 A.13 ind.). 

39 A.15 proj. If f is the product of a family {/„} of mappings for proximity spaces 
and each fa is a projective generating mapping, then f is a projective generating 
mapping. 

39 A.15 ind. If f is the sum of a family {/„} of mappings for proximity spaces 
and each fa is an inductive generating mapping, then f is an inductive generating 
mapping. 

Proof of ,39 A.15 proj. If D/ = 0, then E/ = 0 and / is a projective generating 
mapping. If D/ # 0 then Ef # 0 and the formula of the proof of 39 A.14 proj. 
holds. Since {pra : D*/ D*/a} is a projective generating family and each fa pro-
jectively generates D*fa , [ f a 0 (pra : D*/ -» D*/a)} is a projective generating family 
(by 39 A.5) and by the formula, {(pra: E*/ ->• E*/a) <,/} is a projective generating 
family, and {pra : E*/ -> E*/a} being a projective generating family, / is a projective 
generating family by 39 A.5. 

Proof of 39 A.15 ind. is left to the reader. 

Remark. One can show that if D/ #= 0 and / is a generating mapping, then 
each fa is a generating mapping. 

In conclusion we shall state the factorization theorems, the proofs of which are 
left to the reader. 

39 A.16. P r o j e c t i v e f a c t o r i z a t i o n . If {/a} is a non-void projective family of 
mappings for proximity spaces, then there exists a unique projective generating 
family {ga} for proximity spaces and an identity mapping h such that fa = ga 0 h 
for each a, i.e. 

{/ .} = [ { » . } ] " A-

The mapping h is proximally continuous if and only if all the mappings fa are 
proximally continuous, and h is a proximal homeomorphism if and only if {/„} is 
a projective generating family. 
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I n d u c t i v e f a c t o r i z a t i o n . If {/„} is a non-void inductive family of mappings 
for proximity spaces, then there exists a unique inductive generating family {ga} 
and an identity mapping h such that h o ga = fafor each a, i.e. 

{/.} = h a [{,g.}] . 
The mapping h is proximally continuous if and only if all the mappings fa are pro-
ximally continuous, and h is a proximal homeomorphism if and only if {/„} is an 
inductive generating mapping. 

B. P R O J E C T I V E G E N E R A T I O N 

We begin with two descriptions of projectively generated proximities. 

39 B.l . Theorem. If a proximity space <P, p} is projectively generated by a 
non-void family of mappings {/„ : <P, p> -» <Qa, qa>} then 

(a) XpYfor X c P, Y <= P if and only i f , for each a and any finite decomposi-
tions {X;} and {Y,} of X and Y respectively, then fa\Xi\ for some i and j; 

(b) U is a proximal neighborhood of X in <P, p) if and only if it contains a 
finite intersection of sets of the form Ui/iT/C^,]} with U( proximal neighborhoods 
of fai[Xi] in <&,,> qai> and {Xf} a finite cover ofX. 

P r o o f . Combine 39 A.3 with the descriptions 38 A.5 and 38 A.8 of inflma in P(P). 

39 B.2. Theorem. If { f a : <P, p} -> (Qa, qa)j is a projective generating family 
for proximity spaces, then {/„ : <P, yCpP) (Qa> 7 c p 9 a ) } 's a projective generating 
family; stated in other words, if {/„} is a projective generating family for proximity 
spaces, then {ga} is a projective generating family for closure spaces where each ga 

is the transpose of fa to a mapping for closure spaces. 
P r o o f . A direct proof can be obtained from description 39 B.1 (b). Indeed, 

if X = (x), then U is a neighborhood of x if and only if U is a proximal neighborhood 
of x, and the statement is obtained by combining 39 B.1 (b) with the description 32 A.6 
of projectively generated closures. Another proof may be in order. Since the canonical 
mapping of P(P) into C(P) is completely meet-preserving, it is sufficient to prove the 
statement for a family consisting of one member, i.e. for projective generating map-
pings. Suppose t h a t / : <P, p} -> <(Q, q} is a projective generating mapping and let u 
be the closure induced by p and v be the closure induced by q. Thus x e uX if and only 
if(x)pX, (x) pX if and only if ( f x ) qf[X] (by 39 A.3), and ( f x ) qf[X] if and only if 
fx e Thus x e uX if and only if fx e vf\X~\, which shows that u is projectively 
generated by / : P -» (Q, v). 

39B.3. If {/„} is a projective generating family for semi-uniform spaces, then 
the transposed family {ga} = {/„ : y P U D * f a yPUE*/a} need not be a projective 
generating family for proximity spaces (even if the index set consists of two elements 
and all the semi-uniform spaces in question are uniform spaces). This follows from 
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the fact that the canonical mappings y : U -> P and also y : uU uP are not meet-
preserving. We shall prove a general result which shows that if {/„} is a projective 
generating family for semi-uniform spaces then {ga} is usually not a projective gene-
rating family for proximity spaces. 

39 B.4. Theorem. The mapping 

-»• Ypu(^ x : » U P 

is an order-embedding. In particular, 

yP U(^ x 1l) * y P U ^ x y P u ^ 

provided that H is a uniformity which is not proximally coarse. 
Proof. Clearly it is sufficient to show that the mapping in question is injective, and 

this follows from the following simple result. 

39B.5 . If 1l and~f are semi-uniformities for a set P, then the filter of all proximal 
neighborhoods of a set X in <P x P,1l x has the following sets for a base: 
U o X o Vwith U in 1l and Vin In particular, the sets U 0 V, U e 1l, Ve"T,form 
a base of the filter of proximal neighborhoods of the diagonal of P x P. 

Proof. By definition, the collection of all 

U x r e l F = E { « x 1 , x 2>, <ylt y2» | <x 1 ; y j e U, <x2, y2> e V} , 

U e Ve y , is a base for the product semi-uniformity ® x f . It is easily seen that 

(U X rel V) [X] = U o X o Y 

for each symmetric U and V, and each X <=• P x P. 
Remark. Notice that it follows from 39 B.4 that the theory of uniform spaces 

can be reduced to the theory of uniformizable proximities. 

39 B.6. Theorem. The transpose of a projective generating mapping for semi-
uniform spaces to a mapping for proximity spaces is a projective generating map-
ping for proximity spaces. 

Proof. Let / : <P, K} -> <Q, V"} be a projective generating mapping for semi-uni-
form spaces and let p and q be the proximities induced by °U and ir. By our assump-
tion the set "U' of all ( / x f)~l [F], Vef", is a base for °U and we must show that 
XpY if and only if f\X~\ q / [Y]. By the definition of induced proximities we have 
f[X] qf[Y] if and only if F[ / [X]] n / [ Y ] 4= 0 for each Fin "T, and XpY if and 
only if t / [Z] n Y 4= 0 for each U in 11, and hence, °U' being a base for 11, XpY if and 
only if [/[AT] n Y 4= 0 for each U e H'. Since evidently F[/[A"]] n / [ 7 ] 4= 0 if and 
only if ( / x f ) - 1 [ V ] [X] n Y 4= 0, we obtain XpY if and only if f[X] qf[Y]. 

39 B.7. Theorem. Let {/„} be a projective generating family for semi-uniform 
spaces such that all E*fa except for at most one index a, are proximally coarse. 
If ga is the transpose of fa to a mapping for proximity spaces, then {ga} is a project-
ive generating family of mappings for proximity spaces. 
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Proof. Let <P, 11) be the common domain carrier of all fa, aUa be the semi-uni-
formity projectively generated by fa : P -> E*fa, and pa be the proximity induced by 
11 a. By 37 A.2 11 = inf {<%a} and, by 39 B.6, pa is projectively generated by the mapping 
ga: P -> E *ga. By 39 A. 3 the proximity generated by the family {ga:P -* E *ga} is 
inf {pa}, and we need only prove that inf {pa} is induced by H = inf {Ha}. But this 
follows from the corollary to 38 B.14 because each 11 a, excepting at most one, is 
proximally coarse (by Theorem 37 B.3 which asserts that a semi-uniformity projectively 
generated by a mapping into a proximally coarse semi-uniform space is proximally 
coarse). 

39 B.8. Corollary. If <P, 1l> is the product of a family of semi-uniform spaces 
{<Pa, 1fa)j and if pa is the proximity induced by 1la and p is the proximity induced 
by 1i, then <P, p) is the product of the family {<Pa, Pa)} whenever all the 1la, ex-
cepting at most one, are proximally coarse. 

Combining 39 B.4 with 39 B.8 we obtain the following interesting characterization 
of proximally coarse semi-uniformities. 

39B.9. Theorem. In order that a uniformity 1i be proximally coarse (i.e., to-
tally bounded) it is necessary and sufficient that 

yP{i(H x 11) = y p u 1 t x y p y s 1l . 

Now we proceed to a description of classes of semi-uniform spaces which are 
stable under projective constructions. 

39 B.10. Definition. A class K of proximity spaces is said to be projective-stable 
if every proximity space projectively generated by a family of mappings with range 
carriers in K belongs to K. A class L of proximities is said to be projective-stable 
if the class K consisting of all proximity spaces whose proximity structures belong 
to Lis projective-stable. 

39 B . l l . Theorem. Let K be a class of proximity spaces and L be the class 
consisting of proximity structures of spaces from K. Then K is projective-stable 
if and only if the following two conditions are fulfilled: 

(a) Lis completely meet-stable in P and contains all proximally accrete proxim-
ities. 

(b) If f is a projective generating mapping for proximity spaces and E*feK, 
then D*f e K. 

Proof. Apply 39 A.3 (compare with the corresponding results for projective con-
struction for closure spaces and semi-uniform spaces). 

39 B.12. Remark. Notice that condition (a) is equivalent to the statement that 
every proximity has an upper modification in L. 

39 B.13. Theorem. The class uP of all uniformizable proximity spaces is pro-
jective-stable. 
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Proof. We shall verify conditions (a) and (b) of 39 B.11. Condition (a) is fulfilled 
by 38 C.3. Let / be a projective generating mapping of a proximity space <P, p} into 
a uniformizable proximity space <Q, q}; we shall prove that <P, p} fulfils condition 
(prox 5). If X non p Y, then / [ X ] n o n p / [ Y ] and, (Q, q} being uniformizable, 
(Q, q} fulfils (prox 5), and therefore we can choose proximal neighborhoods U of 

/ [X] and F of / [Y] such that U n V = 0. Since / isproximally continuous,/ -1 [C7] 
is a proximal neighborhood of X in <P, p} a n d / - 1 [F] is a proximal neighborhood 
of Yin <P, p}. 

39 B.14. Definition. The projective progeny of a class K of proximity spaces, 
denoted by projp K or simply proj K, is the class consisting of all proximity spaces 
projectively generated by families of mappings with range carriers in K. The pro-
jective progeny of a class Lof proximities is the class consisting of proximity struc-
tures of spaces of proj K where K is the class of all proximity spaces whose proximity 
structures belong to L. 

39 B.15. Theorem. For any class K of proximity spaces 

proj proj K = proj K , 

that is to say, the projective progeny of any class K of proximity spaces is projective-
s table. 

Proof: 39 A.5 proj. 

39 B.16. Theorem. Let K be any class of proximity spaces and let K1 be the 
class of all proximally accrete spaces. A proximity space 3P belongs to p ro j K if 
and only if 0 is homeomorph to a subspace of the product of a family of spaces 
from K u 

Corollary. A class K of proximity spaces is projective-stable if and only if K 
contains all proximally accrete spaces, K is hereditary and completely produc-
tive, and, of course, K contains the proximal homeomorphs of all of its 
elements. 

Proof. Let K2 be the class of all spaces satisfying the condition. Clearly K2 c 
<= proj K. Suppose that SP e proj K and {/a | a e A} is a projective generating family 
for SP such that E*fa e K for each a. If A is empty then 0 is a proximally accrete space 
and hence 3PeK2. Assuming 4̂ + 0 consider the reduced product / of {/„}; by 
39 A.12, / is a projective generating mapping. Let 2. be the set \0>\ endowed with the 
proximally accrete proximity and let g be the reduced product of J : 0 -* 2 and / . 
Clearly g is a projective generating mapping for 3?, and E*g e K2. Since g is injective, 
g is a proximal embedding and hence 3P e K2. 

39 B.17. Let K be a class of proximity spaces. The projective progeny of Y c p [ ^ ] 
(in C) coincides with y C P [ p r o j P K ] (i.e. the class of all spaces induced by spaces 
of the projective progeny of K). 

47—Topological Spaces 
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Corollary. If a class K of proximity spaces is projective-stable, then the class 
YCp[X] is projective-stable. 

Proof. Use 39 B.2. 

39 B.18. Example. Since the class of all uniformizable proximities is projective-
stable and a closure space is uniformizable if and only if it is induced by a uniformiz-
able proximity, we obtain from 39 B.16 a new proof of the fact that the class of all 
uniformizable spaces is projective-stable. 

C. INDUCTIVE GENERATION 

This subsection is concerned with the development of the properties of the inductive 
generation. We begin with a description of inductively generated proximities. Then we 
shall show that the transpose of an inductive generating family for semi-uniform spaces 
to a family of mapping for proximity spaces is an inductive generating family of 
mappings for proximity spaces (39 C.2), but the transpose of an inductive generating 
family of mappings for proximity spaces to a family of mappings for closure spaces 
need not be an inductive generating family (39 C.5). In 39 C.6 we shall summarize all 
earlier results which concern transposed families inheriting the properties of being an 
inductive generating family and of being a projective generating family. Then we 
shall give a characterization of inductive-stable classes of proximity spaces. We shall 
show that the class of all uniformizable proximity spaces is not inductive-stable and 
therefore, in the exercises, we shall introduce the notion of an inductive generating 
family for uniformizable proximity spaces. 

39 C. l . Theorem. Let a proximity space <P, p> be inductively generated by 
a non-void family of mappings {/„ : (Qa, qa> <P, p>. Then 

(a) XpYif and only ifX<=P,Y<=P and either X n 7 * 0 o r / f l
_ 1 [X] g f l / f l

- 1 [ 7 ] 
for some a; 

(b) a subset U of P is a proximal neighborhood of a set X c P if and only if 
U => X and/~1 [t/J is a proximal neighborhood of f~l\X~\ in <Q0, qa) for each a. 

Proof. Combine 39 A.3 with the descriptions 38 A.1 and 38 A.6 of suprema in 
P(P). 

39 C.2. Theorem. If {/„} is an inductive generating family for semi-uniform 
spaces, then {ypu/„} is an inductive generating family for proximity spaces (where 
Y P U f a denotes the transpose of fa to a mapping for proximity spaces). Stated in 
other words, if a semi-uniformity °U is inductively generated by a family of ma-
pings { f a : <Qa, -» P}, then the proximity p induced by°U is inductively gener-
ated by the family { f a : <Q„, qa) -> P} where qa is the proximity induced by "fa. 

Proof. Every uniformly continuous mappings is proximally continuous, and 
therefore the proximity p' inductively generated by the family {/a : (Qa, qa) -* P} 
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is proximally finer than the proximity p induced by 11. To prove that p is proximally 
coarser than p we must use the direct descriptions of 11, p and p. Assuming XpY we 
must show that Xp'Y. Since p is induced by H we have U[X] n Y =t= 0 for each 
U e 11. Consider the families {Xa} and {Ya}, where Xa = / f l

_1[X] and Ya = / a
_ 1[Y] 

for each a. By 39 C.1, to prove Xp'Y it is sufficient to show that X n Y + 0 or 
Xa qaYa for some a. Thus the proof will be completed by showing that the assumption 
"X n Y = 0 and Xa non qaYa for each a" leads to a contradiction. Since qa is induced 
by y a we can choose a family {Va \ a e A} such that Va e and Va[Xa] o Ya = 0 
for each a. Put 

u = Jp U U { { f a X f a ) [Va] I aeA}. 
Since H is inductively generated by the family {/a : <Qa, y a > -> P}, by 37 A.2 ind., 
the set U belongs to 11, and hence, by our assumption, n Y * 0. On the other 
hand, it is easily seen that 

faiVa[XaJ] = ((/„ X /.) [Va]) [X] 
and hence 

U[X] n Y = (X n Y) u U{((/„ x fa) [Fa]) [Z]) n Y | a e A} = 0 . 

39 C.3. Theorem. Every proximity space is inductively generated by a surjective 
mapping whose domain carrier is a discrete uniformizable proximity space. 

Proof. Let <P, p> be a proximity space. Choose a semi-uniformity 11 inducing p. 
By 37 A.8 the semi-uniform space <P, 11s) is inductively generated by a surjective 
mapping / : <£}, Vs) P where (Q, "f") is a discrete uniform space. If q is the pro-
ximity induced by "f, then p is inductively generated by the mapping / : (Q, q) P 
(39 C.2). Evidently (Q, q} is uniformizable and discrete. 

From 39 C.3 we obtain the following two results: 

39 C.4. A proximity space inductively generated by a mapping of a uniformiz-
able proximity space need not be uniformizable. 

Proof . Let * be a proximity space which is not uniformizable. By 39 C.3 the spa-
ce & is inductively generated by a (surjective) mapping / such that D*/ is a uniformi-
zable proximity space. 

39 C.5. If f is an inductive generating mapping for proximity spaces, then the 
transpose g = yCPf of f to a mapping for closure spaces need not be an inductive 
generating mapping for closure spaces. 

Proof. Let <P, p) be a non-discrete proximity space. By 39 C.3 there exists an 
inductive generating mapping/ of a discrete uniformizable space <Q, q} into <P, p>. 
If v is the closure induced by q, then v is discrete, and hence the closure u inductively 
generated by / : <Q, u) -» P is also discrete. Since p is not discrete, u is not in-
duced by p. 

39 C.6. For convenience we recall earlier results concerning transposed map-
pings. If {/,} is an inductive generating family for semi-uniform spaces, then {Y ru /o} 

47* 
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is an inductive generating family for proximity spaces (39 C.2), and {ycu/a} need not 
be an inductive generating family for closure spaces (e.g. by 37 A.8). If {/„} is a pro-
jective generating family for semi-uniform spaces, then {ypu /„} need not be a pro-
jective generating family for proximity spaces (by 39 B.3), but {ycu/a} is a projective 
generating family for closure spaces (by 37 B.6). If {/„} is an inductive generating 
family for proximity spaces, then {yCP/fl} need not be an inductive generating family 
for closure spaces (by 39 C.5). On the other hand, if {/„} is a projective generating 
family for proximity spaces, then {yCp/a} is a projective generating family for clo-
sure spaces (by 39 B.2). 

Now we proceed to inductive-stable classes of proximity spaces. 

39 C.7. Definition. A class K of proximity spaces is said to be inductive-stable 
if every proximity space inductively generated by a family of mappings with domain 
carriers in K belongs to K. A class L of proximities is said to be inductive-stable 
if the class K consisting of all proximity space whose proximity structures belong 
to L is inductive-stable. 

39 C.8. Theorem. Let K be a class of proximity spaces and let L be the class 
consisting of proximity structures of spaces from K. Then K is inductive-stable 
if and only if the following two conditions are fulfilled: 

(a) Lis completely join-stable in P and contains all the proximally discrete pro-
ximities. 

(b) If f is an inductive generating mapping for proximity spaces and D*f belongs 
to K, then E*f also belongs to K. 

Proof . Apply 39 A.3. 

39 C.9. Remark. Notice that condition (a) is equivalent to the statement that 
every proximity has a lower modification in L. 

39 C.10. Definition. The inductive progeny of a class K of proximity spaces, de-
noted by indP K or simply ind K, is the class of all spaces inductively generated by 
a family of mappings with the domain carriers in K. 

Thus K is inductive-stable if and only if ind K = K 
39 C.l l . For any class K of proximity spaces 

ind ind K = ind K . 
that is to say, ind K is inductive-stable. 

Proof: 39 A.5 ind. 

D. Q U O T I E N T S 

We have introduced the concepts of a quotient of a closure space under a mapping 
or an equivalence (33 C.1), a quotient mapping of a closure space into another 
one (33 C.1), a quotient of a semi-uniform space under a mapping or an equivalence 
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(37 D.1), and a quotient in the uniform sense (37 D.1). Now we shall introduce the 
corresponding concepts for proximity spaces. 

39 D.1. Definition. Let 2P be a proximity space. If / is any mapping such that 
D g r / contains the underlying class of 3P, then the proximal quotient of 0 under f , 
denoted by 0 / f , is defined to be the se t / [ | ^ | ] endowed with the proximity inductively 
generated by the mapping / : 0 ->/[|^>|]- A mapping of 0 into a proximity space 2 
is said to be a proximal quotient mapping or a quotient mapping for proximity 
spaces if 0/f is a subspace of 2. Finally, if g is an equivalence on 0, then the proximal 
quotient of 0 under g is defined to be the proximal quotient space 0 / f , where / is 
the mapping {x -» g[x]} of 0 onto \SP\jg (= E{g[x] | x e \0>\}). 

39 D.2. Any inductive generating mapping for proximity spaces is a quotient map-
ping for proximity spaces. On the other hand a quotient mapping for proximity 
spaces / need not be an inductive generating mapping unless / is surjective. Indeed, 
iff is an inductive generating mapping for proximity spaces and X and Fare proximal 
and contained in |E*/| — Ef, then X n Y + 0. On the other hand an embedding of 
a proximity space into another one is a quotient mapping. Thus e.g. J : ] 0,1 [ R 
is a quotient mapping for proximity spaces but not an inductive generating mapping 
for proximity spaces. 

39 D.3. Theorem. If f is a quotient mapping for semi-uniform spaces, then the 
transpose y pu/ off to a mapping for proximity spaces is a quotient mapping for 
proximity spaces; loosely speaking, a uniform quotient mapping is a proximal 
quotient mapping. If g is an equivalence on a semi-uniform spaced, then 

Tp J?le) = (tpu^le • 

Finally, if 0 is a semi-uniform space and f is a mapping such that D gr / => \3P\, 
then yPU(0lf) = (y PU 0 ) l f . 

Proof . Evidently it is sufficient to prove the last statement under the additional 
assumption that / is a surjective generating mapping for semi-uniform spaces and HP 
is the domain carrier of / , i.e. E*/ = 0 j f . By 39 C.2 the transpose g o f / to a mapping 
for proximity spaces is an inductive generating mapping for proximity spaces. On 
the other hand, D*g = yPU0 and hence, / being surjective, E*g = (yPU0)1 f . Since 
E*g = yPUE*/ = yPU(0lf), the formula is proved. 

On the other hand a proximal quotient mapping need not be a quotient mapping 
(although a proximal continuous mapping is continuous). Indeed, Theorem 39 C.3 
can be restated as follows. 

39 D.4. Every proximity space is a proximal quotient of a discrete uniformizable 
proximity space. 

It is important to know some sufficient condition for the formula yCpi^le) — 
= (Ycp^)/0 t 0 be true. For convenience we shall give a direct description of the proxi-
mity structure of the proximal quotient SPjf by means of the proximity structure of 3P. 
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39 D.5. Let f be a proximal quotient mapping of a proximity space 0> = <P, p> 
onto a proximity space 2 = <Q, qthus 2 = * / / . Then 

XqYoXcQ, Y<= Q , f - l [ X ] p f ~ l [ Y ] , 

end U <= Qis a proximal neighborhood ofX<=Qin2 if and only if the set/_1[t/] 
is a proximal neighborhood o f / - 1 [ X ] in SP. 

Proof. Since / is surjective, / is an inductive generating mapping for proximity 
spaces, and both statements then follow from 39 A.3. 

39 D.6. Definition. A proximity p for a set P is said to be fine around a subset X 
of P if each neighborhood of X in <P, y c p p ) is a proximal neighborhood of X in 
<P, p}. A semi-uniformity % for a set P is said to be fine around a subset X of P 
if the proximity induced by °U is fine around X. 

Notice that any proximity for a set P is fine around each singleton (x), x e P. 
A simple characterization 39 D.7 is followed by the main result. 

39 D.7. Theorem. Let X be a non-void subset of a set P and let g = )P u (AT x X). 
A proximity p for P is fine around X if and only if 

( * ) YCP(<P, P>le) = (YCP<-P, P»le • 
A semi-uniformity °U for P is fine around X if and only if 

Y c u « - P , * > / ( ? ) = (Ycu<P, *»/<? • 

Proof. It is sufficient to prove the first statement. Write Q = Pjg, f = {x -» 
e[x] | x e P}. Let u be the closure induced by p, q be the proximity inductively 

generated b y / : <P, p) Q and v be the closure inductively generated by / : <P, u> -> 
Q. Relation (*) can then be written yCPq = v. First assume that the equality 

holds. If U is a neighborhood of the set X in <P, u>, then V = / [ [ / ] is a neighborhood 
of the point X in <Q, v) because evidently U = / - 1 [ F ] . According to the equality, 
the set Fis a neighborhood of the point X in <Q, y C p l ) and hence (X)nonq(Q — F), 
and thus by 39 D.5, the sets / - 1[(X)] = X and / _ 1 [Q - V] = P - U are distant 
in <P, p); this shows that U is a proximal neighborhood of the set X in <P, p}. 
Conversely, assuming that each neighborhood of X in <P, u> is a proximal neighbor-
hood in <P, p) we must show that yCPq = v. This follows, however, from the fol-
lowing theorem because each proximity is fine around each singleton. 

39 D.8. Theorem. If f is a quotient mapping for proximity spaces (semi-uniform 
spaces) and if the proximity structure (semi-uniform structure) of D*/ is fine 
around each inverse fibre o f / , then the transpose off to a mapping for closure spaces 
is a quotient mapping. If * is a proximity (semi-uniform) space whose structure 
is fine around each fibre of a given equivalence g on 3P, then the space yCP(*/£>) 
or ycucoincides with the space ( y C P o r (ycu*)/£> respectively. 

Proof. It is sufficient to prove the statement concerning the quotients of proximity 
spaces under equivalences. Let g be an equivalence on a proximity space <P, p>, 
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Q = P[q, f = {x -> g[x] | x e P}, q be the proximity inductively generated by 
/ : <P, p} Q, u the closure induced by p and v the closure inductively generated 
by / : <P, u) -»• Q. Assuming that p is fine around each fibre of g (i.e. around inverse 
fibres o f f ) , we must show that v = ycpq. Now v is finer than yCPq, and hence it is 
enough to prove that y c pq is finer than v, i.e. that if (X) e Q and Fis a neighborhood of 
(X) in <<2, VS), then Fis a neighborhood of (X) in <Q, yCPg). Let Fbe a neighborhood 
of (X) in <Q, v). Since the mapping / : <P, u) -» <Q, v} is continuous, the set U = 
= / _ 1 [ F ] is a neighborhood of X = /_ 1[((X))] in <P, u). Since p is fine around X, 
the set U is proximal neighborhood of X in <P, p> and hence, by 39 D.5, Fis a pro-
ximal neighborhood of the one-point set ((X)) in (Q, q} because X = / - 1[((X))] , 
U=f~1[V]. 

39 D.9. Examples. Let 0 = <P, p) be a proximity space and let u be the closure 
induced by p. (a) The proximity p is fine around each X <= P if and only if X n uY = 
= 0 implies uX n Y = 0 and p is a fine proximity (i.e. XpYo (uX n Y) u 
u (X n mY) * 0). (b) The proximity p is fine around an open set X if and only if X 
is closed and distant to P — X. (c) If p is fine around each X <= P, then u is a quasi-
discrete closure, (d) If p is the Wallman proximity of <P, u> and u is topological, 
then p is fine around each closed set. 

39 D.10. A uniformizable closure spaced is normal if and only if the Cech pro-
ximity of 0 is fine around each closed subset of — 39 D.9 (d). 

We know that the projective progeny of a class K of proximity spaces consists of all 
homeomorphs of subspaces of arbitrary products of proximally accrete spaces or 
spaces from K. It has already been noted that to projective concepts (subspace, accrete, 
product) there correspond inductive concepts (quotient, discrete, sum). E.g. we shall 
establish the following description of the inductive progeny of a class of proximity 
spaces. 

39 D . l l . Theorem. Let K be a class of proximity spaces and let Kt be the class 
of all proximally discrete spaces. The inductive progeny of K consists of all 
quotients of sums of spaces from K u Ki. 

Corollary. A class K is inductive-stable if and only if quotients of spaces of K 
belong to K, sums of families of spaces of K belong to K, andK contains all proxim-
ally discrete spaces. 

Proof. Consider the class K2 of all spaces satisfying the condition. Evidently 
K2 <= ind K. We shall prove that K2 contains ind K. Assuming that a space 3P is 
inductively generated by a family {/„} with D*fa in K u for each a, let us consider 
the reduced sum / of {/„}; by 39 AM f is an inductive generating mapping for SP. 
If / is surjective then 3f = D*// / and hence 0> e K2 (because D*/ is a sum of spaces 
of K u Kt). If / is not surjective then consider the proximally discrete space 2. such 
that \SP\ = [ T h e reduced sum g of J : 2 & and/ is a surjective inductive generat-
ing mapping and hence 0 = D*gjg. Clearly D*g is the sum of spaces from K k j Ky. 
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40 . P R E S H E A V E S 

If {Pa | a e A} is a family of sets and {/„} is a family, each fa being a mapping of 
a set P into Pa, then there exists a unique mapping f of P into n{Pa} such that 
/„ = (pra : n{Pfl} -» P) of for each a in A. The mapping / is the reduced product of 
{fa}. If Pa are closure spaces, proximity spaces or uniform spaces, and all fa are con-
tinuous, proximally continuous or uniformly continuous respectively, then the same 
is true with/continuous, proximally continuous or uniformly continuous respectively. 
Let a family of sets {Pa | a e A} be given, and for each pair <a, b} e R, where R is 
a given subset of A x A, let fab be a mapping of Pa into Pb. It is then natural to in-
quire whether there exists a set Q and mappings <7a: 2 Pa with the following proper-
ty: if { f a } is any family of mappings f a :P-*Pa with f b = f a b o f a whenever <a, b) e R, 
then there exists a unique f : P Q with/a = ga of for each a. The answer is in the 
affirmative under the assumption that f b c o f a b = f a c for each <a, b}, (b, c) and 
<a, c> in R; we shall be concerned with the case where R is a quasi-order for A; 
then Sf = <{P„}, {fab | (a, b> e K}> will be called a presheaf of sets over <A, R> 
and a certain Q will be called the projective limit of (denoted by lim ¿f ); the 
product II{Pa} will be a particular case of Km ¿f. The same problem and defini-
tions apply to presheaves of closure spaces (Pa are spaces, fab are continuous 
mappings, / , /a , ga are required to be continuous), proximity spaces or semi-uniform 
spaces. A "dual" reasoning leads to inductive limits. Roughly speaking, the projective 
limits are related to the products as the inductive limits to the sums. 

Subsection A concerns limits of presheaves of sets. We shall show in subsection B 
that any projective presheaf of sets over the ordered set of open subsets of a closure 
space 0* is isomorphic to the sheaf of continuous sections of a covering fibration 
over Subsection C concerns limits of presheaves of spaces. 

A. PRESHEAVES OF SETS AND THEIR LIMITS 

For convenience we shall begin with a review of terminology concerning quasi-
ordered sets. A quasi-ordered set will be a <A, ^ ) where A is a set and ^ is a re-
flexive and transitive relation on A. A subset B of a (A, :g> is left-cofinal or left-
saturated if, respectively, each a e A follows some b e B, or each a e A preceding some 
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element of B belongs to B. The right-cofinal and right-saturated subsets are defined 
similarly. Finally, <A, is left-directed (right-directed) if A 4= 0 and every two 
elements of A are preceded (followed) by an element of A. A subset B of a quasi-
ordered set (A , ^ ) will usually be considered as a quasi-ordered subset of (A, )> 
and usually the relativized quasi-order will also be denoted by ^ . A left-cofinal (right-
cofinal) subset of a left-directed (right-directed) set is left-directed (right-directed). 

40 A.l. Definition. A presheaf of sets over a quasi-ordered set <A, is a pair 
= <{Pa \ a e A], {f„b | a ^ ft}> such that {?„} is a family of sets, each fab is 

a mapping of Pa into Ph (i.e. Pa = D*fab, Pb = E*/ai) and the following two conditions 
are fulfilled: 

(a) faa is the identity mapping of Pa; 
(b) if a ^ b and b c, then fac = fbc ofab. 
If B is an ordered subset of <A, rg>, then the presheaf <{Pa | a e B}, {fab | a ^ b, 

a 6 B, b e Bj) will be called the restriction of ¿f to B and will be denoted by £fB. 
The mappings fab are called connecting mappings of if and the quasi-ordered set 
<A, is called the base of Sf. 

It is to be noted that a presheaf is uniquely determined by the family {fab}; indeed, 
Pa is the domain of faa. Nevertheless, in the most important examples we shall only 
be interested in the sets Pa; A will be a collection of sets ordered by inverse inclusi-
on zj, each Pa will be a collection of mappings with domain a and fab will be a mapping 
assigning to each xe Pa the restriction of x to b; thus fab will be uniquely determined 
by a, b, Pa and Pb. 

40A.2. Presheaves of con t inuous mappings. Let P and Q be closure 
spaces. For each X c P let Cx be the set of all continuous mappings of the subspace 
X into Q (i.e. Cx = C(X, Q)), and for X => Y let fXY be the mapping of Cx 

into Cr which assigns to each g e Cx the domain-restriction g | Fof g to 7 (we must 
know that the restriction of a continuous mapping is a continuous mapping). Clearly 

{fxy}} is a presheaf over <exp P, =>). This presheaf will be called the 
presheaf of continuous mappings of P into Q and the mappings fXY are usually 
called restriction mappings. It should be noted that the term restriction mapping is 
sometimes used for mappings fab in any presheaf. Now if P and Q are semi-uniform 
spaces then <{C*}, {fxy}) will be a presheaf over <exp P, =>) if Cx is the collection 
of all uniformly continuous mappings of the subspace X of P into Q and if fXY are 
the corresponding restriction mappings. This presheaf will be called the presheaf of 
unijormly continuous mappings of P into Q. In a similar way we define the presheaf 
of proximally continuous mappings of a proximity space P into another one Q. 
In what follows, if <{Pa}, {/a6}> is a presheaf over a collection of sets A such that Pa 

is a set of mappings with domain a and fab is the restriction mapping, then this 
presheaf will be denoted simply by {Pa}. 

From the definition of presheaves we shall derive the following simple but useful 
result. 
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40 A.3. If <{Pa}, {/„a}) is a presheaf over <A, and a ^ b, b ^ a, then fab = 
= /»V; IW particular, fab is bijective. 

Proof . Indeed, from Definition 40 A.1, condition (b), we obtain faa = fbaofab, 
fbb = fab °fba• Since by condition (a) of the definition the mappings faa and fbb are 
identity mappings of Pa and Pb respectively, the first equality implies that fab is in-
jective and fba is surjective and the second one implies fba is injective and fab is sur-
jective. Thus both mappings fba and fab are simultaneously injective and surjective, 
that is bijective. Now,fab is the inverse offb a , e.g. by the first equality. 

With every presheaf of sets there are associated two sets — the projective limit and 
the inductive limit. We begin with the former. 

40 A.4. Definition. Let SP = <{Pa}, {fab}} be a presheaf of sets over a quasi-
ordered set (A, The projective limit of SP (in another terminology, the inverse 
limit of SP) is defined to be the set of all elements x = {xa} of the product of the family 
{Pa \ a e A} such that 

a S b implies fabxa = xb. 
The projective limit of SP will be denoted by lim SP (= lim <{Pa}, {/„&}», arid this 
notation will sometimes be abbreviated to lim {Pa}. For each a in A the mapping 
pra : lim SP -* P„ will called the projection of SP into Pa or the a-th projection of 
lim SP, and will usually be denoted by fa. 

Obviously the projections of a projective limit are restrictions of corresponding 
projections of the corresponding product set. The projective limit is derived from the 
notion of the product set. On the other hand the product set is a special case of the 
projective limit. Indeed, if {Pa | a e A} is a family of sets and a ^ b if and only if 
a = beA, then SP = <{Pa}, {/„(,}>, where fab is the identity mapping of Pa onto Pb 

(since a = b), is a presheaf over (A, rg ) and its projective limit coincides with the 
product of the family {Pa}. 

40 A.5. Definition. A projective family {ga | a e A} of mappings is said to be 
compatible for a presheaf SP = <{Pa}, { f a b ) ) over (A, if Pa = E*/a for each a 
in A and a ^ b implies gb = fab 0 ga. 

40 A.6. The family of all projections of the projective limit of a presheaf SP is 
compatible for SP. 

Proof. With the usual notation, let a ^ b and x = {xc | c e A} be any point of 
lim SP. By definition 40 A.4 we have fabxa = xb, fax = xa and fbx = xb, which yields 
(Lb °L) x = fbx. 

40 A.7. Theorem. If SP = <{Pa}, {/a6}> is a presheaf over <A, ^) and {ga} is 
a family of mappings of a set Q and {ga} is compatible for SP, then the relation 
{x -> {gax | a e A} | x e Q], which is the relational reduced product of the family 
{gr £/„}, ranges in the projective limit of SP. 

Proof. Fix an x in Q. If a ^ b, then gb = fab o ga and hence gbx = (fab 0 ga) x = 
= fab(9aX). 
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Corollary (a). There exists exactly one mapping g of Q into lim Sf such that 
(*) ga = (pra : lim Sf -> Pa) o g for each a. 
The graph of g is the relational reduced product of {ga}, that is, gx = 

= {gax | a e A} for each x e Q. 
Proof. If g fulfils (*) then necessarily gax = pra gx and hence there exists at most 

one such mapping. By the theorem there exists at least one such mapping, namely 
that from the second statement of the corollary. 

Corollary (b). Suppose that y = <{Pa}, {/<,&}> is a presheaf over <A, ^ >, R is a set, 
{ha} is a family of mapping s compatible for y such that Dha = R for each a in A, and 

finally assume that, if Q is a set and {ga | a e A] is a family of mappings compatible 
for y such that Dga = Qfor each a, then there exists exactly one mapping g of Q 
into R such that ga = ha o g for each a in A. 

Then there exists an injective mapping k of R onto the projective limit of y such 
that ha = (pra : lim y -* Pa) o k for each a in A. 

40 A.8. Definition. Let Sf = <{Pa}, {/a6}> be a presheaf over {A, and let 
a be a lower bound of a subset B of A. By the corollary of 40 A.7 there exists exactly 
one mapping g of P„ into lim yB such that fxb = (pr6 : lim yB -> Pb) o g for each 
b e B. This mapping will be called the canonical mapping of Px into lim yB. 

40 A.9. Under the assumptions of 40 A.8, if a e B (thus a = inf B) then the canon-
ical mapping g of Pa into lim yB is bijective. 

Proof . If gx = gy, then pr6 gx = pr,, gy for each b e B; substituting b = a we 
obtain x = y because always prao g = faa. Thus g is injective. If {xb \ b e B] is any 
point of lim yB, then xb = fxbxa for each b e B because a ^ b for each b e B. Now 
clearly {xb | b e B} = gxx. 

Corollary. If y is a presheaf over <A, and a is a least element of A, then 
{faax | a e a one-to-one relation on Px onto lim y. 

Remark. Let y = <{Pa}, {fab}) be any presheaf over <A, ^ ). Let us consider the 
set A' consisting of all points of A and one further point, say a. Define a quasi-order 
-< on A' so that <A, i£> becomes a quasi-ordered subset of A' and a is the least 
element of A'. Finally put Px = lim y and fxa = pra : Px-> Pa for a in A. Then 
y' = <{Pa | a e A'}, {fab}y is a presheaf over <A', -<>, and the canonical mapping 
of Pa into lim y'A = lim y (because y A = y) is bijective. Thus any presheaf y over A 
is the restriction of a presheaf y ' = <{Pa}, {fab}> over a base with a least element a 
such that the canonical mapping of Px into lim y corresponding to {fxa | a e A} is 
bijective. 

It should be noted that, in general, a canonical mapping g of Px into lim yB, where 
a is a lower bound of B, is neither injective nor surjective. For example, if a rg /}, and 
B = (/?), then lim yB = n{Pa | a e (/?)} = (/?) x Pp and the mapping g assigns to 
each x e Px the point </?,/a/)x); it follows that g is injective or surjective if and only 
if the mapping fxfi has the corresponding property. But fxfi need not be injective nor sur-
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jective. It seems to be appropriate to examine injectivity and surjectivity of canonical 
mappings g for each a and B in a suitable presheaf. 

40 A.10. Example. Let us consider the presheaf S? = <{P*}, over 
<exp R, 3 ), where R is a set, Px = Qx (i.e. the set of all single-valued relations on 
X into Q) where Q is a given set independent on X, and rXY is the restriction mapping 
of Px into P r , that is, rxy assigns to each a e Px the restriction a\ Y of a to Y (notice 
that the mappings rXY are surjective). Choose a non-void ordered subset SE of 
<exp R, => ) and a lower bound U of 3C, i.e. U id (JSC, and consider the canonical 
mapping g of Pv into lim thus g assigns to each aePv the family {a\x | x e 3C\. 
Now if Q possesses at most one point, then each Px consists of the constant relation, 
and clearly g is bijective. In what follows let us suppose that Q has at least two 
points. 

(a) The mapping g is injective if and only if U = [JSC (that is, U = inf SC). 
Proof . First suppose that U = (JSC and g, a e Pv, g 4= a. There exists a point 

x of U such that QX 4= ax. If we choose an X in SC containing the point x, then 
+ a\X, but Q\X and a\X are, respectively, the X-th coordinate of gg and go. Thus 

gg 4= go- Conversely, suppose that there exists an x in U — (JSC. Since Q has at least 
two elements, there exist g and a in Pv such that gx 4= ax but gy = ay for each y 4= x. 
It follows that g\X = a{X for each l e i , and consequently gg = ga. 

(P) In order that the mapping g be surjective it is sufficient that Xt n X2 e 
e 9C provided that both Xt and X2 belong to in particular, if SE is right saturated 
then g is surjective. 

Proof . Suppose that the condition is fulfilled and let us consider any element 
| X e <X} of lim Sfx. It is easily seen that x e Xt n X2, X, e HE implies gXix = 

= gX2x. Indeed, X = Xx n X2 belongs to 3C and follows both Xt and X2; thus 
Qx = Qxi | = 6x2 | ' n particular, gxix = gXzx. It follows that we can define 
a relation g on U into Q so that gx = gxx if x e X e 9C (if x e U — {JSC then gx can 
be any element of Q). Clearly g\X = gx for each X e SC. 

A necessary and sufficient condition for g to be surjective is rather complicated. 

40 A . l l . Definition. A presheaf Sf = <{Pa}, {/at}> over (A, will be called 
projective at an index a e A if the following two conditions are fulfilled: 

(a) if a = inf B, then the canonical mapping {x {fxbx \ b e B}} of Pa into lim SCB 

is injective; 
(b) if a = inf B and B is right-saturated, then the canonical mapping {x —• 
{fxbx | b e B}} of Pa into lim ¿fB is surjective. 

A presheaf is said to be projective if it is projective at each index. Instead of 
projective presheaf we will often use the term sheaf. 

40A.12. Examples, (a) The presheaf in example 40 A.10 is projective, (b) On 
the other hand the presheaves of continuous mappings usually are not projective. 
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For example let {Cx} be the presheaf of continuous functions on a space P (see 
example 40 A.2) and consider the collection 3C consisting of all one-point sets and the 
void set. Clearly each Cx, l e i , consists of all functions on the subspace X of P. I f / 
is a function on P which is not continuous, and if fx is the domain-restriction of / 
to X, then fx e Cx for each Xe9£ and the family { f x \ X e 3C\ belongs to the pro-
jective limit of the presheaf {Cx \ X e <£}; nevertheless, there exists no continuous 
function h on P such that fx = h\X for each X e f ; indeed, if h\X = fx for each 
X&3C, then necessarily h = / ; but / was chosen not continuous. It follows that 
if P is not discrete, then the presheaf of continuous functions on P is not projective 
at P; in particular, it is not projective. 

(c) Consider again the presheaf {Cx} of continuous mappings of a space 0 into 
a space 2. Let U be a subset of 0 and let 0£ be a multiplicative collection of subsets 
of U which interiorly covers U. It is easily seen that the canonical mapping of Cv 

into the projective limit of {Cx | X e is bijective. Indeed, let [ f x | X e 2C] be an 
element of lim {Cx | X e 3F}. As in 40 A.10 one cand find a mapping / of U into 2 
such that fx = f\X for each X e3C. Since 9C interiorly covers U, the mapping / is 
continuous (roughly speaking, since / is locally continuous, / is continuous, see 
17 A.19). 

(d) It follows from (c) that the restriction of the presheaf of continuous mappings 
of 0 into 2 to the ordered subset of all open subsets of 0 is a projective presheaf. 

40 A.13. Definition. A sheaf is a projective presheaf SP whose base is the set of all 
open subsets of a closure space 8P ordered by inclusion; we shall say that SP is 
a sheaf over More generally, if the collection of all open subsets (occasionally, 
all subsets) of a closure space 0 is a base of a presheaf SP, then we shall say that SP 
is over 

Let be the collection of all open subsets of a space 0 and let 2 be a space. The 
restriction to °U of the presheaf of continuous mappings of 0 into 2 is a sheaf by 
40 A.12 (d) which will be called the sheaf of continuous mappings of 3f into 2. 

40 A.14. Remarks to Definition 40 A.11. (a) It is easily seen that the condition 
(a) can be weakened by requiring the set B to be right saturated. Indeed, assume 
the weaker condition and let a = inf B. Consider the smallest right saturated set Bt 

containing B; clearly Bx consists of all bx e A following some b e B. Clearly g = 
= f ° 91> where g and gx are canonical mappings of Pa into the projective limit of SPB 

and SPBi respectively, and / is the canonical mapping of lim £PBl into lim SPB, i.e. 
f({xb | b e Bj}) = [xb | b e B}. The mapping gt is injective by virtue of the weakened 
condition (a), and the mapping / is injective because each bx s Bx is preceded by some 
b e B. It follows that g is injective. Now the conditions (a) and (b) can be replaced 
by the following condition: 

If a = inf B and B is right-saturated, then the canonical mapping {x -> {fxbx | b e 
e B}} of Px into lim SPB is bijective. 
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(P) If each finite family in <A, possesses a supremum, then the condition 
(b) can be strengthened by replacing the requirement "B is right-saturated" by the 
following weaker requirement: 

(*) If bu b2e B then sup (&x, b2) e B. 
For example, if is a presheaf over <exp R, =>) then (*) requires B to be multi-

plicative. The proof is very simple. Suppose that SP is projective at a and B is a set 
satisfying (*). We must show that the canonical mapping of Pa onto lim SPB is surjecti-
ve, i.e. that E{x {fabx \ b e B} \ x e Px} = lim SPB. 

Consider the smallest right saturated set B' containing B. Since SP is projective 
at a, we have 

- {fxbx | b e B'} | x e P.} = Urn SPB.. 

It follows that it is enough to show that each family {x61 b e B} e lim SPB can be 
extended to a family {xb\be B'} e lim SPB.. If b e B' - B and bx g b, b2 ^ b, then 
also b3 = sup (bu b2) e B and hence fblbxbl = fb3bxbj = fb2bxbl, and consequently 
the value fblbxbl does not depend on the choice of bt ^ ft in B. Thus we can define 
xb for b in B' — B as fblb with a bx ^ b (such a bt exists). 

(y) If SP is projective at the greatest element a, then Px is a one-point set. Indeed, 
clearly B = 0 is a right-saturated set in (A, ^ ) and a = inf B. Since lim SPB 

contains exactly one element (namely 0), the set Px contains at most one element 
by (a) and at least one element by (b). 

We shall return to an examination of projective presheaves in subsection B. Now 
we present the definition of the inductive limit of a presheaf. 

40 A.15. Definition. Let us suppose that SP = <{Pfl}, {/„&}> is a presheaf of sets 
over a quasi-ordered set <A, ^ ). Let q be the smallest equivalence on the sum P 
of the family {Pa | a e A} such that (a, x) q (b, y) provided that facx = fbcy for 
some c (which necessaiily follows both a and b). The quotient of P under Q will be 
termed the inductive limit of SP, and denoted by lim SP (i.e., lim <{P„}, {/<,!,}» or 
merely lim {P„}. For each a the mapping {x -+ g[<a, x>]} of Painto lim SP will be 
termed the canonical mapping of Pa into hm SP and will often be denoted by "/. 

40 A.16. Remarks, (a) As it stands, the notion of inductive limit is derived from 
the notion of sum. On the other hand, the sum is "almost" a special case of inductive 
limits. Indeed, if {Pfl | a e A} is a family of sets and if a ^ b if and only if a = be A, 
then SP = <{Pa}, {fab}}, where fab is the identity mapping of Pa onto Pb (since 
a = b), is a presheaf over <A, ^ > and its inductive limit is the quotient set of the 
sum £{Pfl} under the identity equivalence on the sum, that is, 

lim SP = E{(x) | x e l{Pfl}} . 

(p) Evidently, o = {<a, x> -* <b, | facx = fbcy for some c in A} is a reflexive 
and symmetric relation on I{Pa} which need not be transitive. Nevertheless, if 
<i4, ^ ) is right directed then a is transitive, and hence o is an equivalence on P and 
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therefore a = g. The proof of this fact is a matter of a simple calculation. Suppose 
(a, x> a (b, y}, <b, y) cr <d, z). By definition of cr, there exist c and e such that 
facx = fbcy, fbey = fdez (thus a, b g c and b, d g e). Since (A, ^ > is right directed, 
we can choose an I in A following both c and e and hence also a, b, d. Now clearly 

falX = fclfac* = fclfbcy = fbtf = fetfbeV = felfdeZ = fdlZ . 

hence falx = /d/z, which proves « a , x>, <d, z)> e tr and establishes the transitivity. 
(y) As we noticed in (P), the relation cr generating g is reflexive and symmetric but 

need not be transitive. Sometimes it is convenient to define g as the smallest equival-
ence containing the following relation a u which is reflexive and transitive, but in 
general not symmetric: 

ffi = {<a, x> -f (b, y} | a g b and fabx = y} . 

Obviously cr1 c a. As we know (3 F.4) the relation g can de described in terms of a 
as follows (this description obtains under the assumption that cr is symmetric and 
reflexive): <£, t\) e g if and only if there exists a finite sequence i ^ n} such that 
f 0 = i» = i/ a n d Ci+1> e c for each i = 0,1,. . . , n — 1. It is easily seen that 
the relation g can be described in terms of cr1 as follows: <£, t]} e g if and only if 
there exists a finite sequence {^¡j i g n} such that ¿;0 = = r\, e <7! u o^1 

for each i ^ n — 1. 
(8) The canonical mapping of Pa into the inductive limit is the composite of the 

canonical embedding {x -> <a, x>} of Pa into the corresponding sum followed by 
the canonical mapping {<£>, y} — g\_(b, y)]} of the sum onto the inductive limit, 

(e) If A = 0, then E{Pa \ aeA} = 0 and hence lim ¥ = 0 as well. 
Before presenting the general theory we give two examples. The first of them shows 

that the notion of the inductive limit implicitly occurs in many theorems concerning 
the local behavior of functions. The second very simple example serves as an intro-
duction to further rather general theorems. 

40 A. 17. Germs of a presheaf over subsets of a closure space, (a) Let 
<{Cj-}, {fXY}} be a presheaf over a closure spaced, and for each x in0 let "11 x be the 
neighborhood system at x. The elements of lim {Cx | X e are called the germs of 
the presheaf {Cx} at the point x. Since is right directed, the relation a = 
= {(X, s> ->• < Y, r> \fxzs = fyzr for some Z e 11 Z c X n Y} is an equivalence, 
and consequently lim {Cx | X e is the quotient of £{CX | X e under a. 

(b) For example, let {Cx} be the presheaf of continuous mappings of SP into J . 
The germs of {Cx} are called the germs of continuous mappings of 0* into 2.. The 
elements of £{CX | X e 1ix} are usually called continuous elements at x (relative 
to 2). Thus a continuous element at x is a pair <Z, / ) , where X is a neighborhood 
of x and / is continuous mapping of the subspace X of 0 into 2, the germs at x of 
continuous mappings into 2 are classes of equivalent continuous elements at x and 
two continuous elements at x, say <X,/> and <Y, g}, are equivalent if and only if 
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there exists a neighborhood Z of x such that / | Z = g | Z (and hence Z c I n 7). 
Stated in other words, two continuous elements at x determine the same germ if and 
only if the corresponding mappings agree on a neighborhood of x. 

40 A.18. Let 0> be a space. For each X <= \0>\ let Fx be the set of all functions on X. 
Clearly {Fx} with restrictions as connecting mappings is a presheaf over <exp => >. 
If £ is a germ of {Fx} at a point x and there exists a <£/,/> E such that/ is continuous 
at x, then for each (V, g} e g is continuous at x. Similarly, if there is defined the 
notion of differentiability, e.g. if 0 = R and there exists a <L/,/> in £ such that the 
derivative of / at x exists, then for each (V, g} e £ the derivative of g at x exists 
and equals that of / . Thus we can define the notion of a "continuous" germ and 
of the derivative of a germ. It seems that the statement "if a germ % has a derivative, 
then the germ £ is continuous" expresses the well-known fact more suggestively than 
the usual formulation "if a function / has a derivative at a point x, then / is continu-
ous at x". One can find many examples of local properties of functions at points 
which are in fact properties of germs. 

40 A.19. Example. Suppose that (A, is monotone, {Pa | a e A} is an order-
preserving family of sets (that is, a ^ b implies Pa cz Pb), and if a ^ b then fab is the 
identity mapping of Pa into Pb. Clearly SP = <{P„}, {/„&}> is a presheaf over (A, 

(a) It is easily seen that lim SP consists of all constant families {x | a e A} such 
that x e n{Pfc | be A}; stated in other words, {x {x | a e A} | x e n{-Pfc | b e A}} 
is a one-to-one relation the domain of which is p){Pb | b e A} and the range of which 
is lim SP. Next, lim SP consists of all sets of the form Xx = E{<a, x) | x e Pa}, 
x e & | b e A}, in other words, the relation {x -* Xx | x e ( J^o | a e ranges 
on lim clearly this relation is one-to-one. 

(b) For each a e A let ga be the identity mapping of D{Pf> | b e A} into Pa, i.e. 
gax = x for each x e Dga. Clearly the family {ga} is compatible for i.e. gb = 
= fab o ga for each a ^ b. By 40 A.7 there exists exactly one mapping g such that 
ga = (pr„ : lim Pa) o g for each a and gx = {gax | a e A}. But clearly the relation 
gr g is the relation considered in (a). By (a) the mapping g is bijective. Thus g is 
a one-to-one mapping of Di^o | a e -4} o n t o I™ & a n d {da} = [{Pra : lim & -* 
-> P„}] o g. In general, if g is a bijective mapping and fulfils the last equality, then we 
say that Dg is isomorphic by {ga} with lim Sf. In our case, we can say that the 
intersection of {Pa} is isomorphic (by identity mappings) with lim if . 

(c) Now, for each a e A, let ga be the identity mapping of Pa into (Ji^t | be B) and 
let g be the mapping of lim SP which assigns to each Xx e lim SP the point x. By (a) the 
mapping g is bijective and ga = g o"/ for each a, where "/ is the canonical mapping 
of Pa into lim SP which can be written as {ga} = g o [{"/}]. In general, if {ga} fulfils the 
last equality with a bijective mapping g, then we shall say that the common range 
carrier of mappings ga is isomorphic by {ga} with lim ¿P. In our case we can say that 
the union P of {Pa | a e is isomorphic by the identity mappings ga: Pa -*• P with 
fim SP. 
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In 40 A.5 we introduced the notion of a projective family compatible for a presheaf 
¥ ; this is a projective family {ga} (i.e. a family with common domain carrier) such 
that gb = fab o ga for each a ^ b, where fab are connecting mappings of ¥ and ^ 
is a quasi-order of the base of ¥ . Now we introduce corresponding notions for in-
ductive families. 

40 A.20. Definition. Let ¥ = <{Pa}, {/a6}> be a presheaf over (A, By an in-
ductive family compatible for ¥ we shall mean an inductive family of mappings 
{ga} (i.e. a family {ga} with a common range carrier) such that ga = gb° fab for each 
a ^ b (thus Dgb = Pb for each b e 4̂). 

Before stating the main result for inductive families compatible for a presheaf we 
summarize the results of 40 A.6 and corollaries of 40 A.7 in the theorem which fol-
lows. 

40 A.21. Theorem. Let ¥ = <{Pa}, {/a6}> be a presheaf over <A, <;>. The family 
{fa} °f projections of lim ¥ is compatible for ¥ , and if a projective family {ga} 
is compatible for ¥ , then there exists exactly one mapping g such that g a = fao g 

for each a; this can be written as 

(•) {*-} = [ { / - } ] - 9-
If {ha} is a projective family compatible for ¥ such that each projective family 

{#a} admits a unique decomposition (*) with fa replaced by ha, then there exists 
exactly one bijective mapping k such that ha = fa o kfor each a. 

40 A.22. Theorem. Let ¥ = <{Pa}, {/afc}> be a presheaf over (A, The 
family {"/} of canonical mappings into lim ¥ is an inductive family compatible for 
¥ . If {ga} is any inductive family compatible for ¥ , then there exists exactly one 
mapping g of lim ¥ (into the common range carrier of all ga) such that ga = g o "f 
for each a e A; this can be written as 

(*) {0.} = 5 o [{"/}]. 
Stated in other words, each inductive family compatible for ¥ admits a unique 
decomposition (*) (where only g depends on {ga}J. 

Corollary. If {ha} is an inductive family compatible for ¥ such that each in-
ductive family {ga} compatible for ¥ admits a unique decomposition (*) with "f 
replaced by ha, then there exists a bijective mapping k such that ha = k o "f for 
each ae A. 

Proof. By definition, the inductive limit of ¥ is the quotient set (E{Pa})/g where 
q is the smallest equivalence containing the relation a = {<a, x} (b, y} |facx = 
= fbcy for some c}. Now if y = fabx, then « a , x ) , ( i i , j ) ) e f f c g and hence the pairs 
<a, XS) and <b, y) belong to the same equivalence class, i.e. "fx = bfy. It follows 
that "/ = bf o fab, which shows that {"/} is compatible for ¥ . Now let {ga} be any 
inductive family compatible for ¥ and let Q be the common range carrier of all ga. 
Consider an auxiliary mapping k of £{Pa} into Q which assigns to each <a, x) the 
point gax of Q. The relation {<C, | k£ = ktj} is an equivalence on £{Pa} containing 

48—Topological Spaces 
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the relation a (since {ga} is compatible for SP) and hence also q. Therefore there 
exists exactly one mapping g of (E{Pfl})/e into Q such that k = g o {£ -> e[i]} for 
each C in the sum. Now we need only notice that a mapping g fulfils the last equality 
if and only if g„ = 9 °"f f ° r e a c h a-

40 A.23. Definitions. Let SP = <{?„}, {/ai}> be a presheaf over (A, (a) If a 
is an upper bound of a subset B of A, then [fba | b e B) is an inductive family com-
patible for the restricted presheaf SPB and hence, by virtue of 40 A.22, there exists 
exactly one mapping g of lim SPB into Px such that each fba is the composition of the 
canonical mapping of Pb into lim SPB followed by g. This mapping g will be termed 
the canonical mapping of SPB into Px. 

(b) The presheaf SP is said to be inductive at a e A if the following condition is 
fulfilled: 

If a = sup B and B is left-saturated, then the canonical mapping g of lim SPB 

into Pa is bijective. 
(c) The presheaf SP will be called inductive if SP is inductive at each index a e A 

excepting, possibly, the least indices. 

40A.24. Remarks to Def in i t ion 40 A.23. (a) If a = supB and a e B, then 
the canonical mapping g of lim SPB into P„ is bijective, and moreover g is the 
inverse of the canonical mapping of Px into lim SPB. In particular, if a is the greatest 
element of A, then the canonical mapping of lim SP into Px is the inverse of the canon-
ical mapping of Pa into lim SP (compare with analogous result 40 A.9 for projective 
limits). The proof is straightforward and may be left to the reader. 

((3) If SP is inductive at a and a is a least element of A, then Px = 0. Indeed, 
B = 0 is left saturated and sup B = a. Clearly lim £PB = 0, and hence Pa = 0. 
Conversely, if a is a least element of A and Px = 0, then £P is inductive at a. 

(y) Notice that a presheaf was defined to be projective if it is projective at each 
index (not excepting the greatest elements), but a presheaf was defined to be inductive 
if it is inductive at each index with the exception of the least elements. The reasons 
for this were explained in (p). 

(8) Very little is known about inductive presheaves. Therefore we shall restrict 
ourselves to examples. It should be remarked that more useful concepts are obtained 
by imposing some additional properties on B in 40 A.23 (b). 

40 A.25. Examples. Let SP = <{S„}, {/„<,}> be a presheaf over <A, 

(a) If g n(B x B) = Jfl then lim SPB "almost" is E{Sj | b e Bj, and hence £P 
need not be inductive even if all the/ a t are bijective and <A, is a boundedly com-
plete lattice. 

(b) SP is said to be filter-inductive at a if the condition in 40 A.23 (b) holds with B 
a right filter. If each filter is directed then SP is filter-inductive provided that all fab are 
bijective. 
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(c) Let <[./4, ;£> be the collection of all closed subsets of a topological space 
0 = <P, u>. ¥ is filter-inductive at a if for each open additive cover H of P — a. the 
following condition is fulfilled: if s e Sa then s = / P _ V a r with r in SP_V for some U 
in 11 (i.e. the canonical mapping is surjective), and also if faas = fbar with P — a ell, 
P — b e°U, then facs = fbcr with c = a n b. Inductivity may be described similarly. 
E.g. i f ^ = C and Sa is the set of all rational functions holomorphic on a, then ¥ is 
filter-inductive at any infinite a, but in general not inductive. On the other hand, ¥ is 
inductive at any infinite a provided that Sa is the set of all rational functions holo-
morphic on a which do have at most one singularity. 

In the following subsection we shall need the notion of an isomorphism of two 
presheaves over the same base. For the sake of completeness we also introduce some 
related notions, and show how morphisms of presheaves induce mappings of their 
limits. 

40 A.26. Definition. Suppose that ¥ = <{Pa}, {fab}} and ¥' = <.{P'a}, {/„'„}> are 
presheaves over the same quasi-ordered set <A, iS>. A morphism of ¥ into ¥' is 
a family (p = {cpa | a e A} such that each cpa is a mapping of Pa into P'a and f'ab° <pa = 
= <PB0 FAB f° r each a ^ b; that is, the diagram 

fab 

is commutative for each a ^ b. A morphism <p = {<pa} is an epimorphism or a mono-
morphism if each mapping cpa is surjective or injective, respectively. A morphism cp 
is called an isomorphism if cp is simultaneously an epimorphism and a monomorph-
ism. 

Notice that we employ terms usually used in the general theory of categories. It 
follows from the following theorem that all presheaves over a given quasi-ordered 
set with the morphisms just defined as morphisms is a category. Moreover, one can 
easily show that monomorphisms and epimorphisms just defined coincide with 
the monomorphisms and epimorphisms in this category. 

40 A.27. Let ¥ , ¥' and ¥" be presheaves over the same base <A, If {<pa} 
and are morphisms (monomorphisms, epimorphisms, isomorphisms) of ¥ into 
¥' and of ¥' into ¥" respectively, then {\j/a o (pa} is a morphism (monomorphism, 
epimorphism, isomorphism) of ¥ into ¥". If {cpa} is an isomorphism then {«pj1} is 
an isomorphism of ¥' into ¥ . Let B be a quasi-ordered subset of <A, ^ ) . I f 
{(pa | a e A] is a morphism, monomorphism, epimorphism or isomorphism of ¥ 
into ¥ ' , then {<pa | a e B} is a morphism, monomorphism, epimorphism or iso-
morphism of ¥ b into ¥'b. 

Now we shall prove that each morphism of ¥ into ¥ ' induces, in a natural way, 
a mapping of lim ¥ into lim ¥ ' and a mapping of lim ¥ into lim ¥ ' . 

48' 
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40 A.28. Theorem. Suppose that if and i f ' are presheaves over the same quasi-
ordered set <A, and (p = {(pa} is a morphism of if into i f ' . Then 

(a) There exists exactly one mapping (p of lim if into lim i f ' such that the dia-
gram 

f a 

<P <Pa 

fa 

is commutative for each a in A, where {/„} and {/„} are the families of canonical 
projections of lim if and lim if" respectively. The mapping q> is injective or bijective 
provided that all (pa possess the corresponding property, i.e., provided that cp is 
a monomorphism or an isomorphism. 

(b) There exists exactly one mapping ~q> of lim SP into lim i f ' such that the dia-
gram 

7 
is commutative for each a in A, where {"/} and {"/'} are the families of canonical 
mappings into lim if and lim if". The mapping 7p is surjective or bijective provided 
that all mappings (pa possess the corresponding property, i.e. provided that (p is an 
epimorphism or an isomorphism. 

Proof. The reader is requested to prove the existence and the uniqueness in both 
statements (a) and (b), even though both are special cases of 40 A.29. We restrict 
ourselves to the proof of additional properties of q> and cp. 

(a) It follows immediately from the diagram in (a) that <p({*a}) = {<pjc„} for each 
{xa} in lim i f . Thus clearly (p is injective if each cpa is injective. If <p is an iso-
morphism, then both cp and <p-1 = {(p"1} are morphisms and clearly <p_1 o is the 
identity mapping of lim i f . It follows that <p is bijective. 

(b) Suppose that cp is an epimorphism and choose an r\e lim if". There exists an 
a in A and y in P'a such that "f\a, y)> = rj. Since cpa is surjective, we can choose an x 
in Pa such that <pax = y. Put £ = 7<a, x>. It follows from the diagram in (b) that 

= fj. Thus (p is surjective. Now let <p be an isomorphism. Since cp'1 is also an 
isomorphism and (p ~1 o q> is the identity mapping of lim i f , cp is necessarily bijective. 

Remark. It should be noted that (p need not be surjective if <p is an epimorphism, 
and <p need not be injective if cp is a monomorphism. 

40 A.29. Theorem. Suppose that if — <{Pa}, {/„&}> is a presheaf over <A, ^ ) 
and if t = < { Q C } , {ffcJ}> is a presheaf over < C , < > . 
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(a) Let a be an order-preserving mapping of <C, -<> into <A, and {hc\ce C} 
be a family of mappings, with each hcfrom Pa(c) into Qc, such that the diagram 

9a 

/a(c)i(d) 

is commutative for each c d. There exists exactly one mapping h of lim ¥ into 
lim ¥ t such that the diagram 

f t ( c ) 

is commutative for each c in C, where {/„} and {gc} are families of all projections of 
lim ¥ and lim ¥ t , respectively. 

(b) Let ¡} be an order-preserving mapping of <A, into <C, -<> and {ha | a e A} 
be a family of mappings, with each hafrom Pa into such that the diagram 

dfClfW 

fab 

is commutative for each a ^ b. Then there exists exactly one mapping g of lim ¥ 
into lim ¥ ± such that the diagram 

ha 9 

af 

is commutative for ea&h a in A, where {"/} and {cg} are families of canonical map-
pings into lim ¥ and lim Sf^, respectively. 

Proof. I. First we shall prove statement (a). There exists at most one h such that 
gc o h = hc o /a (c ) for each c in C, because if y = hx then necessarily gcy = 
= KL/a(e)x] f° r e a c h c in C, and hence each gcy is uniquely determined by x; this 
implies that y is uniquely determined by x. On the other hand, if x e lim then the 
family {h c ( f I { c ) x) | c e C} belongs to lim ¥^ because of the commutativity of the first 
diagramin(a). Thus h = <{x {hc(fa(c)x)} | x e lim ¥} , lim lim is a mapping 
and it clearly makes the second diagram of (a) commutative. 

II. Proof of (b). The uniqueness is almost evident. Indeed, if C 6 lim then 
"/<a, x) = C for some a e A and x e Pa, and the commutativity of the second dia-
gram in (b) yields g( = iWghax. The existence of g can be proved as follows. By 
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definition we have 
lim SP = E{Pa | a e A}!Q 

and 

Hm = E{6C | c e C}/Cl 

where q and are the smallest equivalences containing the relations 

a = { « a , x>, <b, y » | /a Ix = / ^ y for some a} 
and 

= {«c, x'>, <d, y ' » | 0C),x' = 0 J y / for some y} , 

respectively. Consider an auxiliary mapping k of £{Pa} into X{QC} which assigns 
to each (a, x> the point </?(a), /iax>. It follows from the commutativity of the first 
diagram in (b) that <£, f/> e CT implies <fc£, kq} e <r1 and this implies (k£, kt]} e 
Since is an equivalence and q is the smallest equivalence containing a, we have 
<C, kt]} e But from the last implication one can conclude at once 
that there exists a mapping g of lim into Hm y t such that 

{n ° k = 9 ° {C ^ e[C]} • 

Obviously this mapping g makes the second diagram in (b) commutative. 

Corollaries. Let if = <{Pa}, {/a6}> be a presheaf over (A, and let B <= A. 
Then 

(a) There exists exactly one mapping h of lim Sf into lim such that the com-
position h with the canonical projection o / lim £fB into Ph is the canonical pro-
jection of lim SP into Pbfor each b in B. 

(b) There exists exactly one mapping k of lim into lim Sf such that, for each b 
in B, the composition of the canonical mapping of Pb into lim SPB followed by k is 
the canonical mapping of Pb into lim SP. 

Proof. Put tx = p = {b->b\beB} and apply the theorem (in case (a) £P = 
= SP and <P4 = <PB and in case (b) SP = <PB,SPX = SP). 

40A.30. Remark to Corollaries of 40 A.29. 
(a) The mapping h is injective provided that B is left-cofinal in A, and h is bijective 

if B is left-cofinal in A and A is left-directed. 
(b) If B is right-cofinal in A, then the mapping k is bijective. 
Proof, (a) First suppose that B is left-cofinal in A and x = {xa} and y = {ya} are 

elements of lim SP such that xb = yb for each b in B (i.e. hx = hy). We must 
show that xa = ya for each a in A. Pick an a in A. There exists a b in B preceding a. 
Since fbaxb = xa, fbayb = ya, and xb = yb, we obtain xa = ya. Now suppose that, in 
addition, A is left-directed and {xj, | & e B} is any element of lim SPB. We must find 
a family {ya \ a e A} e lim SP such that yb = xb for each b in B. From our assump-
tions we shall obtain that, given an a in A, the value fbaxb, b ^ a does not depend 
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on b. This will enable us to define ya = fbaxb for some b ̂  a; clearly {ya} e lim Sf and 
yb = xb for each b in B. Suppose that a e A and b1 and b2 are elements of B preceding 
a. Since B is left-cofinal and A is left-directed we can choose a b in B preceding both 
¿ i and b2. N o w fbtaxb¡ = fbJbbixb = fbaxb, i = 1,2, which proves fb¡axbi = fbiaxbr 

(b) Suppose that B is right cofinal. If tj e lim then "/<a, x> = t] for some 
a e A and x e P„; now, if b e B, a ^ b, then also bf(b,fabx} = r¡. If £ is the image 
of <b,fabx} under the canonical mapping of Pb into lim £fB, then clearly kl, = r¡. 
Thus k is surjective. It remains to show that k is injective. It is enough to show that 

(*) Qb^ en (E{Pt | b e B}) x (E{P„ | b e B}) 

where g and gB are equivalences such that 

lim & = (S{Pfl})/0 and lim 9>B = (Z{Pb})¡gB . 

The proof of the inclusion (#) is straightforward and is left to the reader. 
Remark. The assumption "A is left directed" cannot be omitted from (a) in 

40 A.30. Indeed, put A = (1, 2, 3, 4) and define the order on A so that 1 and 2 are 
incomparable, 3 follows both 1 and 2, and 4 follows 3. The sets P l 5 P2 and P4 are 
one-point and the set P3 has at least two points. Finally, the connecting mappings 
f¡j are defined so that / 1 3 [ P t ] does not meet /2 3[P2] . If ¥ is the resulting presheaf 
of sets and B = (1, 2, 4), then B is left cofinal in A, lim Sf = 0 but lim SfB * 0 (and 
hence the canonical mapping of lim £f into lim SfB is not surjective). 

B. SHEAVES OF SETS AND COVERING FIBRATIONS 

One of the main results of this subsection asserts that every sheaf over a space & 
is isomorphic with the sheaf of continuous sections of a covering fibration over 2P. 

40 B.l. We shall introduce some abbreviated terminology. By 7 B.12 a fibration is 
a correspondence/ such t h a t / - 1 is a mapping, i.e. / i s a range-full correspondence 
such that the fibres are disjoint. Here we shall only consider fibrations / such that 
both D*/ and E*/ are closure spaces; for brevity we shall mean by a fibration a fibra-
tion such that both carriers are spaces. By 7 C.8 a section of a fibration/ is a mapping 
such that E*s = E */ and grs c gr/ ; thus Ds c D/ and no compatibility require-
ment on the structure of D*s is involved; for brevity we shall always assume that D*s 
is a subspace of D */. The space E */ will be called the fibre space o f f . 

Let / be a fibration over a closure space & and for each open subset U of 0 let Sv 

be the set of all continuous sections of / over U (i.e. sections over U which are con-
tinuous mappings). Since the domain-restrictions of continuous sections are continu-
ous sections and a domain-restriction s of a continuous section s t which is a domain-
restriction of a continuous section s2 is a domain-restriction of s2, the family 
{Sj, | U open} endowed with restriction mappings as connecting mappings (see 
40 A.2) is a presheaf over open subsets of 0 ordered by is. 
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We shall prove that {S^} is a projective presheaf, i.e. a sheaf over 3?. A direct proof 
can be given, but we prefer to reduce the projectivity of {S^} to the projectivity of the 
sheaf {Ct,} of continuous mappings of 0 into E*/ (see 40 A.12). Clearly Sv <= Cv 

for each U, and an seCv belongs to Sy if and only if gr s is a section of gr/ , i.e. 
f~1sx = x for each x in U. Now if U = {JV and {sK | Ve • f ) is a family such that 
sF e SK for each F in "V and the restrictions of sK] and sVl to Vt n V2 coincide for 
each Fi and V2 in V, then {Cv} being projective at U, there exists an s in Cv such 
that each is a restriction of s to F It is easily seen that / _ 1 s x = x for each x in U, 
and hence s e Sv as we noticed above. 

40 B.2. Definition. If / is a fibration over a space SP then the sheaf over 0 just 
defined will be called the sheaf of continuous sections of f and will be denoted by £Pf. 

It turns out that any sheaf over a space 0 is isomorphic with the sheaf of continuous 
sections of a fibration / over furthermore, the fibration / can be chosen with 
some important additional properties, namely / may be taken to be a covering 
fibration. 

40 B.3. Definition. A covering fibration is a lower semi-continuous and inversely 
continuous fibration f such that D/ is open in D*/ and each point of the fibre space 
E*/ has an open neighborhood U such that the mapp ing / - 1 : U D*/ is injective. 

40 B.4. In order that a fibration f be a covering fibration it is necessary and 
sufficient that each point of E*/ have an open neighborhood U such that the domain-
restriction g of f~l to the subspace U of E*/ is an embedding and the set Eg 
f= g[U] =f~1[U]) is open in D*/. 

Proof . I. Assuming that / is a covering fibration, choose a point y of E*f and an 
open neighborhood U of y such that g = f 1 : U D*/ is injective. We shall prove 
that g is an embedding (U is considered as a subspace of E*/) and Eg is open. The 
mapping g is continuous as the restriction of the continuous mapping, and g is inversely 
lower semi-continuous as the domain-restriction of an inversely lower semi-continuous 
mapping to an open subspace, namely of / - 1 . Finally, Eg = / _1[(7] is open in the 
subspace E / - 1 = D/ because / is lower semi-continuous; since D/ is open in D*/, 
Eg is open in D*/. — II. Assume the condition. Evidently / _ 1 is injective on an open 
neighborhood of any point of E*/, and E / - 1 = D/ is open as the union of open sets, 
namely the ranges of embeddings in the condition. The mapping / " 1 is continuous be-
c a u s e / - 1 is continuous on a neighborhood of any point of E */. To prove that / i s 
lower semi-continuous we shall show that if F is a neighborhood of a point y of E*/ 
then / - 1 [ F ] is a neighborhood of f_1y in D*/. Let U be an open neighborhood of y 
such that / _ 1 :U -* D*/ is an embedding and / _ 1 [ t / ] is open. The set U n F is 
a neighborhood of y in U and hence f~l{U n F] is a neighborhood of f~ly in 
/ ~1 [[/] and so certainly in D*/ because/ ~1 [[/] is open. 

40 B.5. In order that a fibration f be a covering fibration it is necessary and 
sufficient that 
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(a) ranges of continuous sections over open sets be open and cover E*/ and 
(b) either/-1 be continuous or D*/ be topological. 
Proof. I. Assume (a) and (b). Let y be any point of E*/; by (a) we can choose 

a continuous section s over an open set F such that U = Es is open and contains 
The mapping s is an embedding; this is evident i f / _ 1 is continuous, and if D*/ is 
topological then s is an embedding because D*s is topological and s carries open sets 
of D*s into open sets of E*s = E*/ (by (a)). Since s is an embedding, the mapping 
g = s - 1 :U -*• D*/ = / - 1 : U -*• D*/ is also an embedding and Eg = F is open. 
By 40 B.4, / is a covering fibration. — II. Assume that / is a covering fibration. Clearly 
(b) is fulfilled. Let s be a continuous section over an open set U. We shall prove that 
the set Es (= s[L/]), denoted by F, is a neighborhood of each of its points. Assuming 
y e Fchoose an open neighborhood IF of y such that / " 1[1F] is open and the mapping 
g = / _ 1 : W-* D*/is an embedding (by 40 B.4). We shall prove that Wn Vis open. 
It is sufficient to show that g[Wn F] is open. Clearly g[Wn F] = s _ 1[ lF] . The 
set s - 1 [ lF ] is open in D*s because s is continuous and IF is open; since U = Ds is 
open, s_1[PF] is open in D*/. Finally, we must show that ranges of continuous sec-
tions over open sets cover E*/, and this follows from 40 B.4, because if g = /_1 : 
: U -» D*/ is an embedding such that Eg = is open, then g_1 : Eg -*• E*f 
is an embedding and so a continuous section. 

Remark. If 0 is a closure space which is not topological and / = J : 0 xSP, 
then (a) is fulfilled but (b) is not. 

For the proof of the main results we shall need the following characterization of 
covering fibrations. 

40 B.6. Theorem. In order that a fibration f be a covering fibration it is necessary 
and sufficient that there exist a family {sa} of continuous sections over open sets 
such that 

(a) {sa} inductively generates the fibre space E*/, 
(b) {Esa} covers E*/ , and 
(c) if sai and s„2 agree at a point x (i.e. saix = sa2x) then both sections agree 

on an open neighborhood of x. 
Remarks . (1) Condition (c) is equivalent to the following condition: 
(c') The set E{x | sBlx = sa2x} is open for each and az. 

(2) As {sa} we can take any family of continuous sections over open sets satisfying (b). 
Proof . Evidently (c) and (c') are equivalent. I. Assume tha t / i s a covering fibration 

and {sa} is any family of continuous sections over open sets satisfying condition (b) 
(such a family exists by 40 B.5). Condition (a)is fulfilled since the saare embeddings and 
{Esa} is an open cover of E*f. The set X in (c') is the inverse image of the open set 
Esai N ES„2 (by 40 B.5) under a continuous mapping, e.g. sai, and therefore X is 
open. — II. Assuming (a) —(c) we shall prove tha t / is a covering fibration by showing 
that/fulfils the condition in 40 B.4. First notice t h a t / - 1 is continuous (because/ - 1 o 
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o sa is an identity mapping and thus certainly a continuous mapping for each a); thus 
/ is an inversely continuous fibration. Now let y be any point of E*/ and let us choose 
an sx such that y e Es„. We shall prove that g = f~l : Esa D*/ is an embedding 
and Es„ is open in E*/. Since / is inversely continuous and sx is a continuous section, 
sx is an embedding; since gr sx = gr g~l, g is also an embedding. To prove that 
Esa is open it is sufficient to show that s ^ L ^ s J is open in D*sfl for each a, and this 
immediately follows from condition (c') (we have sJ^Es,,] = E{x | sax = s„x}). 

Remark. Let r and s be continuous sections over an open connected set U of 
a covering fibration / whose fibre space is separated. Then r = s or Er n Es = 0. 
In fact, X = E{x | sx = rx} is open in U by 40 B.6, and X is closed in U because 
E*/ is separated (27 A.7). Since U is connected we have X = U or X = 0. 

Now we are prepared to prove our main result. Given a sheaf Sf over a space SP, 
we shall construct a covering fibration / over 0 and an isomorphism of Sf onto the 
sheaf of continuous sections of / . We shall prove somewhat more: for any presheaf 
over open subsets of a space 0 we shall construct a covering fibration / over SP and 
a morphism q> of Sf into Sf s which has some important properties, e.g. q> is an iso-
morphism provided that Sf is a sheaf. In 40 A.18 we introduced the concept of a germ 
at a point of a presheaf over subsets of a closure space. We shall need germs of a 
presheaf over open sets of a closure space. It is to be noted that if the space is not 
topological then there is an essential difference between the germs of a presheaf if 
over subsets of a closure space and the germs of Sf restricted to open sets. If the space 
is topological then this difference is merely formal. 

40 B.7. Definition. Let Sf be a presheaf over open subsets of a closure space 0> and 
for each x let 11 x be the collection of all open sets containing x. The inductive limit of 
Sf restricted to 11 x is called the stalk of Sf over x, and the elements of the stalk over 
x are called the germs of Sf over x or at x. 

Notice that the germs of Sf over open sets of SP and the germs of Sf over open sets 
of xSP coincide. 

40B.8. Let Sf = {{S^}, {fuv}y be a presheaf over the collection 11 of all open 
subsets of a space 0 and let 1lx = E{[/ | x e U e 11) for each x in SP. We shall con-
struct a covering fibration/and the required morphism of Sf into Sf f. 

(a) Denote by Qx the stalk of Sf over x. The set 

Q = X{Qx | x sSP) = E{lim Sfmx \xe0j 

will be the underlying set of the fibre space of / , and the relation 

Q = 2{(x) x Qx\xeSP) 

will be the graph of / (Q consists of all <x, <x, y » , xeSP,y s Qx)). For each U in 11 
and s in Sv let s be the single-valued relation which assigns to each x e U the point 
<x, y} where y is the value at s of the canonical mapping of Sv into the inductive 
limit Qx (40 A.15). The following assertion is obvious: 
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(*) Each s is a section of g, and if s = fVySu then s is the domain-restriction of 
Sj to V. 
We shall also need the following: 

(**) If xeUt n U2, Si e SUt (i = 1, 2) and s1x = s2x then there exists a U <= 
<= UX n U2 such that xeU and fUlVs1 = fUiVs2 = s e Su; in particular, the domain-
restrictions of Sj and s2 to U coincide. 

Since Hx is directed and s tx = s2x we can choose a U in 1lx following both U1 

and U2 (i.e. U c UX n U2) such that / j , ^ = fUlVs2 (by 40 A.16 (p)). 
(b) Let u be the closure inductively generated by the family of all mappings s : 

:U -* Q (where U is considered as a subspace of 8P) with U in 11 and s in Sv, and let 
f = g:0^<Q,u}. 

We shall prove that / is a covering fibration by verifying conditions (a)—(c) in 
40 B.6 for the family {s : U -» E*/1 U e "U, s e Evidently each member is a con-
tinuous section of / over an open set and the ranges of the members cover E*/. Con-
dition (c) immediately follows from (**). 

In what follows the symbol s with s in Sy will denote the continuous section 
s : U - E */. 

(c) Let {Sy} denote the sheaf of continuous sections of / . For each U in °U let q>v 

be the mapping of S^ into S'v which assigns to each s the continuous section s. It 
follows from (#) that the family cp = {<pv | U e 1l\ is a morphism of Sf into {S'̂ }. 

We shall prove that cp is a monomorphism whenever Of fulfils condition (a) of de-
finition 40 A.11 of projective presheaves, and <p is an epimorphism whenever £f is 
projective (i.e., a sheaf). It will follow that <p is an isomorphism whenever Sf is 
a sheaf. 

Take any £P which fulfils condition (a) atUeW and two elements and s2 of Sv such 
that Sj = s2. We shall prove = s2. By (**) we can choose families {Ux | x e U} and 
{sx | x e U} such that x e Ux c U, sxe SUx and f w j i = fuux

s2 f° r each x in U. 
Since | xe U} = U (i.e., inf {Ux} = U), condition (a) implies that Si = s2. 

Suppose that Sf is a sheaf, U e 11 and g e S'v. We must find an s in Sv such that 
s = g. Consider the collection "V of all V <= U such that r is restriction of g to Ffor 
some r in Sv. Since <p is a monomorphism, as it has already been shown, for each V 
in V there exists exactly one r in Sv such that r is a restriction of g; let stand for 
this r. Evidently if V1 <= Ve "V, e 1l, then F t e f and fVVISY = sVi, and hence 
y is a right saturated. It remains to show that [Jf = U (i.e. U = i n fy ) ; indeed, 
it will follow from condition (b) in 40 A.11 that there exists an s in Sv such that 
fvvs = sv for each Fin ir, and hence s is a restriction of g to U. Consider any point x 
of U and choose a Win 11 and an r in Sw such that fx = gx. Since f and g are con-
tinuous sections of / and / is a covering fibration, by 40 B.6 (c) the two sections agree 
on an open neighborhood Fof x; clearly we may assume that V a U. If t = fwvr, 
then tx = gx for each x in F, and hence Ve ~f. The proof is complete. 
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40 B.9. Definition. Let ¥ be any presheaf over open sets of a space 3P. The cover-
ing fibration / constructed in 40 B.8 will be called the covering fibration associated 
with ¥ (and will often be denoted by fy); the fibre space of / will be called the fibre 
space of ¥ , the sheaf of continuous sections of / will be termed the sheaf associated 
with ¥ and denoted by ¥ . Finally the morphism cp of ¥ into ¥ constructed in 
40 B.8 will be called the canonical morphism of ¥ into ¥• 

The main result of 40 B.8 can be restated in terms of 40 B.9 as follows: 

40 B.10. Theorem. The canonical morphism of a presheaf ¥ over open sets 
of a space & into the associated sheaf ¥ of continuous sections of the covering 
fibration associated with ¥ is an isomorphism if and only if ¥ is a sheaf. In parti-
cular, every sheaf over a space 3P is isomorphic with the sheaf of continuous sections 
of a covering fibration over 2P. 

40B.11. Examples. Let ¥ = {Sv} be a sheaf of holomorphic functions over 
the space C of complex numbers. The fibre space associated with ¥ is clearly the 
underlying closure space of the Riemann surface of ¥ . E.g., for each open set U 
let Sjj be the set of all holomorphic functions on U whose derivative is the function 
{z -> 1/z}. It is easily seen that ¥ is a sheaf; this sheaf is called the logarithm. It is 
well-known that S c_ ( 0 ) = 0 and Sv is infinite for each sphere in C — (0). If G is an 
open subset of C, then the restriction ¥ a of ¥ to open subsets of G is the restriction 
of the logarithm to G. The covering fibration associated with ¥ c - w is upon 
C — (0) and the fibres are infinite. 

The foregoing theorem shows that there is a close connection between sheaves and 
covering fibrations, and in fact every notion based on sheaves can be described in 
terms of covering fibrations and conversely. As an example we shall find the de-
scription of morphisms of sheaves. 

40 B.12. Let f1 and f2 be two fibrations over a space 0 and let ¥ ; = {Si[;}, 
i = 1, 2, be the sheaf of continuous sections of ft. (a) Let g be a continuous mapping 
of E*/i into such that f^1 =/J1 o g (or equivalently, = g-1 o f2). If s is 
a continuous section over U of fx then g o s is a continuous section over U of f2 (we 
have gr (g a/j) <=• gr f2). Put (pv = {s -» g o s} : Sw -*• S2U. It is easily seen that 
cp = {<pv) is a morphism of ¥ t into ¥2. This morphism is called the morphism 
associated with g. 

(b) Conversely, given a morphism (p = {<pv} of ¥x into ¥2 we want to define a 
continuous mapping g ofE*/j into B*f2such that cp is the morphism associated withg. 
Clearly gy must be the common value at f2 /¡~ ly of all <pvs such that f^yeU and 
sfl^y = y. On the other hand, a given point y may be the value of no continuous 
section over an open set, and if Si and s2 are continuous sections over an open set U 
and = s2x for some x in U, then the points <p[;s1x and (puS2x need not coincide, 
moreover, the sets E < a n d E i p ^ may be disjoint. It follows that g need not 
exist. If fx is a covering fibration then g exists. In fact, for any y in E*/ there exists 
a continuous section s over an open set with y e Es, and if and s2 are two continuous 
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sections over open sets Ux and U2 such that y e Esx n Es2, then st and s2 agree on 
an open neighborhood U of x = fx

1y, i.e. restrictions of Sj and s2 to U coincide, 
and hence <pv^x = .q>vsx = (pVls2x where s is the domain-restriction of both Sj and 
s2 to U. Thus the mapping g is well-defined, and clearly f j 1 = f2

 1 o g. It is easily 
seen that <pa = {s -» g a s} : S1L, S2U. Since E*f x is inductively generated by con-
tinuous sections over open sets (40 B.6) and each composite g o s is continuous, g is 
continuous by 33 A.5. 

(c) Let g be a continuous mapping of E*/x into E *f2 satisfying /j"1 = f2
l o g 

and let <p be the morphism associated with g.If g is injective then cp is a monomorph-
ism. In fact, if <p is not a monomorphism then g o st = g o s2 for some s( eSlv 

Sj 4= s2; since st 4= si, we have SjX 4= s2x for some jc in U and hence gsxx = 
= (g o s t) x = (g o s2) x = gs2x, which shows that g is not injective. If cp is a mono-
morphism and fi are covering fibrations then g is injective. Indeed, assuming that 
g is not injective, we can choose distinct yx and y2 in E*/ such that gyy = gy2, and 
continuous sections sx and s2 over open sets U1 and U2 with y{ e Es;; since/j"1 = 
= f2

 1 o g, the points yt lie over the same point relative to fu say x, and {g o sx) x = 
= (g o s2)x. Since f2 is a covering fibration, the continuous sections g o sx and 
g a s2 agree on an open neighborhood U of x. Let s'h i = 1, 2, be the domain-restric-
tions of Si to U; evidently si 4= s'2 but g o s[ = g a s'2. 

(d) Under the assumptions of (c) it is evident that g is surjective provided that cp is 
an epimorphism and the ranges of continuous sections of/2 over open sets cover E*/2 

(this condition is fulfilled if f2 is a covering fibraition). If g is surjective then cp need 
not be an epimorphism even if both fY and f2 are covering fibrations. E.g. take 
a covering fibration/! over a space 0 such that = D/ (i.e. a covering fibration 
upon 0) with the property that S1V is empty for some U (e.g. see 40 B.11) and let 
f2 = J : 0> 0>\ then there exists a unique g, namely / f 1 , g is surjective but (p is not an 
epimorphism because E<pv = 0 and S2V 4= 0. On the other hand, 'we shall prove that 

If fi are covering fibrations and either (p is a monomorphism or {E tp }̂ is a sheaf 
(subsheaf of ¿f2), then g is surjective if cp is an epimorphism. 

First we shall prove that if s is any continuous section of f2 over an open set U, 
then for each x in U there exists an open neighborhood Ux of x such that that the 
restriction sx of s to Ux belongs to E<pVx, i.e. sx = g 0 rx for some continuous 
section rx for ft over Ux. If x e U then gy = sx for some y in E*/i and we can 
choose a continuous section tx of fY over an open set Vx such that txx = y; we 
have (g o tx)x = sx, and hence g o tx and s agree on an open neighborhood Ux of x. 
Let rx be the restriction of tx to Ux; evidently g o rx is the restriction of s to Ux. 
Now if {E<p„} is projective then clearly s e E<pv. If cp is a monomorphism, then the 
family {rx} is uniquely determined, and rXl and rX2 coincide in UXi n UX1 for each xt 

and x2. It follows that there exists a continuous section r over U such that each rx 

is a restriction of r (yx is a sheaf). Clearly <pvr = s. 
(e) Let fh i = 1, 2, 3, be fibrations over a space 0 and £Pi be corresponding 

sheaves of continuous sections. Let gx and g2 be continuous mappings, g t of E*fx 
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into E*/2 and g2 of E*f 2 into E*/3> s u c h t h a t / f 1 = / 2
 1 o g^,f2

 1 = / i 1 o Con-
sider the composite g = g2° 9i- It is clear that f^1 = / j 1 o g. Let and (p2 be the 
morphisms associated with gl and g2. It is easily seen that q>2 o q>l is associated 
with g. 

40 B.13. Theorem. Let & be a space and let $ be the class of all covering fibra-
tions over 0>. For each morphism <p of £Pfl into Sf with ft in $ there exists a unique 
mapping g of E*fl into E*f2 such that (pvs = g o s for each open set U and each con-
tinuous section s of f1 over U; this mapping is called the mapping associated with 
(p and denoted by gv. The relation {cp g i s one-to-one and ranges on the class 
of all continuous mappings g : E*f 1 -> E*/2 with f-t in cP such that / f 1 = 
= /J1 0 9- U = <Pi ° <Pi then g9 = gV2 o gVl. A morphism (p is a monomorphism 
or isomorphism if and only if gv is, respectively, injective or bijective. If cp is an 
epimorphism then gv is surjective, but the converse assertion need not be true. 

Proof : 40B.12. 
The mappings gv are continuous. Now we shall prove that the fibrations g~1 are 

covering fibrations. 

40 B.14. Theorem. Let f1 and f2 be covering fibrations over a space If h is an 
inversely continuous fibration such that fi = h o f2 (hence h is a fibration over E*/2 

and E * f t = E*h), then h is a covering fibration. 

Proof. We shall use 40 B.4. Let y be any point of E*h and choose a continuous 
sections s of f1 over an open set U and an x such that sx = y. The mapping r = 
= h'1 o s is a continuous section o f f 2 over U. The sets Es and Er are open because 
the fi are covering fibrations. It is easily seen that t = h~x : Es -> E*/2 is an injective 
mapping, Ei = Er, and r = t o (s :U -> Es). The mappings r and s : U -> Es are 
embeddings, and so is certainly t. By 40 B.4 h is a covering fibration. 

Remark. It is easily seen that if ft, i = 1, 2, are covering fibrations and f2 a fl 

is defined, then f2 of1 is a covering fibration. 
A given sheaf £f over a space 2? may be isomorphic with the sheaf of continuous 

sections of various fibrations over e.g. if ¥ is the sheaf of continuous sections of 
a fibration which is not a covering fibration. If ¥ is isomorphic with the sheaf of 
continuous sections of a fibration f t and i f / 2 is any covering fibration such that ¥ f z 

is isomorphic with ¥ , then Sff2 and iVfl are isomorphic, say under <p, and there exists 
a mapping g associated with <p (40 B.12 (b)) which is a mapping of E*f 2 into E*/i-
If f1 is a covering fibration then g is a bijective mapping (40 B.12 (c), (d)), and further-
more by 40 B.14 g~l is a covering fibration, and hence a homeomorphism. Conversely 
if g is a homeomorphism then (p is an isomorphism. Thus we have proved 

40 B.15. Let fh i = 1,2, be covering fibrations over a space The sheaves £P fl 

and £ f f l are isomorphic if and only if there exists a homeomorphism g of E*ft onto 
E*f2 such that / f 1 = f2

l°g (or equivalently, f\ = g~x o f2). 



40. PRESHEAVES 767 

C. PRESHEAVES OF SPACES 

40 C.l . Definition. A presheaf of closure spaces over a quasi-ordered set <A, ) 
is a pair y = <{*„}, {/„„}> such that <{|*a|}, {|/«»|}> i s a presheaf of sets over 
(A, ^ ), which will be called the underlying presheaf of sets and will be denoted by 
jyj, and such that each mapping/afc is continuous. The set (A, ^ ) is called the base 
of if and the mappings fab are called connecting mappings ofOf. The projective limit 
of y, denoted by lim y, is defined to be the projective limit of \y j endowed with the 
closure projectively generated by the family of all mappings pra : lim Jyj -+8Pa. 
The mappings pra : lim y -> SPa will be termed the canonical mappings or canonical 
projections of lim y . The inductive limit of y, denoted by lim y, is the inductive 
limit of jyj endowed with the closure inductively generated by the family of map-
pings ia : 0>a lim jyj where ia is the canonical mapping of |*a | into lim jyj; the 
mapping ia : 8?a -* lim y will be called the canonical mapping of 8Pa into lim y. 

Remark. If the expressions "closure space", "closure" and "continuous mapping" 
are replaced by "semi-uniform space", "semi-uniformity" and "uniformly continuous 
mapping" or by "proximity space", "proximity" and "proximally continuous map-
ping" we obtain the definitions of presheaves, and of their inductive and projective 
limits, of semi-uniform.spaces and of proximity spaces. It should be noted that also 
all the following theorems with their proofs (with the exception of 40 C.20, which deals 
with local bases at points) remain true for semi-uniform spaces and proximity spaces, 
if the terminology for closure spaces is replaced by the corresponding terminology 
for semi-uniform spaces or proximity spaces. The reader is requested to modify all 
definitions and results which follow for semi-uniform spaces and proximity spaces. 

Most of results which follow extend the theorems already proved for presheaves 
of sets to presheaves of spaces. The corresponding results for presheaves of sets will 
be applied to the underlying presheaves of- sets and the remainder of the proof will 
consist of a verification that a certain mapping is continuous. This verification of 
continuity always depends on general results on continuity from Sections 32 and 33. 

40 C.2. Theorem. If y = <{*„}, {fab}y is a presheaf of closure spaces over 
<A, then the projective limit of y is a subspace of the product space H{0a | a e 
e A}, and the inductive limit is the quotient space of the sum space | a e A} 
under the smallest equivalence g containing the relation a = {«a, x<b, y» | 
| facX = ficy for some c e A}, i.e. 

lim y = Z{*a I a e A}IQ . 

Proof. By definition the space lim y is projectively generated by the family 
{pra : Hm jyj -> * a | a e A) which is the restriction to lim jyj of the family 
{pra : n{|*„| | b e A} -*• *a | a e A}. By definition, the former family projectively 
generates the closure of lim y, and the latter family projectively generates the closure 
of n{*a}. Now by 32 A.13 lim y is a subspace of fl{*a}. To prove the second as-
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sertion, denote by {"/} the family of canonical mappings of the spaces into lim ¥ , 
by {Q the family of all canonical mappings of the spaces SPa into the sumE{^ t | be A), 
and by / the canonical mapping of "L{£Pb \ b e A} onto lim ¥ (thus f(b, x) = 
= e[«£>, *»])• Since {"/} = / o [{/.}] and the familes {"/} and {;„} are inductive 
generating families for closure spaces, the former by definition and the latter by 
33 A.3, / is an inductive generating mapping by 33 A.6, i.e. lim ¥ = (T,{0a})lf = 
= ( 5 W ) / e -

40 C.3. Example. Let {S?a \ a e A) be a family of closure spaces. Let be the 
identity relation on A and consider the presheaf ¥ = {/«,&}> over (A, 
where fm is the identity mapping of 3Pa onto &a. Clearly lim ¥ = U.{0tt | a e A} 
and the mapping {x (x)} of | a e A} onto lim ¥ is a homeomorphism 
(compare with the corresponding results 40 A.4 and 40 A.16 for presheaves of sets). 

40C.4. Definition. Suppose that ¥ = <{0a}, (fab}> is a presheaf over <A, <;>. 
A projective (inductive) family of continuous mappings {ga | a e A) is said to be 
compatible for ¥ if {\gj\ | a e A} is compatible for the underlying presheaf j¥j 
(see 40 A.5, 40 A.20). 

40 C.5. Theorem. Let ¥ = ({0a}, {/„¡,}> be a presheaf of spaces over <A, 
(a) The family { f a } of all projections of lim ¥ is compatible for ¥ , and if {ga} is 

any projective family of continuous mappings compatible for ¥ then there exists 
exactly one mapping g such that ga=fa°g for each a; this can be written as 
follows 

« {*.}-[{/«}]•*; 
the mapping g is continuous, and if {ga} is a projective generating family, then g 
is a projective generating mapping. 

(b) The family {"/} of canonical mappings into lim ¥ is an inductive family 
compatible for ¥ , and if is any inductive family of continuous mappings 
compatible for ¥ then there exists exactly one mapping g o / l im ¥ (into the com-
mon range carrier of all ga) such that ga = g o"f for each a in A; this can be 
written as 

(**) {</.} = 9 o [{•/}]; 
the mapping g is continuous, and if {ga} is an inductive generating family, then g is 
an inductive generating mapping. 

Proof, (a) The family {/„} is a projective generating family for closure spaces and 
hence each fa is a continuous mapping and the family {|/„|} is compatible for ¡¥j 
by 40 A. 6. Thus {/0} is compatible for ¥ . Now let {ga} be a projective family of 
continuous mappings compatible for ¥ , and consider the family {|ga|} which is 
compatible for \¥\. By 40 A.7 there exists exactly one mapping h such that {|ga|} = 
= [{|/.|}] ° h• Put 9 = <gr h, D*ga, lim ¥ } . We have {ga} = [{/.}] „ g and clearly 
g is the only mapping satisfying this condition. Since {/„} is a projective generating 
family and each ga is continuous, g is necessarily continuous (by 32 A.8). 
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(b) As in the proof of (a), by virtue of 40 A.22, there exists exactly one mapping h 
such that {|<7fl|} = h 0 [{|fl/|}]. Put g = <gr h, lira i f , E*ga}. Clearly g is the only 
mapping satisfying {ga} = g o [{"/}]• Finally, g is continuous by virtue of 33 A.5 be-
cause {"/} is an inductive generating family for closure spaces and {ga} is a family of 
continuous mappings. 

40 C.6. Corollaries, (a) If {ha} is a projective family of continuous mappings 
compatible for if such that every projective family of continuous mappings com-
patible for if admits a unique factorization (*) with fa replaced by ha and with g 
continuous then there exists exactly one homeomorphism k such that ha = fa 0 k 
for each a. 

(b) If {h„} is an inductive family of continuous mappings compatible for if such 
that any other such family {ga} admits a unique factorization (**) with "f re-
placed by ha and with g continuous, then there exists exactly one homeomorphism 
k such that ha = k o "f for each a. 

40 C.7. Definition. Let if = <{*„}, {/„¡,}> be a presheaf of closure spaces over 

(a) If a is a lower bound of a set B in <A, ^ ) then { f a b | b e B} is a projective 
family of continuous mappings compatible for the restricted presheaf if B, and hence, 
by virtue of 40 C.5, there exists exactly one mapping g of into lim ifB such that 
each fab is the composite of g followed by the canonical mapping of lim ifB into 3Pb 
and the mapping is continuous. This mapping will be called the canonical mapping 
of S?a into lim ifB. 

(b) The presheaf if will be called projective at a e A if the following condition 
is fulfilled: 

If a = inf B and B is right saturated, then the canonical mapping g of into 
lim y B is a homeomorphism. 

(c) The presheaf Sf will be called projective if if is projective at each index a e A. 
(a') If a is an upper bound of a subset B of A, then {fbx | b e B} is an inductive 

family of continuous mappings compatible for the restricted presheaf SfB and hence, 
by virtue of 40 C.5, there exists exactly one mapping g of lim SfB into Pa such that 
each mapping fba is the composition of the canonical mapping of Pb into Hm SfB fol-
lowed by g; this mapping g, which is continuous by 40 C.5, will be called the 
canonical mapping of lim SfB into 

(b') The presheaf Sf will be called inductive at a e A, if the following condition 
is fulfilled: 

If a = sup B and B is left saturated, then the canonical mapping g of lim Sf B into 
0>a is a homeomorphism. 

(c') The presheaf Sf will be called inductive if if is inductive at each index a e A 
with the exception of the least elements of A. 

49—Topological Spaces 
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40 C.8. Theorem. Let ¥ = <{&„}, {fab}> be a presheaf over <A, If a is a 
lower (upper) bound of B <= A, then a mapping g of @>a (lim ¿PB) into Iim SfB (¡PJ 
is a canonical mapping if and only if\g\ is the canonical mapping of (lim \Sf\B) 
into lim \SF\B (\0>A\). If £P is projective (inductive) at an index a e A, then the under-
lying presheaf of sets \Sf \ is projective (inductive) at a; in particular, if £f is pro-
jective or inductive, then so is \Sf\. 

A natural question arises: if each Cv is endowed with a closure operation, under 
what conditions will {Cv} be a projective sheaf of closure spaces; in particular, for 
which usual closures for spaces of mappings will the presheaf of spaces {Cv} of con-
tinuous mappings be projective. We restrict ourselves to two examples. 

40 C.9. Suppose that P is a set and 2 is a closure space. We shall prove that 
{2X | X e exp P} with restrictions as connecting mappings is a projective presheaf 
over <exp P, =>>. Let 7eexp P and f c exp P be such that Y = (i.e. Y = 
= inf 3£) and 9C is hereditary (i.e. right-saturated) and consider the canonical map-
ping g of 2Y into lim {2X | X e 9£}. 

It has already been shown that the underlying presheaf of sets {\2X\ | X e 9C*\ is 
projective (see 40A.10). It follows that the canonical mapping g is bijective. As 
always, g is continuous (40 C.5). Thus to show that g is a homeomorphism it is enough 
to prove that if a net N in lim {2X | X e HE} converges to Q, then g~1 o N converges 
to g~ 1Q. However, this is almost self-evident. Indeed, if N converges to Q in 
lim {2x\Xe&}, then prx o N converges to prxg in for each X e 90, in particular, 
for each X = (x), x e Y. Now, p r w o N = prx o g'1 o N and prxg~1g = prwg. It 
follows that prx(i7-1 o N) converges to prx(g_1g) for each x e Y. Since £ris endowed 
with the product closure, g'1 o N necessarily converges to g_1g (because all pro-
jections onto coordinate spaces converge to corresponding coordinates of g~ie). 

40 C.10. Now let 0 and J be closure spaces, and let {|C,,| | U e <%} be the sheaf 
(of sets) of continuous mappings of 0 into 2. (see 40 A.12J. Finally, let Cv be the set 
|Ct/1 endowed with the closure of pointwise convergence. Clearly [Cy | U eW} is 
a presheaf of closure spaces on We shall prove that {C^} is projective. Let "f 
be a right-saturated collection of open sets whose infimum is W(that is, Vx c Ve V, 
Vx open implies Vx g iP, and W = { J f ) , and let g be the canonical mapping of Cw 

into lim {Cy | F e y } . Since is the canonical mapping of \CW| into lim {|CK| | Ve 
e f ) = |lim {Cv | F e y } | and {|C(;|} is projective, the mapping \g\ is bijective and 
consequently g is also bijective. As always, g is continuous (by 40 C.5). Therefore 
it remains to prove that g ~1 is continuous, and for this it is enough to show that 
if a net iV = {Na} converges to a point Q in lim {Cy | F e y } then the net g~l „N 
converges to the point g ~ 1g. Suppose that N converges to q. It follows that for each F 
in y , the net prK o N converges to the mapping prv Q in Cv; but Cv is endowed with 
the closure of pointwise convergence, and consequently, for each x in F, the net 
{(prK Na) x} converges to (prK g) x in 2. (of course (prv Na) x is the value of the map-
ping j>Tv Na of Finto 2 at the point x). Since Cw is endowed with the closure of point-
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wise convergence, to prove that the net g"1 oN converges to g~lg, it is enough to 
show that, for each x in W, the net {(g~1Na) x} converges to the point (g~1g)x 
in 2 (of course, (g ~ 1Na) x is the value of the mapping g ~ 1Na of Winto 2 at the point x 
and x is the value of the mapping g~iQ of W into 2 at the point x). Let x 
be any point of W. We can choose a V in V containing x. For each (p e Cw we have 
prv(d(<p)) = <P\V, and hence (g_1Na) | V= prF Na and (g~lg) | V = prv g; in 
particular 

(g~lNa) x = (prK Na) x, (g~1g)x = (prK g) x . 

However, as we noticed above, the net {(prKJVa) x} converges to (prv g) x in 2. 
40 C.ll . Definition. Suppose that CP and CP' are two presheaves over the same 

quasi-ordered set (A, ^ > a n d CP = <{0aj, {fab}), CP' = {/¿}>. A morphism 
of CP into CP' is a family (p = {<pa} such that each cpa is a continuous mapping of 3Pa 

into &'a and |(p| = {|<pa|} is a morphism of \CP\ into \SC'\. A morphism cp is an iso-
morphism if |<p| is an isomorphism and {«p"1} is a morphism (i.e. all cpa are homeo-
morphisms). The composite <p . of two morphisms {\J/a} and {(ptt} is the morphism 
{(Pa °'Aj-

It may be noted that we do not define the notions of an epimorphism or a mono-
morphism. The results 40 A.28 — 40 A.30 concerning presheaves of sets are transferred 
to presheaves of spaces as follows: 

40 C.12. Theorem. With the notation of 40C.11 let cp = {cpa} be a morphism 
of CP into SP'. 

(a) There exists exactly one mapping <p of lim CP into lim CP' such that (pra : 
: lim CP' -* o qj = <pa o (pr0 : lim CP 0a) for each a. The mapping <p is conti-
nuous. The mapping tp is injective whenever all cp„are injective, and q> is a homeo-
morphism whenever q> is an isomorphism. 

(b) There exists exactly one mapping cp of lim CP into lim CP' such that q> o"f = 
= "f o cpafor each a, where "f and "f denote the cancnical mappings into lim CP and 
lim CP' respectively. The mapping <p is continuous; cp is surjective provided that all 
<pa are surjective, and <p is a homeomorphism provided that <p is an isomorphism. 

Proof. Consider the underlying presheaves \CP\ and \CP'\ and the underlying 
morphism |tp| = {|<pa|} of |CP\ into \CP'\. Obviously, if {/a} are the families of pro-
jections of lim CP and lim CP', then {|/a|} and {|/a|} are the families of projections of 
lim \CP\ and lim \CP'\, respectively, and similarly for canonical mappings into inductive 
limits. By 40 A.28 there exists exactly one mapping [cp] of lim \CP\ into lim \CP'\ and 
exactly one mapping [<pj of lim \CP\ into lim \CP'\ making the following diagram 
commutative: 

\ n . \ r \ 

W\ \<p. I \v\ 

" I T T 
49* 
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Consequently, there exists exactly one mapping <p of lim ¥ into lim 9" and exactly 
one mapping q> of lim ¥ into ljm ¥ ' making the diagram 

f J a 

<p 

L 

r 

<pa 

7 

<p 

commutative. Of course, = \cp\ and |<p| = ppj. According to Theorem 40 A.28 
it is sufficient to prove that both qj and q> are continuous. The continuity of <p follows 
according to 32 A.8 from the facts that {/„'} is a projective generating family and 
f'a o q> (= <pa o /„) is continuous for each a. Similarly, the continuity of q> follows by 
33 A.5 from the facts that {"/} is an inductive generating family and <p o 7 ( = 7 ' o (pa) 
is continuous for each a. 

40 C.13. Theorem. Suppose that ¥ = ({0a}> { / a t } ) , s a presheaf oj spaces over 
<A, and ¥\ = <{^c}, {gCd}} is a presheaf of spaces over <C, -<). 

(a) Let a be an order-preserving mapping of <C, «<> into (A, and 
{hc | c e C} be a family of continuous mappings, with each he a mapping of 
into SLC, such that the diagram 

9cd 

fi(c)a(d) 

is commutative for each c -< d. There exists exactly one mapping h of lim ¥ into 
lim ¥x such that the diagram 

Prc K 

pr „(c, 

is commutative for each c in C, where prc and pra((.) denote the canonical projections 
of lim ¥x into SLC and lim ¥ into respectively. This mapping is continuous. 

(b) Let 18 be an order-preserving mapping of <A, into <C, -<> and {ha} be 
a family, with each ha a continuous mapping of into such that the digram 

. 9ff(a)fi(b) h 

fa, 
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is commutative for each a ^ b. Then there exists exactly one mapping h of lim SP 
into lim SPj such that the diagram 

7 

is commutative for each a e A, where "f and fiia)g denote the canonical mappings 
of 2Pa into lim SP and into lim SPiy respectively. 

Proof. Consider the underlying presheaves \SP\ and \SP^\ and apply 40 A.29 to the 
families {|/jc| | c e C} and {|/i0| | a e A}. The continuity is proved as in the preceding 
theorem; the details are left to the reader. 

Corollaries. Let SP be a presheaf of spaces over <A, ^ ) and let B a A. (a) There 
exists exactly one mapping h of lim SP into lim SPB such that, for each be B, the 
composite h with the canonical projection of lim SPB into SPb is the canonical pro-
jection of lim SP into 3Pb. This mapping is continuous, (b) There exists exactly one 
mapping k of lim SPB into lim SP such that, for each b e B, the composite of the 
canonical mappings of 3?b into lim SPB followed by k is the canonical mapping of 
3Pb into lim SP. This mapping is continuous. 

Proof. Put a = = {b b\be B} and apply the theorem (in case (a) SP — SP 
and SP^ = SPB, and in the case (b) SP = SPB and SPx = SP). 

40C.14. Remark to Corol lar ies of40C.13. 
(a) The mapping h is an embedding provided that B is left cofinal in A and h is 

a homeomorphism whenever B is left cofinal and A is left-directed. 
(b) If B is right cofinal in A, then the mapping k is a homeomorphism. 

Proof . According to 40 A.30 applied to |SP\, if B is left cofinal then h is injective 
(because |/z| is injective) and if in addition A is left directed, then h is bijective (be-
cause |/i| is bijective); if B is right cofinal, then k is bijective (because |fc| is bijective). 
Hence it remains to show that h is a projective generating mapping if B is left co-
final, and k is an inductive generating mapping if B is right cofinal. Now f'b o h = 
= fb,k o bf = bf (be B), where fb and f'b denote the projections of lim SP and lim SPB 

into 0>b respectively, and bf and bf denote the canonical mappings of ̂  into lim SP and 
lim SPB respectively; by virtue of 32 A.9 and 33 A.6 it is sufficient to show that 
[fb\b e B} and { f b | b e B} are projective generating families and {bf | b e B} and 
{bf | be B} are inductive generating families. By definition of projective and in-
ductive limits, the family [f'b | b eB) is a projective generating family and {bf | be B} 
is an inductive generating family. In general {fb\b e B} need not be a projective 
generating family, but if B is left cofinal then {fb} is indeed a projective generating 
family. In fact, {/„ | a e A} is a projective generating family and both of the families 
{/a | a e A\ and { f b | b e B} projectively generate the same closure, because B <= A 
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and if a e A then fa = fab 0 fb for some b ^ a with fab continuous. Similarly we can 
prove that {bf | b e B) in an inductive generating family. 

Now we proceed to an investigation of properties invariant under projective and 
inductive limits. 

40 C.15. Theorem. If a class K of spaces is hereditary and closed under products, 
then K is closed under the formation of projective limits, that is, the projective limit 
of a presheaf of spaces from K belongs toK.If a class K of spaces is closed under 
sums and under the formation of quotient spaces, then K is closed under the form-
ation of inductive limits, that is, the inductive limit of a presheaf of spaces from 
K belongs to K. 

Proof . By 40 C.2 the projective limit of a presheaf of spaces {&a} is a subspace of 
the product space Tl{0a} and the inductive limit of {¿Pa} is a quotient of the sum space 

Corollary. The classes of all topological spaces, semi-separated spaces, separated 
spaces, regular spaces and uniformizable spaces are closed under the formation 
of projective limits. The classes of all discrete spaces, quasi-discrete spaces, locally 
connected spaces and spaces admitting a determining sequential relation are closed 
under the formation of inductive limits. 

Up to now we have considered no class of spaces invariant under products and 
formation of closed subspaces but not of arbitrary subspaces. Nevertheless there are 
important classes with these properties, e.g. the class of all compact spaces. There-
fore, for the sake of completeness, we shall prove the following proposition which 
gives a sufficient condition for a projective limit of a presheaf of spaces to be closed 
in the corresponding product space. 

40 C.16. If £f = {fab}) is a presheaf of separated spaces over (A, 
then the projective limit of ¥ is a closed subspace of the product spaceH{0a | a 

Proof . The projective limit of S? is the subspace of n{0a | a e A} consisting of 
all points x such that ( f t t b a 7ia) x = nbx for each a ^ b ({ j r a } is the family of all pro-
jections of the product). Since all mappings under question are continuous and all 
spaces SPa are separated, lim Sf is closed by 27 A.7. 

Corollary. Assume that a class K of separated spaces is closed under formation 
of products and each closed subspace of each space from K belongs to K. Then the 
projective limit of every presheaf of spaces from K belongs to K. 

The inductive limit of a presheaf of topological spaces need not be a topological 
space. For example, let A be a monotone ordered subset of some C(P) such that each 
closure of A is topological but the least upper bound of A is not topological. Consider 
the presheaf Sf = <{<P, a)}, {fab}> over A where each fab is the identity mapping 
of <P, a ) onto <P, by. By 40 C.5 lim Sf is homeomorphic with <P, sup A), and 
consequently lim ¡f is not a topological inductive limit of a presheaf of topological 
spaces. It is to be noted that, similarly, the inductive limit of a presheaf of uniform 
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spaces need not be a uniform space, and also the inductive limit of a presheaf of uni-
formizable proximity spaces need not be a uniformizable proximity space. Therefore 
one can introduce, in a natural way, the notion of an inductive limit in the uniform 
sense and also the corresponding notion for presheaves of uniformizable proximities. 

40 C.17. Topological inductive limit. The topological inductive limit of 
a presheaf ¥ of a topological closure spaces is defined to be the topological modific-
ation of lim ¥ . It follows that the underlying set of the topological inductive limit is 
|lim ¥ \ = lim \Sf \ and the closure of the topological inductive limit is topologically 
inductively generated by the family of all canonical mappings defined in the obvious 
manner. The reader is asked to verify that all preceding results for inductive limit 
remain valid for topological inductive limits of presheaves of topological spaces. 
In what follows we restrict ourselves to inductive limits. 

The concluding part is devoted to an examination of the consequences of an im-
portant additional assumption upon the base of a presheaf, namely of left directed-
ness or right directedness. Twice these assumptions have already been employed as 
sufficient conditions: in 40 A.16 it has been shown that {<a, x> -> (b, y} | facx = fbcy 
for some c} is an equivalence whenever the base is right-directed, and in 40 C.14 it 
has been shown that the canonical mapping of the projective limit of a presheaf of 
spaces over a left-directed set into the projective limit of a restricted presheaf over 
a left cofinal subset is a homeomorphism. For convenience we shall introduce some 
terminology. 

40 C.18. Convention. A left-directed (right-directed) presheaf of sets or spaces 
is a presheaf of sets or spaces over a left-directed (right-directed) set. 

For presheaves of sets we shall prove the following result: 
40 C.19. Let ¥ = <{P„}, {/„,,}> be a presheaf of sets over (A, If ¥ is left-

directed and F is a finite subset of lim ¥ , then there exists an a. in A such that the 
restriction of the projection fx of lim ¥ into Pa to F is injective. If ¥ is right-directed 
and F is a finite subset of lim ¥ , then there exists an a. in A and a finite subset Fx 

of Px such that the restriction of the canonical mapping "f of Pa into lim ¥ to Fx is 
injective and maps Fx onto F. 

Proof. I. Suppose that F is a finite subset of lim ¥ . For any two distinct points x 
and y of F we can choose an a = a(x, y) in A so that fax 4= fay. If (A, > is left-
directed (in particular, non-void), we can choose an a in A preceding all a(x, j>). 
Clearly a possesses the required property. — II. Now let F be a finite subset of hm ¥ . 
For each x in F we can choose an a = ax in A so that "fyx = x for some yx in Pa. 
If <A, is right-directed then there exists an x in A following each ax,xeF. 
Let F j be the set of all f„xxyx, xe F. Obviously F t and a possess the required pro-
perties. 

If x is a point of the projective limit of a presheaf of closure spaces {&„} over 
(A, iS ) and if {/„} is the family of projections, then, by virtue of 32 A.6, the col-
lection "U of all sets of the form f~i[U~\, U a neighborhood of fax in 2Pa and a e A, is 
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a local sub-base at x in lim ¥ . Indeed, lim ¥ is, by definition, projectively gener-
ated by the family {/„}. On the other hand, H need not be a local base at x; e.g. 
consider a product of non-accrete spaces. Sometimes it may be useful to know that 
°U is a local base provided that (A, ^ ) is left-directed, as stated in the following 
proposition. 

40 C.20. Let ¥ = ({0a}, {/„&}> be a left-directed presheaf of closure spaces over 
<A, and let {/„} be the family of all canonical projections. Then, for each x in 
lim ¥ , the collection 1ixof all sets of the form f~l{U~\, where U varies over all neigh-
borhoods of fax and a varies over all as A, is a local base at x. If all spaces SPa are 
topological then ('lim ¥ is topological and) the collection of all sets of the form 
/ 7 1 [ t / ] , U open in 3Pa, a e A, is an open base for lim ¥ . 

Proof. As we noted above, °UX is a local sub-base at x. To prove that aUx is a local 
base at x it remains to show that 1ix is a filter base, that is, the intersection of any two 
sets Ft and V2 from 1lx contains a Ve1lx. Let F( = / " 1[t7i], i = 1, 2, where t/f is 
a neighborhood of faix in 3Pai. Since <A, i£> is left-directed, we can choose an a 
in A preceding both al and a2. The mappings faai being continuous, the set U = 
= (faaliu,] n f;a\\U2~\) is a neighborhood of fax in 0>a. Put F = / ; 1 [ l / ] . From 

fat = faai0 fa w e obtain F <= V1 n V2. The second statement is in an immediate con-
sequence of the first. 

The assumption of right directedness does not have topological consequences for 
neither the projective nor for the inductive limit. 

Remark. It has already been shown that the product of a family {£9a | a e A} of 
sets or spaces is the projective limit of the presheaf ({0a}, {fab}} o v e r the set A ordered 
by the identity relation \A with identities as connecting mappings. Similarly, the sum 
is evidently "almost" the inductive limit of this presheaf. On the other hand, if 
0>a = g? for each a, then, in general, there exists no left directed presheaf {J2C} such 
that SLC = 0 for each c and !!{&>„} = lim {2C}. For example, if the cardinal of \3P\ 
is finite, say n, then the cardinal of lim {2C} is at most n by 40 C.19. On the other 
hand, the cardinal of Tl{0a} is infinite if the index set is infinite and SP has at least 
two elements. The same is true for the inductive limit. 

40 C.21. It is easily seen that the product is the projective limit of finite partial 
products and the sum is "almost" the inductive limit of finite partial sums. Indeed, let 
{SPa | a e A) be a family of spaces, and consider the presheaf = <{^c}, {fCd}) over 
<C, ) where C is the collection of all non-void finite subsets of A, 2LC = n{0a | a e C} 
and fcd is the canonical mapping of onto 2.d, i.e. fcdx is the restriction of x to d 
for each x. It is easily seen that n{0a} = lim Sf. For the sum the construction is 
analogous. Clearly ¥ = {/cd}) is a presheaf over <C, <=>, where C is again 
the collection of all finite subsets of A, SLC = ~L{0a \ a e C} and fcd is the identity map-
ping of j2c into J2d. Evidently there exists a one-to-one mapping h of lim ¥ onto 
I.{0a | a e 4̂} such that the element of lim ¥ containing <a, (a, x)) e | Q{a)| is carried 
into <a, x) for each a e A and x e 0>a. 
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40 C.22. Theorem. Let K be a class of closure spaces. The following three condi-
tions on a closure space 0 are equivalent: 

(a) 0 is homeomorphic with the projective limit of a left-directed presheaf of 
subspaces of finite products of spaces from K; 

(b) 0 admits an embedding into the product of a family of spaces from K; 
(c) The class 3F of all continuous mappings of 0 into finite products of spaces 

from K distinguishes points and for each subset X of 0> and each xeP — X 
there exists a <p in 3F such that <px £ <p(X). 

Proof. We shall prove (a) => (b) => (c) => (a). I. The implications (a) => (b) fol-
lows from the facts that the projective limit is a subspace of the corresponding product, 
and the product of products of spaces from a given class of spaces is homeomorphic 
with the product of a family of spaces from the same class. 

II. Now suppose (b). Let 0 be an embedding of 0> into a product 2 = II{2a | a e 
e A} where 2aeK for each a. If nB denotes the projection of 2 onto 2B = 
= n{2a | a e B}, then clearly the mappings 7i(a, o <P, ae A, distinguish the points 
of 0 and belong to and, if x then we can take nB o as cp where B is a suit-
able finite subset of A. 

III. It remains to show that (c) implies (a). Suppose (c) and choose a subset J^, 
of so that condition (c) remains true if !F is replaced by 1FU and consider the set A 
of all finite subsets of The set A is left-directed by the inverse inclusion (because 
0 6/4 and hence A 4= 0). By our assumption, the range carrier of each q> e 2FX is 
a product 

E *<p = U{2c\ceC(p} 

where 2ceK and Cv is a finite set. For each a e A put 

0>a = Ti{2c | c e Cy, cps a} 

and, if a = b, let fab be the canonical projection of SPa onto £Pb. Clearly Sf = 
= ({^a}> {fab}) is a presheaf over {A, =>}. For each a in A let <p„ be the mapping 
of 0 into SPa which assigns to each point x of 0 the point {prc <px | c e Cv, (pea} 
of 3?a. Clearly {<pa} is a projective family of mappings compatible for Of. Now we 
are prepared to define the required presheaf. For each a let 3%a be the subspace 
(pa[\&\] of and for each a => b, let f'ab be the restriction of fab to a mapping of 8?'a 

into (this restriction exists, since {<pa} is compatible for i f ) . It is obvious that 
<f" = {/,;„}> is a presheaf over (A, => >. We shall prove that lim 9" is homeo-
morphic to Denote by cp'a, a e A the restriction of <pa to a mapping of 3P into 
(in fact, onto) &'a. Since {<pa} is compatible for Of, {<p'a} is compatible for . By 
40 C.5 there exists a continuous mapping f of 0 into lim Sf" such that faof = <p'a 

for each a in A, where fa, as usual, is the canonical projection of lim into 8?'a. Since 
all mappings (p'a are surjective, / is also such. If x and y are two distinct points of 0 
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then, by our assumption, there exists a cp in !FX such that (px * cpy and hence (p'ax * cp'ay 
for a = (q>). As a consequence fx * fy, which shows that / is injective. It remains 
to prove that / - 1 is continuous. It is enough to show that x e ( | ^ | — X) implies 
fx $f\X\. Suppose x e \3P\ — X. By our assumption we can choose a (p in so 
that x $ <p[_X\ (in E*<p), and hence x $ <p'a\X\ for a = (<p). Since the projection / is 
continuous and / o/„ = cp'a, necessarily fx $f[X~\; this concludes the proof. 
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