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NOTES 

R E F E R E N C E S 

It is not the intention to give a bibliography of articles on general topology, since compiling 
a complete list would be an enormous task, whereas a selective list, whether long or short, would 
be highly biased by personal judgements. For similar reasons we avoid remarks of a historical 
character. Thus, only some books on general topology and other topics are listed below. Many 
of these contain an extensive bibliography. 

For various questions examined in this book, the well known treatise of N. Bourbaki may be 
consulted: 

N. BOURBAKI, Éléments de mathématique. Paris. 
For questions concerning theory of classes and sets, in particular its axiomatic foundation, 

see e.g.: 
H. BACHMANN, Transfinite Zahlen. Berlin-Gottingen-Heidelberg, 1955. 
A. FRAENKEL, Abstract Set Theory. Amsterdam, 1953. 
A. FRAENKEL and Y. BAR-HILLEL, Foundat ions of Set Theory. Amsterdam, 1958. 

The following books on general topology may be mentioned (some of them, although basically 
concerned with different topics, contain material pertinent to questions considered in the present 
book): 

C. BERGE, Espaces topologiques, fonctions multivoques. Paris, 1959. 
A. CSASZÁR, Grundlagen der allgemeinen Topologie. Budapest, 1963. 
L. GILLMAN and M. JERISON, Rings of Continuous Functions. Princeton, 1960. 
J. R. ISBELL, Uniform Spaces. Providence, 1964. 
J. L. KELLEY, General Topology. New York, 1955. 
K. KURATOWSKI, Topologie. Warszawa, I. 1958, II. 1961. 
G. NOBELING, Grundlagen der analytischen Topologie. Berlin, 1954. 
R. VAIDANATHASWAMY, Set Topology. New York, 1960. 

O N S O M E N O N - C O M P RIS A B L E O B J E C T S 

As already indicated (cf. 3 F.13), it seems that there are no means, short of an introduction 
of an additional fundamental concept ("superclasses" or some such concept) to give a general de-
finition, say, of a "regular multiplet" of classes. The reason lies in the fact that we cannot handle 
"infinitely many" non-comprisable objects simultaneously and, in particular, there are no such 
objects as "sequences of non-comprisable classes". 

Therefore, it is necessary to define such objects only for a limited number of members. This 
can be done as follows. 

Let a natural number k be actually given (for "practical" purposes, k — 100 will do). We 
define: x is a 2-tuple if and only if it is a pair; for it e N, 2 < n k, x is an «-tuple if and only if 
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there exist y and z such that x = (y, z) and z is an (« — l)-tuple. This is, in fact, an abbreviation; 
written in full, the definition means, e.g. that x is a 5-tupIe if and only if there exist s, t, u, v, w such 
that x = <j, t, u, v, w>. Thus the expression defining the property of being an «-tuple becomes 
more involved with increasing n, and, as pointed out above, no mathematical induction on « is 
possible without the introduction of new concepts (or a mathematical induction within the logical 
system to which the expression "x is an «-tuple" belongs; however, this is a matter of mathematical 
logic and lies outside the scope of the present book). 

Similarly we may define e.g. «-tuples of classes, 2 < n ^ k, as follows: x is a 2-tuple of classes 
if and only if x = <>', z>, y, z being classes; x is a «-tuple of classes if and only if there exist y, 
z such that x = <y,z~y,z is an (« — l)-tuple of classes, y is a class. 

With k fixed once and for all, we may now give e.g. the following definition: x is a "regular 
(^¿)-multiplet of classes" if it is an «-tuple for some « ^ k; for convenience we simply speak 
of a "regular multiplet of classes" instead of a (^fc)-multiplet. 

Written in full, the definition would be as follows: x is a regular multiplet of classes, if either 
x is a pair of classes, or there exist classes v, y, z such that * = (v, y, z ) or there exist 
classes u, v, y, z such that x = (u, v, y, z ) or . . . or there exist classes ut, ..., uk such that x = 
= < « ! , . . . , u k y . 

We shall now present the definitions of multiplets, deleting and enriching (see Section 7), etc.; 
explanations such as given above will now be formulated in a concise form. 

Again, an actually given natural number k is conceived as fixed. We define «-multiplets and 
n-multiplets of classes (for « ^ k), as well as (5£&)-multiplets of classes. 

Every pair (of classes) is called a 2-multiplet (of classes). If 2 < n ^ k, then x is callcd an 
«-multiplet (respectively, as «-multiplet of classes) if there exist y, z and a natural number m, 
1 ^ m < n, such that x = (y, z) and (i) if m = 1, then y is arbitrary (respectively, y is a class) 
and z is an («—l)-multiplet (an (it — l)-multiplet of classes), (ii) if 2 m si « — 2, then y is an 
«¡-multiplet (an m-multiplet of classes), z is an (« — m)-multiplet (an (« — 7«)-multipIet of classes), 
and (iii) if m = « — 1, then z is arbitrary (z is an arbitrary class), y is an (n — l)-multiplet (an 
(« — l)-multiplet of classes). 

A (^fc)-multiplet (or simply a multiplet) of classes may be defined as follows: x is a 
multiplet of classes if it is an «-multiplet of classes for some «, 2 ^ n ^ k. 

As for deleting of objects, etc., the reader is requested to go through the pertinent part of 
Section 7; some observations made there are repeated below. 

If we try to give exact definitions of deleting of objects, etc., for the non-comprisable case, we 
encounter serious difficulties. Namely, the definition of deleting of elements from a structure, or, 
conversely, of enriching of a structure, must necessarily be an "inductive" one. Such a definition 
can be given for comprisable structs and structures. However, for non-comprisable structs, e.g. for 
structs (X, ot) where neither X nor a, are comprisable, the procedure described in Section 3 
does not apply since it involves quite essentially the use of certain finite sequences which do not 
exist in the "non-comprisable case" since there are no "sequences of non-comprisable objects". 

We must, however, bear in mind that the concept of an underlying struct and so on serve 
certain "practical" purposes. In many individual cases, structs are considered which are formed from 
a small number of objects which cannot or need not be represented as pairs any more; there occurs, 
"in practice", a rather small number of different kinds of structs. Therefore, it will be adequate 
to define the enriching of structures, the deleting of objects from a structure, etc., only for the case 
where it can be achieved by at most k elementary steps, k being a fixed natural number. Of course, 
k being a fixed actually given number, it is then possible to define the enrichment, etc., of structures 
achieved in k steps at most. This will now be done. 

If f = (x, y), is an "immediate extension (under formation of pairs)" of f if there exists a z 
such that = < x , y ) and either x' — <z, AT), y' — <z, y) or x' = (x, z>, y' = <y , z>. 
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We shall say that £* = <(**, y*y is a extension (relative to the formation of pairs)", 
or simply, since k is fixed, an "extension (relative to the formation of pairs)" of f = (x, y~) if 
there exist pairs f 2 , •••> f / i - i such that the following holds: either 'Q1 is an immediate extension 
of £ or f j = f; either f 2 is a n immediate extension of f t or C2 = ...; either C* is an immediate 
extension of Ct - i o r C* — Cjt-i-

We shall say that f is obtained from by deleting a if either f , rj, a. are elements and <(£, 77) 6 
where \ is the relation described in Section 3, or <(f, rf) is an extension (relative to the formation 
of pairs) of some (x, (x, a ) ) or (x, <(a, *)>>. If a, /?,..., # are actually given, we shall say 
that I is obtained from 17 by deleting oc, / ? , . . # i f | is obtained from by succesively deleting (in 
the above sense) a, /?, . . . , Then we shall also say that rj is obtained by enriching £ with •&,... 

U N D E C I D A B I L I T Y O F S O M E S I M P L E A S S E R T I O N S 

In 15 B.12, the assertion that (N x N) n N = 0 occurred as an added assumption (and con-
sistently in the following text). This might seem surprising, and some explanation is probably 
appropriate. 

It has been remarked at several points that nothing else can be asserted about objects such as 
the natural numbers, than follows from the defining axioms (e.g. cf. 3 D.1, remark). However, 
many simple assertions about the natural numbers are independent of the axioms; one of these 
is the assertion that N x N and N are disjoint. 

Indeed, first let q be the relation {x -» <0, *>}; denote 0 by 0, let N be the least ^-saturated set 
containing 0, and let s = Qn. Then N, 0, s satisfy the Peano axioms (cf. 3 C.4), and both <0, 0 > = 
= s 0 e N and <0, 0> e N x N. 

Secondly, let N* consist of all (x) with x e N; let 0* = (0) = (0), and let s* consist of all 
<(*)> 0 0 ) with x e N, y = sx. Then, evidently, N*, 0*, s* satisfy the Peano axioms and 
(N* x N*) n N* = 0. 

For this reason (N1 X N) n N = 0 is indeed an assumption and not a generally valid property. 
A logically less offensive procedure would be to speak not about N but rather some other set 
(e.g. the set of all (n) with n 6 N); however, the more current formulation has been preferred here. 

Similar situations arise at several other points. Having the above remarks in mind, the reader 
will find no difficulty in finding the necessary more precise formulations. 

O N G E N E R A L C O N T I N U I T Y S T R U C T U R E S 

In the introductory remarks to Chapter III, we have mentioned continuity structures. Three 
types of these, namely closure structures, proximities and uniformities, have been studied ex-
tensively in Chapters III—VII. In fact, there are other continuity structures that been investigated 
by various authors. However, with the exception of "syntopogene spaces" (A. Csaszâr), there 
does not exist a systematic theory of any type of such structures, although their importance in 
mathematics may be no less than that of topological spaces. Therefore, we give a brief account 
of a possible approach to the examination of general continuity structures (for a somewhat more 
detailed exposition and also some references see M. Katètov, Allgemeine Stetigkeitsstrukturen, 
Proc. Int. Congr. Math. 1962, pp. 473—479). Let us try to express the intuitive idea of continu-
ity or of a continuous structure in a more or less exact manner. It seems natural that such a struc-
ture is given if it is known, for certain "variable objects" x{t), y(t) whether y(t) approximates 
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x(t) arbitrarily well or not. Thus, a closure structure on a set P is determined as soon as it is known, 
for every x e P and every M c P, whether or not x may be indefinitely approximated by points 
of P. A semi-uniformity on P is given as soon as it is known, for any set T of pairs (x,y}, 
x 6 P, y € P, whether T contains "arbitrarily small" pairs (x, y), i.e. pairs (x, y) with y ar-
bitrarily close to x. Let us, however, point out that those objects the approximation of which is 
considered need not be elements of the set P in question; we may consider e.g. the approximation 
of subsets (of P) by subsets. 

Clearly, the idea of the possibility of an "arbitrarily close approximation" is connected with 
that of "arbitrarily small objects"; if the objects x(t), t variable, admit of an arbitrarily close 
approximation by certain y(t), then we may say that (x(t), y(l)} may become arbitrarily small. Thus 
it seems intuitively appropriate to conceive the idea of a general continuity structure as based 
on that of "arbitrarily small objects". In this sense, it seems fairly reasonable to consider 
general topology, roughly speaking, as a general theory of infinitesimal quantities. 

We give now some exact definitions. Let Z be a set and let F c exp Z be such that (1) if 
S eT, S c c Z, then St eT; (2) u S2eT implies that eT or S2 eT, (3) 0 <£T. 
Then r will be called a J-structure on Z (observe that conditions (1)—(3) seem to be intuitively 
indispensable properties of the collection of all sets containing "arbitrarily small elements"). 
The J-morphisms are defined as mappings / : (Z, ry -> (Z\ r'y, F' being a J-structure on Z\ 
such that S e T implies/[S] e J". 

Now let J ( denote the category of all sets (see 13 B.1) and let 0 be a covariant functor on J ( 
into Jl. If A" is a set, then any J-structure F on the set <I>X assigned to X under i> will be called a 
0-structure on X, and ( X , ry will be called a CP-space. A mapping F : < X , ry -> <A", J1') will 
be called a (P-morphism or a «^-continuous mapping if &f: (&X, ry -*• (G>X't r'y is a 
J-morphism. 

Let Q denote the functor on Jl into JC under which every set X is assigned its "square" 
X X X. Let us consider g-structures J" on a set P such that, for every x e P, (x, xy e r. It is not 
difficult to show that closure spaces, proximity and uniform spaces may be considered as special 
cases of 6-spaces. Other important, though scarcely investigated (for some results and references 
see e.g. M. Katetov, On continuity structures and spaces of mappings, Comm. Math. Univ. 
Carol. 6 (1965), 257—278) types of spaces are obtained if we consider the functor P which assigns 
to a mapping/: X Y the mapping of exp X into exp Y which transforms M c X into f[M\ 
(under this functor, a set X is assigned its exponential exp X). There does not exist any systematic 
theory of ^-spaces as yet. However, some concepts can be given an adequate definition without 
difficulty. Thus, if X is a set and fa are mappings of certain ^-spaces Ya into X, then there is a 
(unique) finest ^-structure on X under which all fa are ^-continuous; this structure is said to be 
inductively generated by the mappings fa. In a similar manner, a projectively generated 0-struc-
ture may be defined. In this way we also obtain, for ^-spaces, a general definition of a subspace 
and a quotient, of the sum and product of spaces and so on (of course, it is necessary to examine, 
for each type of space, to what extent these definitions are in agreement with the intuitive ideas). 

We conclude with a mention of two further types of 3>-structures: first, A. Csaszdr's syn-
topogene spaces are equivalent, in a sense which can be easily specified, with a certain kind of 
(G ° ^-spaces; secondly, if A is the functor under which every set X is assigned the module AX 

• of (finite) formal linear combinations where Af are real, xt e X, then the /1-spaces provide 
a type of continuity structure which is rather different from those indicated above and possesses 
various interesting connections with certain problems of functional analysis. 
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C A T E G O R I A L C H A R A C T E R O F S O M E N O T I O N S 
A N D R E S U L T S 

Many concepts, such as e.g. product, projective limit, projective generating family, topological 
modification, which have been defined in each situation independently of each other, may be 
defined in terms of category theory. Here several basic definitions are introduced and fundamental 
results are sketched. As the formulations of earlier definitions and theorems, and also their 
proofs, have been arranged to point out their categorial character, the illustrations are suppressed 
to some of those which show further appearance of the definitions introduced. It should be noted 
that all counter-examples needed can be constructed on the basis of the material introduced 
earlier. The reader is, however, invited to confront the definitions and results of this Note with 
the corresponding definitions and results made earlier for the subcategories of the category C 
of all closure spaces, the category P of all proximity spaces, and the category U of all semi-
uniform spaces. Of course, e.g. the category C of all closure spaces has the continuous mappings 
as morphisms, the closure spaces as objects, and the categorial composition is the composition 
of mappings. 

For convenience, given a category X , obj JT denotes the class of all objects of JT; / e JT 
means that / e |Jf|, i.e. that / is a morphism of JT, and the composition of JTis denoted by o. 
The units will also be called the identity morphisms. The symbol Ens denotes the category of 
all sets and their mappings. 

By a forgetful functor of a category of structs into another one X 2 we mean a functor 
which assigns to each morphism / the transposed mapping such that the domain and range 
carriers of are the underlying structs of the domain and range carriers o f / ; e.g.: the forgetful 
functor of C into Ens assigns to each continuous mapping the underlying mapping of the under-
lying sets. 

P r o d u c t s , sums and l i m i t s 

Let X be a category. A presheaf in X over a quasi-ordered set (A, ^ > is a pair SP = 
= <{Ka | a e A }, {kab | a ^ b) > such that kab :Ka^Kb<=X, all kaa are units, and kbc 0 kab = 
= kac for each a ^ b ^ c. A family {ka : K-+ Ka) is compatible with SP if kb = kab o ka for 
each A ^ b. We shall say that K = (K, {ka} > is a projective limit of SP, and write K = lim SP or 
K — lim proj if {ka} is compatible with SP, and for any {/a : L -> Ka) compatible with SP there 
exists a unique k: L-*- K with la = ka o k for each a. If {K a \ a e A } is a family in obj X , then 
if = ({Ka}, {ea | a e /4}> is a presheaf in K, and any projective limit K = {&„}> of SP is 
called a product of {KAY, we write K = nfA^}, and K is called the product of {Ka} under {ka}. 
The reader is invited to define the concept of the inductive limit of a presheaf and of the sum of 
a family of objects. If <K, {ka} > = lim proj ¿P, then K is also called the projective limit of -9" 
and similarly for products, inductive limits and sums. 

A projective limit of a presheaf, in particular a product of a family of objects, is determined 
up to an isomorphism in K; more precisely, if 

<£, {/„}> = lim proj SP = <JC, {A:A}> , 

then there exists a unique isomorphism i : L-* K with la = ka o / for each a. Therefore it is some-
times convenient to select one limit in the class of all projective limits of any presheaf SF, which 
is then defined to be the projective limit of SP, and similarly for products. E.g. N.{&A}, as intro-
duced earlier, is one of the products of a family {!?„} of sets, closure spaces, etc. Of course, 
n { ^ a } is the product under the family of all projections. 
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A category is said to be projective-limit-admitting if any presheaf in X has a projective limit. 
The terms product-admitting (or also completely productive), inductive-limit-admitting, sum-
admitting (also completely summative) and limit-admitting are evident. 

G e n e r a t i o n 

In what follows let & be a fixed covariant functor of a category X into a category Jl. A 
morphism k e X will be termed an ^-unit or also an ^"-identity if 3-k is a unit in Jt. The class 
of all ^-units forms a subcategory 33 of X . The relation E{ <D&, Efc> | k e 33}, denoted by ^ ^ 
or simply ^ , is a quasi-order on obj X . To avoid unnecessary difficulties, the functor 3- is as-
sumed to be amnestic, i.e., by definition, 

(*) ki'.KATj, i = I, 2, J = &k2 => kt = k2, and 
(**) ^ is an order. 
It should be noted that a functor satisfying (*) is called faithful. It follows from (*) that 

a morphism k e X is uniquely determined by the following three data: S-k, "Dk and Ek. Therefore 
the following convention may be introduced: If m = 3-k, then the symbol m : D k -*• Ek stands 
for k. For convenience a triple <m, K, Kl > with m : ->• e Jl, denoted by m : K -*• Kx, 
will be called an ^"-pseudomorphism. 

It follows from (*) that any ^-identity is a bimorphism. 
It should be noted that the forgetful functors which have been considered, e.g. of C, P o r U 

into the category of sets, are amnestic. 
D e f i n i t i o n . A family {ka: K-*- Kd} in X is termed an ^"-projective generating family if 

K' ^ K for each K' e obj X such that 3Fka : K' -»• Ka E X for each a. & is termed projectively 
generative if, for each family {ma : M -»• Ma) in Jl and any Ka e obj X with 3-K = Ma, there 
exists a K e obj X such that {ma : K Ka} is a projective generating family. The reader is invited 
to formulate the definitions of the following concepts: ^"-projective progeny of a subclass of 
obj X , ^"-inductive generating family, ^"-inductive progeny of a subclass of obj X , inductively 
generative The functor & is termed generative if is both projectively and inductively 
generative. 

It should be remarked that 33 only enters into the definition of projective and inductive gener-
ating families; therefore these concepts may be introduced for X and a given subcategory 33 of X 
(subject to certain condition). 

The indicated manner of the introducing of these concepts may be the starting point of an 
investigation of categories of continuous structures. Intuitively, 33 is a sufficiently large class of 
bijective "continuous" mappings. 

The interpretation of generation adopted here leads naturally to a more restrictive definition 
as follows: {ka : K-*- Ka) is an ^"-projectively generating family in the strong sense if the 
following condition is fulfilled: 

If K' e obj X , m : SFK' -> SFK e and if SFka „ m : K' -j- Ka is a morphism for each a, then 
m : K' JiTis a morphism. 

A description of some interrelations between generation and generation in the strong sense 
will be preceded by two theorems illustrating the importance of the latter concept. 

T h e o r e m on s t rong a s s o c i a t i v i t y . Suppose that {ka: K-*- Ka} is a family in X such 
that each Ka is projectively generated in the strong sense by a family {kab : Ka Kab}. Then 
{ka} is a projective generating family (in the strong sense) if and only if the family {kab 0 ka) 
is projectively generating (in the strong sense, respectively). 

T h e o r e m on c o n s t r u c t i o n of products . Assume that {Jirfl} is a family of objects of X 
and M is the product of {&Ka} (in X ) under {ma}. Then K is the product of {Ka} (in X) under 
{ma : K -»• Ka} if and only if {ma : K Ka) is a projective generating family in the strong sense. 

Coro l lary . If Jl is product-admitting and & is projectively generative in the strong sense, 
then X is product-admitting and & is product-preserving (the definition is obvious). 



N O T E S 877 

It should be remarked that, without any assumption on the amnestic one can prove that 
if K is the product of {Ka} (in X) under {ka} then there exists no K' ^ K, K' 4= K, such that all 
&ktt : K' —> Ka are morphisms; thus K is a maximal object with the property that all the above 
pseudomorphisms are morphisms. On the other hand, {ka} need not be a projective generating 
family. 

For most of the forgetful functors considered earlier, the generation and the generation in the 
strong sense coincide. All these results can be obtained from the following result. We shall say 
that & has the factorization property if for any k £ X and any factorization = m2 o mx 

there exist kt with k = k2 o kt and = 

Theorem. Projective generation and projective generation in the strong sense coincide pro-
vided one of the following two conditions is fulfilled: 

(a) & is projectively generative in the strong sense. 
(b) & is inductively generative and has the factorization property. 
The first statement is evident; to prove the second, assume that {ka : K-*- Ka) is a projectively 

generating family and m : &K is a morphism such that all &ka 0 m: K-+ Kaa.ie mor-
phisms. Consider the inductively generating mapping m: K' L, and factorize each ^ka o m : 

It is an unsolved problem to define the concept of a subobject (corresponding to the notion of 
a subspace of a closure space, etc.) and a quotient of an object. It is clear that a subobject of K 
is necessarily a monomorphism of K; on the other hand, this requirement does not guarantee 
all that is needed. 

It turns out, however, that having defined subobjects in the category Ji, the subobjects in X 
(with respect to may usefully be defined as the projective generating mappings k (preferably 
in the strong sense) such that &k are subobjects, and similarly for quotients. 

M o d i f i c a t i o n and r e f l e c t i o n s 

The concepts such as e.g. topological modification, sequential modification or uniformizable 
modification were introduced by means of the order ^ which is determined by the correspond-
ing forgetful functor In general, given & : X -> J( as in the preceding Note, and given a sub-
category -S? of X, the upper (lower) ^"-modification of a K e obj X in is defined as the upper 
(lower) modification of K in the subclass obj -S? of the ordered class <obj X, ^ ^ >; then these 
concepts depend essentially on 9 r . A closely related notion will be introduced. 

D e f i n i t i o n . Let IS be a subcategory of X. A reflection of a Ke obj X into J? is a pair 
<£, /> such that / : K-> L, and that any / : Llt L± e obj admits a unique factorization 

/ = g o t with g in L is called a reflection of K (under t). Similarly, a coreflection of K in Sf 
is a pair <£, t > such that t: L-*• K, L e obj SC and that any ¿ , s obj S£, admits 
a unique factorization / = / 0 g with g in Si. 

Theorem. Let & : X Jl and 2? be as above. If <£, t> > is a reflection of K in S£ and t is 
an ^"-identity, then L is the upper ^"-modification of K in SC. Conversely, if L is the upper modi-
fication of Km Sf,t is the ^-identity morphism of K into L, then <L, t > is a reflection of K in SC 
provided that either of the following two conditions is fulfilled: 

(a) If k : K -> e X, L e obj Se, then there exists an L2 e obj SC such that L2 ^ K and 
: L2-*- is a morphism. 

(b) If m : M M t , PLy = Ml and Lj e obj SC, then there exists a projectively generating 
mapping m: L2-+ with L2 in obj i f . 

Examples . Let U be the category of all separated uniform spaces and let U0 be the subcategory 
of all complete spaces. If e obj U0 is a completion of an & 6 obj U, then J: ^ > 
is a reflection of 0> in U0. Similarly J: 0> > is a reflection of the object Sf from the 
category of all separated uniformizable spaces in the subcategory of all compact spaces. 
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The reader is invited to introduce the concepts of projectively and inductively generating 
families in a subcategory Sf of X, and to carry over the results of 33B and 35D. 

In conclusion, the basic properties of the reflection are given. If both < £ t , t t > and <L2> h > 
are reflections of a AT in S?, then there exists an isomorphism / with t2= ' ° tx\ thus a reflection 
is determined up to an isomorphism. If £ 6 obj SP, then <£, eL > is a reflection of L in SC. Assume 
that -S? is reflective, i.e., each K 6 obj X has a reflection <Z,K, /K> in Sf\ we may assume that 
fx is a unit of K e obj St?. For each / : K -*• Kt e X there exists a unique 'Sf in S£ with tKlof = 
= o tK, and 2? is clearly a covariant functor of X into with 0 = tS. 

T h e o r e m . Let & be reflective in X and S? be as above. If L is a product of {L a } in Jzf, then 
L is a product of {£„} in X. If K is a product of {La} in K with La e obj and if <£, i> is 
a reflection of AT in S£, then t is an isomorphism and L is a product of [La] in SC. Consequently, 
if X is completely productive, or equivalently, product-admitting, then so is S?, SC is product-
preserving and, up to an isomorphism, product-stable. 
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