Chapter V: Local connectedness

In: Eduard Čech (author); Miroslav Katětov (author); Aleš Pultr (translator): Point Sets. (English). Praha: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1969. pp. [172]–190.

Persistent URL: http://dml.cz/dmlcz/402652

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

<u>Chapter V</u> LOCAL CONNECTEDNESS

§ 22. General theorems concerning local connectedness

22.1. Let P be a metric space. Let $a \in P$. We say that P is *locally connected at the point* a, if, for every neighborhood U of a, a is an interior point (see 8.6) of that component (see 18.2.1) K of U which contains a.

We say that P is *locally connected* (without further determination), if it is locally connected at every point $a \in P$.

Local connectedness is a topological property (see 9.3).

22.1.1. Let $a \in P$. P is locally connected at a if and only if for every $\varepsilon > 0$ there is $a \delta > 0$ such that for every $x \in P$ with $\varrho(a, x) < \delta$ there is a connected $S \subset P$ with $a \in S, x \in S, d(S) < \varepsilon$.

Proof: I. Let the condition be satisfied. Let U be a given neighborhood of a. There is an $\varepsilon > 0$ such that $\Omega(a, \varepsilon) \subset U$. Choose an appropriate $\delta > 0$. Let K be the component of U containing a. If $\varrho(a, x) < \delta$ there is a connected $S \subset P$ with $a \in S$, $x \in S$, $d(S) < \varepsilon$. Since $a \in S$, $d(S) < \varepsilon$, we have $S \subset U$, so that (see 18.2.5) S is contained in a component of U. As $a \in K \cap S$, we have $S \subset K$, so that $x \in K$. Thus, $\varrho(a, x) < \delta$ implies $x \in K$, i.e. $\Omega(a, \delta) \subset K$, so that a is an interior point of K.

II. Let P be locally connected at a point a. Let $\varepsilon > 0$. Then $\Omega(a, \frac{1}{3}\varepsilon)$ is a neighborhood of a. If K is the component of $\Omega(a, \frac{1}{3}\varepsilon)$ containing a, then a is an interior point of K, i.e. there is a $\delta > 0$ such that $\varrho(a, x) < \delta$ implies $x \in K$. On the other hand, the set K is connected and evidently $K \subset \Omega(a, \frac{1}{3}\varepsilon)$ implies $d(K) < \varepsilon$.

The following theorems are evident:

22.1.2. Let P be locally connected at a point a. Let a be an interior point of $Q \subset P$. Then Q is locally connected at the point a.

22.1.3. Let P be locally connected. Then every open $Q \subset P$ is locally connected.

22.1.4. P is locally connected if and only if the components of open sets are open sets.

Proof: I. Let the condition be satisfied. Let U be a neighborhood of a point $a \in P$. Let K be the component of U, containing a. As U is open, K is also open. Thus, a is an interior point of K, and hence P is locally connected at a. II. Let P be locally connected and let K be a component of an open set G. For every $a \in K$, G is a neighborhood of a and K is the component of G containing a. Thus, every $a \in K$ is an interior point of K, i.e., K is open (see 8.6.1).

22.1.5. In locally connected spaces the quasicomponents are identical with the components.

Proof: Let $a \in P$. Let K be the component (see 18.2.1) and Q the quasicomponent (see 18.3.4.) containing a. We have to prove that K = Q. By 18.3.9, $K \subset Q$. We have to prove that $Q \subset K$. By 18.3.5 it suffices to prove that $P = K \cup (P - K)$ with separated summands. By 18.2.2. K is closed. By 22.1.4 also P - K is closed. Thus, K and P - K are separated.

22.1.6. All components of a locally connected space are locally connected.

This follows by 22.1.3 and 22.1.4.

22.1.7. Let P and Q be locally connected spaces. Then $P \times Q$ is a locally connected space.

Proof: Let us take a point $(a, b) \in P \times Q$ and a number $\varepsilon > 0$. Since P and Q are locally connected, by 22.1.1 there is a $\delta > 0$ such that: [1] if $x \in P$, $\varrho(a, x) < \delta$, there is a connected $S_1 \subset Q$ with $a \in S_1$, $x \in S_1$, $d(S_1) < \frac{1}{2}\varepsilon$, [2] if $y \in Q$, $\varrho(b, y) < \delta$, there is a connected $S_2 \subset Q$ with $b \in S_2$, $y \in S_2$, $d(S_2) < \frac{1}{2}\varepsilon$. If $(x, y) \in P \times Q$, $\varrho[(a, b), (x, y)] < \delta$, we have $\varrho(a, b) < \delta$, $\varrho(b, y) < \delta$, so that there exist sets S_1, S_2 satisfying the conditions above. We have then $(a, b) \in S_1 \times S_2$, $(x, y) \in S_1 \times S_2$, $d(S_1 \times S_2) < \varepsilon$ and $S_1 \times S_2$ is connected by 18.1.13. Thus, $P \times Q$ is locally connected by 22.1.1.

22.1.8. The euclidean space \mathbf{E}_m (m = 1, 2, 3, ...) is locally connected.

Proof: It follows easily by 22.1.1 and 19.2.2 that \mathbf{E}_1 is locally connected. As $\mathbf{E}_{m+1} = \mathbf{E}_m \times \mathbf{E}_1$, we learn from 22.1.7 by induction that every \mathbf{E}_m is locally connected.

22.1.9. Let P be a locally connected space. Let $G \subset P$ be an open set; let $K \subset G$ be a connected set. K is a component of G if and only if $B(K) \subset P - G$.

Proof: I. Let the condition be satisfied. By 10.5.1, $B_G(K) = \emptyset$, so that, for every $x \in G$, we have either $\varrho(x, K) > 0$ or $\varrho(x, G - K) > 0$. Thus (see 10.2.3), $G = K \cup (G - K)$ with separated summands. If $H \supset K$, $H \subset G$ and if H is connected, then H = K by 18.1.2. Thus, K is a component of G.

II. Let K be a component of G. Then K is closed in G by 18.2.2 and K is open in P by 22.1.4. Thus, $G \cap \overline{K} = K$ (see 8.7.1) and $\overline{P - K} = P - K$, so that $B(K) = \overline{K} \cap \overline{P - K} = \overline{K} - K \subset P - G$. **22.1.10.** Let P be a locally connected space. Let $a \in P$, $b \in P$, $Q \subset P$. Q is an irreducible cut of P between the points a, b, if and only if there exist two distinct connected sets G_1 , G_2 such that $a \in G_1$, $b \in G_2$, $G_1 \cup G_2 \subset P - Q$, $B(G_1) = B(G_2) = Q$.

Proof: I. Let the condition be satisfied. Q is closed by 10.3.1. Thus, by 22.1.9, G_1 and G_2 are components of P - Q, so that $G_1 \cap G_2 = \emptyset$. G_1 is closed in P - Q by 18.2.2 and open in P - Q by 22.1.4 (see also 8.7.6), so that $P - Q = G_1 \cup \cup \cup [(P - Q) - G_1]$ with separated summands. We have $a \in G_1$, $b \in G_2 \subset (P - Q) - G_1$. Thus, Q separates a from b in P. Let $R \subset Q \neq R$. We have to prove that R does not separate a from b in P. We have $Q - R \subset Q = B(G_1) \subset \overline{G_1}$, so that $G_1 \cup (Q - R)$ is connected by 18.1.7. Similarly, $G_2 \cup (Q - R)$ is also connected. Since $Q - R \neq \emptyset$, by 18.1.4 also $S = G_1 \cup G_2 \cup (Q - R)$ is connected. We have $(a) \cup (b) \subset S \subset (P - Q) \cup (Q - R) = P - R$. If $P - R = A \cup B$ with separated summands, $a \in A$, we have, by 18.1.2, $S \subset A$ and hence $b \in A$ so that R does not separate a from b in P.

II. Let Q be an irreducible cut of P between the points a, b. Then Q is a closed set by 18.5.4. Q separates a from b in P, so that $(a) \cup (b) \subset P - Q$ and the space P - Q is not connected between a and b. Thus, by 18.3.3, $G_1 \neq G_2$, if G_1 , G_2 are components of P - Q such that $a \in G_1$, $b \in G_2$. By 22.1.9, $B(G_1) \subset Q$ and hence $a \in G_1 - B(G_1)$. By 8.7.1 and 18.2.2 $\overline{G}_1 - Q = G_1$ so that $b \in P - \overline{G}_1$. Thus, by 18.5.2, the set $B(G_1) \subset Q$ separates a from b in P, so that $B(G_1) = Q$. Similarly, $B(G_2) = Q$.

22.1.11. Let P be a locally connected space. Let $G \subset P$ be an open connected set. Let $a \in G$, $b \in P - \overline{G} \subset P - B(G)$. Let Γ be the component of P - B(G) containing b. Then $B(\Gamma)$ is an irreducible cut of P between the points a, b.

Proof: B(G) and $B(\Gamma)$ are closed by 10.3.1. As Γ is a component of P - B(G), we have, by 22.1.9, $B(\Gamma) \subset B(G)$. Γ is open by 22.1.4, so that $B(\Gamma) = \overline{\Gamma} - \Gamma$ by 10.3.2. Similarly, $B(G) = \overline{G} - G$. Thus, $a \in G \subset P - B(G) \subset P - B(\Gamma)$. Let Δ be the component of $P - B(\Gamma)$ containing a. As $a \in G \subset P - B(\Gamma)$, we have $G \subset \Delta$ by 18.2.5. If $\Delta = \Gamma$, we have $G \subset \Gamma$, so that the connected set Γ contains the point $a \in G$ and the point $b \in P - \overline{G} \subset P - G$, so that, by 18.1.8, $\emptyset \neq \Gamma \cap B(G)$, which is a contradiction. Thus, $\Gamma \neq \Delta$. As $G \subset \Delta$, we have $B(\Gamma) \subset B(G) \subset \overline{G} \subset \overline{\Delta}$. On the other hand, Δ is open by 22.1.4, so that $B(\Delta) = \overline{\Delta} - \Delta$ by 10.3.2. As $\Delta \subset$ $\subset P - B(\Gamma)$, $B(\Gamma) \subset \overline{\Delta}$, we have $B(\Gamma) \subset \overline{\Delta} - \Delta = B(\Delta)$. On the other hand, by 22.1.9, we have $B(\Delta) \subset B(\Gamma)$. Thus, Γ and Δ are distinct connected sets such that $a \in \Delta$, $b \in \Gamma$, $\Gamma \cup \Delta \subset P - B(\Gamma)$, $B(\Gamma) = B(\Delta)$. Thus, by 22.1.10, $B(\Gamma)$ is an irreducible cut of P between the points a and b.

22.1.12. Let P be a locally connected space. Let $Q \subseteq P$ separate a point a from a point b in P. Then there is an irreducible cut M of P between the points a, b such that $M \subseteq Q$.

Proof: By 18.5.1 there is a closed set $F \subset Q$ which separates a from b in P. Let G be the component of P - F containing a. The set G is open by 22.1.4. By 18.3.3 G does not contain b, so that $b \in (P - F) - G$. By 8.7.1 and 18.2.2 $\overline{G} - F = G$ so that $b \in P - \overline{G} \subset P - B(G)$. Let Γ be the component of P - B(G) containing b. By 22.1.11 the set $M = B(\Gamma)$ is an irreducible cut of P between the points a, b. In proving theorem 22.1.11 we noted that $B(\Gamma) \subset \overline{G} - G$. Since $\overline{G} - F = G$ we obtain $M \subset F \subset Q$.

22.1.13. Let P be a connected and locally connected space. Let $C \subset P$ be a closed connected set. Let K be a component of P - C. Then P - K is connected.

Proof: K is open by 22.1.4. $C \cup \overline{K}$ and P - K are closed. The set

$$(C \cup \overline{K}) \cup (P - K) = P$$

is connected. By 8.7.1 and 18.2.2 we have $K = \overline{K} - C$, so that the set

$$(C \cup \overline{K}) \cap (P - K) = C \cup (\overline{K} - K) = C$$

is also connected. Thus, P - K is connected by 18.1.12.

22.1.14. The spherical space S_m (m = 1, 2, 3, ...) is locally connected.

This follows easily by 17.10.4 and 22.1.8.

22.1.15. Let P be a locally connected space. Let K be a component of a set $M \subset P$ Then $B(K) \subset B(M)$.

Proof: Let there be, on the contrary, a point $a \in B(K) - B(M)$. Then P - B(M) is a neighborhood of a. Let C be the component of P - B(M) containing a. Since P is locally connected, a is an interior point of C. On the other hand, $a \in B(K) \subset \overline{K}$ so that $C \cap K \neq \emptyset$ and hence $C \cap M \neq \emptyset$. Since C is connected and $C \cap B(M) \neq \emptyset$, we have $C \subset M$ by 18.1.8. Thus, $C \subset K$ by 18.2.5. This is, however, evidently impossible, since $a \in B(K)$ and a is an interior point of C.

22.2. Let P be a metric space, $Q \subset P$. Define a set $L(Q) \subset \overline{Q}$ as follows: If $a \in \overline{Q}$, then $a \in L(Q)$ if and only if for every neighborhood U of a there is a component K of $Q \cap U$ such that a is an interior point of $K \cap (P - Q)$.

22.2.1. Let $a \in Q$. We have $a \in L(Q)$ if and only if Q is locally connected at the point a.

Proof: I. Let Q be locally connected at a. Let U be a neighborhood of a in P. Then (see 8.7.5) $Q \cap U$ is a neighborhood of a in Q. Thus, if K is the component of $Q \cap U$ containing a, then a is an interior point of K in the space Q; i.e. there is an $\varepsilon > 0$ such that $x \in Q \cap \Omega(a, \varepsilon)$ implies $x \in K$. Thus, in the space P, $x \in \Omega(a, \varepsilon)$ implies $x \in K$. Thus, in the space P, $x \in \Omega(a, \varepsilon)$ implies $x \in K \cup (P - Q)$, i.e., a is an interior point of $K \cup (P - Q)$.

II. Let $a \in Q \cap L(Q)$. Let V be a neighborhood of a in Q and let K be the component of V containing a. We have to prove that, for suitable $\varepsilon > 0$, $x \in Q \cap \cap \Omega(a, \varepsilon)$ implies $x \in K$. By 8.7.5 there is a neighborhood U of the point a in P such that $V = Q \cap U$. As $a \in L(Q)$, there is a component H of V such that, for suitable $\varepsilon > 0$, $x \in \Omega(a, \varepsilon)$ implies $x \in H \cup (P - Q)$. In particular, $a \in H \cup (P - Q)$. As $a \in Q$, we have $a \in H$ and hence H = K by 18.2.1. Thus, $x \in \Omega(a, \varepsilon)$ implies $x \in K \cup (P - Q)$, i.e. $x \in Q \cap \Omega(a, \varepsilon)$ implies $x \in K$.

22.2.2. $Q \subset L(Q)$ if and only if Q is locally connected.

This follows by 22.2.1.

22.2.3. L(Q) is a \mathbf{G}_{δ} -set for every $Q \subset P$.

Proof: I. If $\varepsilon > 0$, denote by $A(\varepsilon)$ the set of all $a \in P$ such that there exists a connected $S \subset Q$ such that: [1] $d(S) < \varepsilon$, [2] a is an interior point of $S \cup (P - Q)$.

II. For every $\varepsilon > 0$ we have $L(Q) \subset A(\varepsilon)$. If $a \in L(Q)$, then $\Omega(a, \frac{1}{3}\varepsilon)$ is a neighborhood of the point a, so that $Q \cap \Omega(a, \frac{1}{3}\varepsilon)$ has a component K such that a is an interior point of $K \cup (P - Q)$. K is connected and $K \subset Q$. Moreover, $K \subset \subset \Omega(a, \frac{1}{3}\varepsilon)$ implies $d(K) < \varepsilon$. Thus, $a \in A(\varepsilon)$.

III. The sets $A(\varepsilon)$ are open. If $a \in A(\varepsilon)$, there is a connected $S \subset Q$ such that: [1] $d(S) < \varepsilon$, [2] there is a $\delta > 0$ with $\Omega(a, \delta) \subset S \cup (P - Q)$. Evidently, every $x \in \Omega(a, \delta)$ is an interior point of $S \cup (P - Q)$, so that $\Omega(a, \delta) \subset A(\varepsilon)$. Thus, $A(\varepsilon)$ is open by 8.6.1.

IV. $Q \cap \bigcap_{n=1}^{\infty} A(1/n)$ is a \mathbf{G}_{δ} -set by 13.1.2, since \overline{Q} is \mathbf{G}_{δ} by 13.2 and A(1/n) are \mathbf{G}_{δ} by III and 13.1.1.

V. It remains to be proved that $L(Q) = \overline{Q} \cap \bigcap_{n=1}^{\infty} A(1/n)$. As $L(Q) \subset \overline{Q}$, we have, by II, $L(Q) \subset \overline{Q} \cap \bigcap_{n=1}^{\infty} A(1/n)$. On the other hand, choose an $a \in \overline{Q} \cap \bigcap_{n=1}^{\infty} A(1/n)$. We shall prove that $a \in L(Q)$. Let U be a neighborhood of a. There exists an index n with $\Omega(a, 2/n) \subset U$. We have $a \in A(1/n)$, so that there is a connected $S \subset Q$ such that d(S) < 1/n and that a is an interior point of $S \cup (P - Q)$. There exists a $\delta > 0$ with $\Omega(a, \delta) \subset S \cup (P - Q)$; we may suppose that $\delta < 1/n$. As $a \in \overline{Q}$, there is a point $b \in Q \cap \Omega(a, \delta) \subset Q \cap (S \cup (P - Q)) = Q \cap S = S$. As $b \in \Omega(a, \delta)$, $b \in S$, d(S) < 1/n, we have $S \subset \Omega(a, \delta + 1/n) \subset \Omega(a, 2/n) \subset U$. Since $S \subset Q$, we have $S \subset Q \cap U$, so that (see 18.2.5) there exists a component K of $Q \cap U$ such that $S \subset K$, so that a is an interior point of $K \cup (P - Q)$. Since U was an arbitrary neighborhood of a, we have $a \in L(Q)$. **22.2.4.** Let $Q \subset M \subset L(Q)$ (so that Q is locally connected by 22.2.2). Then M is locally connected.

Proof: Choose a point $a \in M$ and a number $\varepsilon > 0$. Then $\Omega(a, \frac{1}{3}\varepsilon)$ is a neighborhood of the point $a \in L(Q)$. Hence, there is a component K of $Q \cap \Omega(, \frac{1}{3}\varepsilon)$ and a number $\delta > 0$ such that $\varrho(a, x) < \delta$ implies $x \in K \cup (P - Q)$. We may suppose that $\delta < \frac{1}{3}\varepsilon$. Put $S = M \cap \overline{K} \cap \Omega(a, \frac{1}{3}\varepsilon)$. By 8.7.1 and 18.2.2, $K = \overline{K} \cap Q \cap \Omega(a, \frac{1}{3}\varepsilon)$. Thus, $K \subset S$ and, moreover, $S \subset \overline{K}$, so that S is connected by 18.1.7. As $S \subset$ $\subset \Omega(a, \frac{1}{3}\varepsilon)$ we have $d(S) < \varepsilon$. Moreover, $S \subset M$, so that, by 22.1.1 it suffices to prove that $x \in S$ whenever $x \in M$, $\varrho(a, x) < \delta$ (in particular, for x = a). As $\delta < \frac{1}{3}\varepsilon$, it suffices to prove that $x \in M$, $\varrho(a, x) < \delta$ imply $x \in \overline{K}$. Thus, let $x \in M$, $\varrho(a, x) < \delta$. Choose an $\eta > 0$ with $\varrho(a, x) + \eta < \delta$. As $M \subset \overline{Q}$, we have $\varrho(x, Q) = 0$. Thus, there exists a point $z \in Q$ such that $\varrho(x, z) < \eta$. We have then $\varrho(a, z) \leq \varrho(a, x) + \varphi(x, z) < \delta$, hence $z \in K \cup (P - Q)$, i.e. $z \in K$, since $z \in Q$. Thus, $\varrho(x, K) \leq$ $\leq \varrho(x, z) < \eta$ for every sufficiently small $\eta > 0$. Thus, $\varrho(x, K) = 0$, i.e. $x \in \overline{K}$.

22.2.5. Let P be a continuum. Let $a \in P - L(P)$. Then, there is a continuum K such that $a \in K$, $K \subset P - L(P)$. Moreover, there is a point $b \neq a$ and a disjoint sequence of continua $\{K_n\}_1^\infty$ such that $\lim \varrho(a, K_n) = \lim \varrho(b, K_n) = 0$.

Proof: I. By the definition of L(P) there is a neighborhood U of a such that a is not an interior point of C, if C is the component of U containing a. Choose a neighborhood V of a with $\overline{V} \subset U$.

II. For n = 1, 2, 3, ... we may, by I, determine recursively the components A_n of U such that $a \in U - A_n$, $V \cap A_n \neq \emptyset$, $\varrho(a, A_n) < n^{-1}$. By 18.2.2, $\varrho(a, A_n) > 0$, so that we may evidently determine the A_n to be distinct and hence (see 18.2.1) disjoint. For n = 1, 2, 3, ... choose an $a_n \in V \cap A_n$ such that $\varrho(a, a_n) < n^{-1}$.

III. The set $A_n \subset U$ is evidently connected, so that \overline{A}_n is either a one-point set, or a continuum. On the other hand evidently $U \neq P$, so that, by 19.3.2, (see also 10.3.2), $\overline{A}_n - U \neq \emptyset$. Thus, \overline{A}_n is a continuum and $\overline{A}_n - \overline{V} \neq \emptyset$.

Denote by B_n the component of $\overline{A}_n \cap \overline{V}$ containing a_n . By 19.3.1 we obtain easily that $B_n \cap (\overline{V} - V) \neq \emptyset$, so that B_n is not a one-point set. B_n is a closed (see 18.2.2) connected subset of $\overline{A}_n \cap \overline{V}$. Thus, B_n is a continuum. Choose a $b_n \in B_n \cap (\overline{V} - V)$.

IV. As P is compact, there are indices $i_1 < i_2 < i_3 < ...$ such that there exists $\lim b_{i_n} = b$. Evidently $b \in \overline{V} - V$, and hence $a \neq b$. Since $B_n \subset \overline{A}_n \cap \overline{V} \subset \overline{A}_n \cap O \cap U = A_n$ (see 18.2.2) and since the sets A_n are disjoint, B_n are disjoint continua. We have $\varrho(a, B_n) \leq \varrho(a, a_n), \varrho(b, B_n) \leq \varrho(b, b_n)$, so that, for $K_n = B_{i_n}, \lim \varrho(a, K_n) = \lim \varrho(b, K_n) = 0$.

V. Put $K = \overline{\lim} B_n$. Evidently $a \in K$, $b \in K$. We even have $a \in \underline{\lim} B_n$, so that K is a continuum (see 19.1.7). We have $K \subset \overline{V} \subset U$.

VI. It remains to be proved that $K \subset P - L(P)$. Let there be, on the contrary,

a point c in $K \cap L(P)$. Since $a \in K$, $c \in K$, and since K is a connected subset of U, both points belong to the same component of U i.e. (see I), $c \in C$. As $c \in L(P)$, c is an interior point of C. Thus, there is a $\delta > 0$ such that $\varrho(c, x) < \delta$ implies $x \in C$. Since $c \in K = \overline{\lim} B_n$, there exists an index p and a point $u \in B_p$ such that $\varrho(c, u) < \delta$, and hence $u \in C$. Thus, $C \cap B_p \neq \emptyset$. On the other hand, $B_p \subset A_p$ (see IV) and C, A_p are components of U. Thus (see 18.2.1), $A_p = C$, which is a contradiction.

22.3. 22.3.1. Let P be a topologically complete connected and locally connected space. Let $a \in P$, $b \in P$, $a \neq b$. Then there is a simple arc $C \subset P$ with the end points a, b.

Proof: I. By 15.6.3 we may suppose that P is complete.

II. For every $x \in P$ denote by V(x) the component of $\Omega(x, \frac{1}{2})$ containing the point x. Thus, V(x) is connected and $x \in V(x)$. Moreover, $d(V(x)) \leq 1$ and V(x) is open by 22.1.4. As all the V(x) are open and since $\bigcup_{x \in P} V(x) = P$, there is, by 18.4.2, a finite point sequence $\{x_i\}_{i=0}^{k_1}$ such that $x_0 = a$, $x_{k_1} = b$ and that $V(x_{i-1}) \cap V(x_i) \neq \emptyset$ for $1 \leq i \leq k_1$. Evidently $\{x_i\}$ contains a finite subsequence $\{y_i\}_{i=0}^{k_1}$ such that $y_0 = a$, $y_{h_1} = b$, $V(y_{i-1}) \cap V(y_i) \neq \emptyset$ for $1 \leq i \leq h_1$ and $V(y_i) \cap V(y_j) = \emptyset$ for $0 \leq i \leq h_1$, $0 \leq j \leq h_1$, $|i - j| \geq 2$. Put $U_i^{(1)} = V(y_i)$ for $0 \leq i \leq h_1$.

III. Suppose that for a given *n* there is a finite sequence $\{U_i^{(n)}\}_{i=0}^{h_n}$ of point sets (as it was just done for n = 1) such that

$$[1]_{n} \ a \in U_{0}^{(n)}, \ b \in U_{h_{n}}^{(n)},$$

$$[2]_{n} \ U_{i-1}^{(n)} \cap U_{i}^{(n)} \neq \emptyset \quad \text{for} \quad 1 \leq i \leq h_{n},$$

$$[3]_{n} \ U_{i}^{(n)} \cap U_{j}^{(n)} = \emptyset \quad \text{for} \quad 0 \leq i \leq h_{n},$$

$$0 \leq j \leq h_{n}, \quad |i - j| \geq 2,$$

$$[4]_{n} \ U_{i}^{(n)} \ (0 \leq i \leq h_{n}) \text{ are open},$$

$$[5]_{n} \ U_{i}^{(n)} \ (0 \leq i \leq h_{n}) \text{ are connected},$$

$$[6]_{n} \ d(U_{i}^{(n)}) \leq n^{-1} \ (0 \leq i \leq h_{n}).$$

Put $c_0 = a$, $c_{h_n+1} = b$ and, for $1 \le i \le h_n$ choose a $c_i \in U_{i-1}^{(n)} \cap U_i^{(n)}$, which may be done by $[2]_n$. By $[4]_n$ we may choose for every $x \in U_i^{(n)}$ ($0 \le i \le h_n$) an open set $H_i(x)$ such that $x \in H_i(x) \subset \overline{H_i(x)} \subset U_i^{(n)}$, $d(H_i(x)) \le (n+1)^{-1}$. Let $W_i(x)$ be the component of $H_i(x)$ containing x. Thus, $W_i(x)$ is connected and $x \in W_i(x) \subset$ $\subset \overline{W_i(x)} \subset U_i^{(n)}$. Moreover, $d[W_i(x)] \le (n+1)^{-1}$ and the set $W_i(x)$ is open by 22.1.4. We have $c_i \in U_i^{(n)}$, $c_{i+1} \in U_i^{(n)}$, the sets $W_i(x)$ are open in $U_i^{(n)}$ and $\bigcup_{x \in U_i^{(n)}} W_i(x) =$

 $= U_i^{(n)}$. Thus, by 18.4.2 (see also 18.4.1) and $[5]_n$ there is a finite point sequence $\{z_{ir}\}_{r=0}^{p_i}$ such that $z_{i0} = c_i$, $z_{ip_i} = c_{i+1}$ and that $W_i(z_{i,r-1}) \cap W_i(z_{ir}) \neq \emptyset$ for $1 \leq r \leq p_i$. Combine all the sequences $\{z_{ir}\}_{r=0}^{p_i}$ ($0 \leq i \leq h_n$) into a new finite

point sequence $\{v_j\}_{j=0}^k$ where $k = \sum_{i=0}^{h_n} (p_i + 1) - 1$ in the following manner: the first elements of $\{v_j\}_{j=0}^k$ are the points z_{0r} $(r = 0, 1, ..., p_0)$, they are followed by the points z_{1r} $(r = 0, 1, ..., p_1)$ etc., and the sequence is finished by the points $z_{h_n,r}$ $(r = 0, 1, ..., p_{h_n})$. Put $W_i(z_{ir}) = W(v_j)$ for $z_{ir} = v_j$. Then we have $v_0 = a$, $v_k = b$ and $W(v_{j-1}) \cap W(v_j) \neq \emptyset$ for $1 \leq j \leq k$. Evidently, $\{v_j\}_{j=0}^k$ contains a finite subsequence $\{u_j\}_{j=0}^{h_{n+1}}$ such that $u_0 = a$, $u_{h_{n+1}} = b$, $W(u_{j-1}) \cap W(u_j) \neq \emptyset$ for $1 \leq j \leq h_{n+1}$, $0 \leq j \leq h_{n+1}$, $|i - j| \geq 2$. Put $U_j^{(n+1)} = W(u_j)$ for $0 \leq j \leq h_{n+1}$. Then the conditions $[1]_{n+1} - [6]_{n+1}$ are satisfied. Moreover, we have

[7]_n for every i ($0 \le i \le h_{n+1}$) there is an index $\lambda(i)$ ($0 \le \lambda(i) \le h_n$) such that $\overline{U_i^{(n+1)}} \subset U_{\lambda(i)}^{(n)}$; the indices $\lambda(i)$ may be chosen in such a way that [8]_n $0 \le i \le j \le h_{n+1}$ implies $\lambda(i) \le \lambda(j)$.

IV. Thus, we may construct recursively, for n = 1, 2, 3, ..., finite sequences $\{U_i^{(n)}\}_{i=0}^{h_n}$ of point sets such that, for every n, $[1]_n - [8]_n$ hold. Put

$$G_n = \bigcup_{i=0}^{n_n} U_i^{(n)}$$
 $(n = 1, 2, 3, ...)$

 G_n are open by $[4]_n$ and connected by $[2]_n$, $[5]_n$ and 18.1.4. Moreover, by $[7]_n$,

 $\overline{G}_{n+1} \subset G_n \quad (n = 1, 2, 3, \ldots)$

and hence

$$C=\bigcap_{n=1}^{\infty}G_n=\bigcap_{n=1}^{\infty}\overline{G}_n.$$

V. We have $a \in C$, $b \in C$ since, by $[1]_n$, $a \in G_n$, $b \in G_n$ for every n.

VI. C is compact by $[6]_n$ and 17.5.2.

VII. C is a continuum. Let us assume the contrary. By V and VI $C = A \cup B$ with non-void separated summands. By 10.2.7 there are open sets Γ , Δ such that $\Gamma \cap \Delta = \emptyset$, $\Gamma \supset A$, $\Delta \supset B$. As Γ , Δ are open and $\overline{G}_{n+1} \subset G_n$, $\overline{G}_{n+1} - (\Gamma \cup \Delta) \subset \subset G_n - (\Gamma \cup \Delta)$. Since $G_n \supset C$ are connected and $G_n \cap (\Gamma \cup \Delta) = (G_n \cap \Gamma) \cup \cup (G_n \cap \Delta)$ with separated non-void summands, we have $G_n - (\Gamma \cup \Delta) \neq 0$. Thus, by [6_n] and 15.7.2 we have $\emptyset \neq \bigcap_{n=1}^{\infty} [G_n - (\Gamma \cup \Delta)] = C - (\Gamma \cup \Delta)$, which is a contradiction.

VIII. Let us choose a $c \in C$, $a \neq c \neq b$, and prove that $C - (c) = C' \cup C''$ with separated summands, $a \in C'$, $b \in C''$.

Since $C \subset G_n$ for every *n*, there are indices s_n such that $0 \leq s_n \leq h_n$, $c \in U_{s_n}^{(n)}$. Choose an index *p* with

3.
$$p^{-1} < \min [\varrho(a, c), \varrho(b, c)]$$
.

V. Local connectedness

 $[1]_n$, $[2]_n$ and $[6]_n$ yield:

$$\begin{aligned} \varrho(a, c) &\leq d(\bigcap_{i=0}^{s_n} U_i^{(n)}) \leq \sum_{i=0}^{s_n} d(U_i^{(n)}) \leq (s_n + 1) \cdot n^{-1} ,\\ \varrho(b, c) &\leq d(\bigcap_{i=s_n}^{h_n} U_i^{(n)}) \leq \sum_{i=s_n}^{h_n} d(U_i^{(n)}) \leq (h_n - s_n + 1) \cdot n^{-1} , \end{aligned}$$

so that

 $3 \leq s_n \leq h_n - 3$ for $n \geq p$.

Let

$$G'_{n} = \bigcup_{i=0}^{s_{n}-3} U_{i}^{(n)}, \qquad G''_{n} = \bigcup_{i=s_{n}+3}^{h_{n}} U_{i}^{(n)} \qquad (n = p, p + 1, ...),$$

$$G' = \bigcup_{n=p}^{\infty} G'_{n}, \qquad G'' = \bigcup_{n=p}^{\infty} G''_{n}.$$

G' and G" are open by $[4]_n$ and we have $a \in G'$, $b \in G''$ by $[1]_n$. Thus, it suffices to prove first that $G' \cap G'' = \emptyset$ and secondly that $C - (c) \subset G' \cup G''$ since then we may put $C' = C \cap G'$, $C'' = C \cap G''$.

We prove easily that $C - (c) \subset G' \cup G''$. Let $d \in C - (c)$. Choose an *n* such that $n \ge p$ and that $5 \cdot n^{-1} < \varrho(c, d)$. There exists an index *i* such that $0 \le i \le h_n$ and $d \in U_i^{(n)}$. If $|s_n - i| \le 2$, we obtain, by [2]_n and [6]_n,

$$\varrho(c,d) \leq d(\bigcup_{j=s_n-2}^{s_n+2} U_j^{(n)}) \leq \sum_{j=s_n-2}^{s_n+2} d(U_j^{(n)}) \leq 5 \cdot n^{-1},$$

which is a contradiction. Thus, $|s_n - i| \ge 3$, so that $d \in G'_n \cup G''_n \subset G' \cup G''$. It remains to be proved that $G' \cap G'' = \emptyset$.

Let $p \leq l \leq m$. By [7]_n and [8]_n (n = l, l + 1, ..., m - 1) we may associate, with every i $(0 \leq i \leq h_n)$, a $\mu_n(i)$ $[0 \geq \mu(i) \leq h_l]$ such that $U_i^{(m)} \subset U_{\mu(i)}^l$ and that

 $0 \leq i < j \leq h_m$ implies $\mu(i) \leq \mu(j)$.

Assume that there is a point $d \in G'_m \cap G''_l$. As $d \in G'_m$, there is an index *i* with $0 \leq i \leq s_m - 3$, $d \in U_i^{(m)}$ and hence $d \in U_{\mu(i)}^{(l)}$. As $d \in G''_l$, there is an index *j* with $s_l + 3 \leq j \leq h_l$, $d \in U_j^{(l)}$. Thus $U_{\mu(i)}^{(l)} \cap U_j^{(l)} \neq \emptyset$, so that, by $[3]_l$, $\mu(i) \geq j - 1 \geq s_l + 2$. Since $i < s_m$, we have $\mu(i) \leq \mu(s_m)$, so that $\mu(s_m) \geq s_l + 2$, so that, by $[3]_l$, $U_{\mu(s_m)}^{(l)} \cap U_{s_l}^{(l)} = \emptyset$; this is a contradiction, since obviously $c \in U_{\mu(s_m)}^{(l)} \cap U_{s_l}^{(l)}$. Thus,

$$p \leq l \leq m$$
 implies $G'_m \cap G''_l = \emptyset$. (1)

Suppose that there is a point $d \in G'_i \cap G''_m$. As $d \in G''_m$, there is an index *i* such that $s_m + 3 \leq i \leq h_m$, $d \in U_i^{(m)}$, so that $d \in U_{\mu(i)}^{(l)}$. As $d \in G'_i$, there is an index *j* such that $0 \leq j \leq s_l - 3$, $d \in U_j^{(l)}$. Thus, $U_{\mu(i)}^{(l)} \cap U_j^{(l)} \neq \emptyset$, so that, by $[3]_l$, $\mu(i) \leq i \leq j + 1 \leq s_l - 2$. As $i > s_m$, we have $\mu(i) \geq \mu(s_m)$, so that $\mu(s_m) \leq s_l - 2$, and that, by $[3]_l$, $U_{\mu(s_m)}^{(l)} \cap U_{s_l}^{(l)} = \emptyset$, which is a contradiction, since ibviously $c \in U_{\mu(s_m)}^{(l)} \cap U_{s_l}^{(l)}$.

Thus

$$p \leq l \leq m$$
 implies $G'_l \cap G''_m = \emptyset$. (2)

(1) and (2) yield $G' \cap G'' = \emptyset$.

IX. By V, VII, VIII and 20.3, C is a simple arc with end points a, b.

22.3.2. In a locally connected topologically complete space P the constituants are identical with the components.

Proof: Let K be a component of P. By 12.8.1, 19.5.5 and 19.5.8 it suffices to prove that K is a semicontinuum. K is open in P by 22.1.4. Thus, K is locally connected by 22.1.3 and K is a topologically complete space by 15.5.3 (see 13.1.1). Thus, K is a semicontinuum by 20.1.1 and 22.3.1.

22.3.3. Let P be a locally connected topologically complete space. Let a closed $Q \subset P$ cut P between points a, b. Then Q separates a from b in P.

Proof: By 19.5.10 the points a, b belong to distinct constituants of P - Q. The set P - Q is open in P and hence it is locally connected by 22.1.3 and P - Q is topologically complete by 15.5.3. Thus, the constituants of P - Q coincide with its quasicomponents by 22.1.5 and 22.3.2. Thus, by 18.3.5, $P - Q = A \cup B$ with separated summands, $a \in A, b \in B$, i.e. Q separates a from b in P.

Exercises

- **22.1.** Every connected subset of E_1 is locally connected. This is not true in E_n $(n \ge 2)$.
- **22.2.** If $P \times Q \neq \emptyset$ is locally connected, then $P \times Q$ are locally connected (see ex. 18.10).
- **22.3.** $P \times Q$ is locally connected if and only if for every M open in P and for every N open in Q every component of $M \times N$ is open in $P \times Q$.
- 22.4. Let P, Q be locally connected spaces. Let $M \subseteq P \times Q$. Let f be a continuous function on $P \times Q$. Let, for every $a \in M$,

$$x \in P \times Q$$
, $f(x) = f(a) \Rightarrow x = a$.

Then M has no cluster points in $P \times Q$ (see ex. 19.14).

- 22.5. Let $M_1 \subseteq P$, $M_2 \subseteq P$, $a \in M_1 \cap M_2$. Let both the sets M_1 , M_2 be locally connected at the point a. Then $M_1 \cup M_2$ is also locally connected at the point a.
- **22.6.** If the sets $M_1 \subset P$, $M_2 \subset P$ are locally connected, then $M_1 \cup M_2$ need not be locally connected. This may be shown by means of an example with $M_1 \cup M_2 = P_5$ (see ex. to § 19).
- **22.7.** Let the sets $M_1 \subseteq P$, $M_2 \subseteq P$ be locally connected and closed in $M_1 \cup M_2$. Then $M_1 \cup M_2$ is locally connected.
- 22.8. We may replace the word "closed" in ex. 22.7. by the word "open".
- **22.9.** Let G be an open set in a separable locally connected space P. Then the system of all components of G is countable.
- **22.10.** A space P is locally connected if and only if it has the following property: If a point $a \in P$ and a positive number ε are given, then there is a connected open set G such that $a \in G$, $d(G) < \varepsilon$.

- 22.11. Let $a \in P$. For every $\varepsilon > 0$ let there be a connected open G with $a \in G$, $d(G) < \varepsilon$. Then P is locally connected at a.
- 22.12. There exists a space P and a point $a \in P$ such that P is locally connected at a and that, for suitable $\varepsilon > 0$ there is no connected open G with $a \in G$, $d(G) < \varepsilon$. This may be shown by means of the example with a = (0, 0), $P = P_7$ (see exercises to § 19).
- **22.13.** Let $a \in M \subseteq P$. Let M be locally connected at the point a. Let $M \subseteq N \subseteq \overline{M}$. Then N is locally connected at the point a.
- 22.14. Let $M \subseteq P$. If M is locally connected, \overline{M} need not be locally connected. This may be shown by an example with $P = \mathbf{E}_1$ and also by an example with $P = \mathbf{E}_2$ and with open connected M.
- 22.15. Let P be a locally connected space. Let $Q \subseteq P$ be compact. Let G be a neighborhood of Q. Then there exists an open M such that $Q \subseteq M \subseteq G$ and that M has a finite number of components.
- 22.16. We may replace the word "open" in ex. 22.15 by the word "closed".
- 22.17. Let P be a connected and locally connected space. Let G_1 , G_2 be connected open sets. Let the sets $B(G_1)$, $B(G_2)$ be connected and disjoint. Let

$$G_1 \cap G_2 \neq \emptyset \neq P - (\overline{G}_1 \cup \overline{G}_2).$$

Then either $G_1 \subseteq G_2$ or $G_2 \subseteq G_1$.

Remark: V. Knichal noticed that in ex. 22.17 we may: [1] omit the assumption of local connectedness, [2] replace the assumption of G_1 , G_2 open by a weaker assumption of $G_1 \cup G_2$ open, [3] replace the assumption $P - (\overline{G}_1 \cup \overline{G}_2) \neq \emptyset$ by a weaker assumption $P - (G_1 \cup G_2) \neq \emptyset$.

- **22.18.** Let there exist a one-to-one continuous mapping of a connected and locally connected space *P* onto a simple arc. Then *P* is a simple arc.
- 22.19. It is not possible to omit the assumption of local connectedness in ex. 22.18. This may be shown by means of an example with $P \subseteq P_5$ (see exercises to § 19).
- 22.20. A one-to-one continuous image of a locally connected space need not be locally connected.
- 22.21. There exists a connected space P such that P L(P) is an n-point set (n = 1, 2, 3, ...) or an infinite countable set. This may be shown by means of an example with $P \subseteq P_1$ (see exercises to § 19).
- 22.22. A space P satisfying the condition from ex. 22.21 cannot be compact; this follows by 22.2.5.Prove that P cannot be locally compact. P may be topologically complete.
- 22.23. Let P be the set of all couples $(x, y) \in \mathbf{E}_2$ such that at least one of x, y is irrational. Then P is connected, locally connected and topologically complete.
- 22.24. Let P be a connected, locally connected and topologically complete space. Let $a \in P$. Let a be an end point of every simple arc $C \subseteq P$ such that $a \in C$. Then the set P (a) is either void or connected.
- 22.25. Let P be a locally connected and topologically complete space. Let $C \subseteq P$ be a simple arc with end points a, b. Let $c \in C$, $a \neq c \neq b$. Let P (c) be connected. Then there exists a simple loop $D \subseteq P$ such that $c \in D$.
- **22.26.** Let P be a locally connected and topologically complete space. Let $A \subseteq P$ be a closed and locally connected set. Let B be a union of some components of P A. Then $A \cup B$ is closed and locally connected

Remark: V. Jarnik noticed that the assumption of topological completeness in ex. 22.26 is superfluous.

- 22.27. Let P be a locally connected and topologically complete space. Let $G \subseteq P$ be an open set. Let M be the set of all $x \in B(G)$ such that there is a continuum K with $x \in K, K - (x) \subseteq G$. Then M is dense in B(G).
- **22.28.** Let P be a locally connected space. Let \mathfrak{S} be a system of points sets. Let M be the union of all $X \in \mathfrak{S}$. Let N be the union of all sets B(X) ($X \in \mathfrak{S}$). Then $\overline{M} \subseteq M \cup \overline{N}$.

§ 23. Locally connected continua

23.1. 23.1.1. Let P be a metric space. For every $\varepsilon > 0$ let there be a $\delta > 0$ such that for every $a \in P$, $b \in P$ with $\varrho(a, b) < \delta$ there is a connected $S \subset P$ with $a \in S$, $b \in S$, $d(S) < \varepsilon$. Then P is locally connected.

This follows by 22.1.1.

23.1.2. Let P be a compact locally connected space. Then, for every $\varepsilon > 0$, there is a $\delta > 0$ such that for any $a \in P$, $b \in P$, $\varrho(a, b) < \delta$ there is a connected $S \subset P$ with $a \in S$, $b \in S$, $d(S) < \varepsilon$.

Proof: On the contrary, let there be an $\varepsilon > 0$ such that no $\delta = n^{-1}$ (n = 1, 2, 3, ...) has the required property. Then there are point sequences $\{x_n\}, \{y_n\}$ such that [1] $\varrho(x_n, y_n) < n^{-1}$ [2] if $S \subset P$ is connected and $x_n \in S$, $y_n \in S$, then $d(S) \ge \varepsilon$. Since P is compact, there are indices $i_1 < i_2 < i_3 < ...$ such that $\lim x_{i_n} = a$ exists. As P is locally connected at the point a, there is a $\delta > 0$ such that there is a connected $S \subset P$ with $a \in S$, $x \in S$, $d(S) < \frac{1}{2}\varepsilon$ whenever $\varrho(a, x) < \delta$. There is an index n such that $\varrho(a, x_{i_n}) < \frac{1}{2}\delta$ and $i_n^{-1} < \frac{1}{2}\delta$ and hence $\varrho(a, y_{i_n}) \le \frac{1}{2}\varepsilon(a, x_{i_n}) + \varrho(x_{i_n}, y_{i_n}) < \delta$. There exist connected $S_1 \subset P$, $S_2 \subset P$ such that $a \in S_1 \cap S_2$, $x_{i_n} \in S_1$, $y_{i_n} \in S_2$, $d(S_1) < \frac{1}{2}\delta$, $d(S_2) < \frac{1}{2}\delta$. We have $x_{i_n} \in S_1 \cup S_2$, $y_{i_n} \in S_1 \cup S_2$ is connected by 18.1.4. This is a contradiction.

23.1.3. A metric space P is locally connected if and only if every its component is open and locally connected.

Proof: I. Let P be locally connected and let K be its component. K is open by 22.1.4, so that K is locally connected by 22.1.3.

II. Let every component of P be open and locally connected. Choose a point $a \in P$ and a number $\varepsilon > 0$. Let K be the component containing the point a. Then there is a $\delta_1 > 0$ such that $\Omega(a, \delta_1) \subset K$. Since K is locally connected, by 22.1.1 there is a $\delta_2 > 0$ such that for every $x \in K$ with $\varrho(a, x) < \delta_2$ there is a connected $S \subset K$ with $a \in S$, $x \in S$, $d(S) < \varepsilon$. Put $\delta = \min(\delta_1, \delta_2)$. If $x \in P$, $\varrho(a, x) < \delta$, we have $\varrho(a, x) < \delta_1$ and hence $x \in K$. Moreover, $\varrho(a, x) < \delta_2$, so that there exists a connected $S \subset K \subset P$ such that $a \in S$, $x \in S$, $d(S) < \varepsilon$. Thus, P is locally connected at the point a by 22.1.1.

23.1.4. A compact space P is locally connected if and only if: [1] P has a finite number of components, [2] every component is locally connected.

Proof: I. If P has a finite number of components and if K is one of them, then P - K is the union of the remaining ones, so that, by 8.3.4 and 18.2.2, P - K is closed and hence K is open. If, moreover, every K is locally connected, P is locally connected by 23.13.

In this part of the proof the compactness of P was not used.

II. Let P be locally connected, so that the components are open by 23.1.3. By 18.2.1 and 17.5.4 the number of components is finite.

23.1.5. Let P be a metric space. Let, for every $\varepsilon > 0$, $P = \bigcup_{i=1}^{m} K_i$ with a finite number of closed connected summands of diameters less than ε . Then P is locally connected.

Proof: Choose an $a \in P$. Let F be the union of all K_i $(1 \le i \le m)$ which do not contain the point a (if $a \in K_i$ for every $i, F = \emptyset$). Denote by S the union of the remaining K_i , so that $a \in S$ and S is connected by 18.1.4 or by 18.1.5. F is obviously closed, so that there is a $\delta > 0$ such that $\Omega(a, \delta) \subset P - F \subset S$. Evidently, $d(S) < 2\varepsilon$. Thus, P is locally connected at the point a by 22.1.1.

23.1.6. Let $P \neq \emptyset$ be a compact locally connected space. Let $\varepsilon > 0$. Then $P = \bigcup_{i=1}^{m} K_i$ with a finite number of closed and connected summands of diameters less than ε .

Proof: For every $x \in P$ denote by U(x) the component of $\Omega(x, \frac{1}{3}\varepsilon)$ containing the point x. The sets U(x) are open by 22.1.4 and $\bigcup_{x \in P} U(x) = P$ so that, by 17.5.4 there is a finite sequence $\{x_i\}_1^m$ such that $\bigcup_{i=1}^m U(x_i) = P$ and consequently $P = \bigcup_{i=1}^m K_i$ where $K_i = (\overline{Ux_i})$. As $U(x_i) \subset \Omega(x_i, \frac{1}{3}\varepsilon)$, we have evidently $d(K_i) \leq \frac{1}{3}\varepsilon < \varepsilon$. Moreover, the sets K_i are closed and, by 18.1.6, also connected.

23.1.7. Let P be a continuum. P is locally connected if and only if for every $\varepsilon > 0$, P is a union of a finite number of continua of diameters less than ε .

Proof: I. The condition is sufficient by 23.1.5, since every continuum is closed by 17.2.2.

II. Let P be a locally connected continuum and let $\varepsilon > 0$. By 23.1.6, $P = \bigcup_{i=1}^{m} K_i$, where K_i are connected and closed (and hence compact by 17.2.2) and $d(K_i) < \varepsilon$. Thus, every K_i is either a continuum, or a one-point set. We may suppose that there is an index $n \le m$ such that K_i is a one-point set if and only if i > n. By 18.1.9 $n \ge 1$. We have $P = A \cup B$, where $A = \bigcup_{i=1}^{n} K_i$, B = P - A. A is closed and non-void. B is finite and hence also closed. Moreover $A \cap B = \emptyset$, so that A, B are separated. Since P is connected and $A \ne \emptyset$, we have $B = \emptyset$, i.e. $P = \bigcup_{i=1}^{n} K_i$.

23.1.8. Simple arcs are locally connected continua. This follows, e.g., from 20.1.1, 20.1.12 and 23.1.7.

23.1.9. Simple loops are locally connected continua. This follows, e.g., from 21.1.1, 23.1.7 and 23.1.8.

23.1.10. Let a continuum P not be locally connected at a point $a \in P$. Then there exists a continuum $K \subset P$ such that $a \in K$ and that P is locally connected at no point $x \in K$.

Proof: By 22.2.1 $a \in P - L(P)$. Thus, by 22.2.5, there exists a continuum K such that $a \in K \subset P - L(P)$. By 22.2.1 P is locally connected at no $x \in K$.

23.1.11. Let P be a metric space. Let there be a finite number of locally connected compact sets A_i $(1 \le i \le m)$ such that $P = \bigcup_{i=1}^{m} A_i$. Then P is a locally connected compact space.

Proof: P is compact by ex. 17.4. P is locally connected by 23.15 and 23.1.6 (see also 17.2.2).

23.2. 23.2.1. Let P be a locally connected continuum. Let Q be a metric space containing more than one point. Let there exist a continuous mapping f of P onto Q. Then Q is a locally connected continuum.

Proof: By 17.4.2 and 18.1.10 Q is a continuum. Choose an $\varepsilon > 0$. By 17.4.4 there is a $\delta > 0$ such that

$$M \subset P, d(M) < \delta \text{ imply } d[f(M)] < \varepsilon.$$
 (1)

By 23.1.7 $P = \bigcup_{i=1}^{m} K_i$ where K_i are continua and $d(K_i) < \delta$ $(1 \le i \le m)$. We have $Q = \bigcup_{i=1}^{m} f(K_i)$. By (1), $d[f(K_i)] < \varepsilon$. The sets $f(K_i)$ are compact by 17.4.2 and hence closed in Q by 17.2.2 and connected by 18.1.10. Thus, Q is locally connected by 23.1.5.

23.2.2. Let P be a metric space containing more than one point. Put $J = \underset{t}{\text{E}[0 \leq 1]} \leq t \leq 1$]. Let there exist a continuous mapping f of the interval J onto P. Then P is a locally connected continuum.

This is a particular case of theorem 23.2.1, since J is a locally connected continuum (e.g. by 23.1.8).

23.2.3. Let P be a locally connected continuum. Then there exists a continuous mapping f of the interval $J = E[0 \le t \le 1]$ onto P.

First proof: I. Let D be the Cantor discontinuum (see 17.8.3). Let $E[u_n < t < v_n]$ (n = 1, 2, 3, ...) be the contiguous intervals of D, so that $v_n - u_n \rightarrow 0$. II. By 17.8.4 there is a continuous mapping φ of D onto P. Put $\eta_n = \varrho[\varphi(u_n), \varphi(v_n)]$, hence $\eta_n \ge 0$. As D is a compact space, we have, by 17.4.4, $\eta_n \to 0$.

III. By 23.1.2 we may associate with every m (= 1, 2, 3, ...) a number $\delta_m > 0$ such that for every $a \in P$, $b \in P$ with $\varrho(a, b) < \delta_m$ there is a connected $S \subset P$ with $a \in S, b \in S, d(S) < m^{-1}$.

IV. As $\eta_n \ge 0$, $\eta_n \to 0$, $\delta_m > 0$, we may associate with every $m \ (= 1, 2, 3, ...)$ an index i_m such that

 $n \ge i_m$ implies $\eta_n < \delta_m$.

We may assume that $1 < i_1 < i_2 < i_3 < \dots$.

V. We shall define, for every n (= 1, 2, 3, ...) a continuous mapping ψ_n of the interval $\mathop{\mathbb{E}}_{t}[u_n \leq t \leq v_n]$ into P such that $\psi_n(u_n) = \varphi(u_n), \ \psi_n(v_n) = \varphi(v_n)$. We shall distinguish the following three cases: [1] $\varphi(u_n) = \varphi(v_n)$, [2] $1 \leq n < i_1, \ \varphi(u_n) \neq \varphi(v_n)$, [3] $i_m \leq n < i_{m+1} \ (m = 1, 2, 3, ...), \ \varphi(u_n) \neq \varphi(v_n)$.

VI. First, if $\varphi(u_n) = \varphi(v_n)$, we put $\psi_n(t) = \varphi(u_n)$ for every $t \in \mathbb{E}[u_n \leq t \leq v_n]$.

VII. Secondly, let $1 \le n < i_1$, $\varphi(u_n) \ne \varphi(v_n)$. By 17.2.1 and 22.3 there is a simple arc $C_n \subset P$ with the end points $\varphi(u_n)$, $\varphi(v_n)$. Let ψ_n be a homeomorphic mapping of the interval $E[u_n \le t \le v_n]$ onto C_n such that $\psi_n(u_n) = \varphi(u_n)$, $\psi_n(v_n) = \varphi(v_n)$.

VIII. Thirdly, let $i_m \leq n < i_{m+1}$, $\varphi(u_n) \neq \varphi(v_n)$. By IV, we have $\eta_n = \varrho[\varphi(u_n), \varphi(v_n)] < \delta_m$, so that, by III, there exists a connected $S_n \subset P$ such that $\varphi(u_n) \in S_n$, $\varphi(v_n) \in S_n$, $d(S) < m^{-1}$ and hence $S_n \subset \Omega(\varphi(u_n), m^{-1})$. Let G_n be the component of $\Omega[\varphi(u_n), m^{-1}]$ containing the point $\varphi(u_n) \in S_n$. By 18.2.5 $S_n \subset G_n$ and hence $\varphi(v_n) \in G_n$. The set G_n is connected. By 22.1.4 G_n is open, so that, by 22.1.3, G_n is locally connected. By 17.2.1 and 15.5.3 G_n is a topologically complete space. Thus, by 22.3, there exists a simple arc $C_n \subset G_n$ with the end points $\varphi(u_n)$, $\varphi(v_n)$. Let ψ_n be a homeomorphic mapping of the interval $E[u_n \leq t \leq v_n]$ onto C_n such

that $\psi_n(u_n) = \varphi(u_n), \ \psi_n(v_n) = \varphi(v_n).$

IX. Define a mapping f of the interval $J = E[0 \le t \le 1]$ into P as follows: Evidently $J = D \cup \bigcup_{n=1}^{\infty} E[u_n < t < v_n]$ with disjoint summands. If $t \in D$, put $f(t) = \varphi(t)$; if $u_n < t < v_n$, put $f(t) = \psi_n(t)$. As $\varphi(D) = P$ we have f(J) = P, i.e. f is a mapping of J onto P. It remains to prove that f is continuous. Assume the contrary. Then there is a number $a \in J$ and a sequence of numbers $\{t_k\}_1^{\infty}$ such that $t_k \to a$, while $f(t_k)$ does not converge to f(a). Then there exists a positive number α and a subsequence $\{x_k\}_1^{\infty}$ of $\{t_k\}_1^{\infty}$ such that $\varrho[f(x_k), f(a)] > 2\alpha$ for every k. We see easily that some of the following three cases occur: [1] there is a subsequence $\{y_k\}_1^{\infty}$ of $\{x_k\}_1^{\infty}$ may be chosen with $y_k \in E[u_n < t < v_n]$ for each k, [3] there are indices n_k (k = 1, 2, 3, ...) such that $n_1 < n_2 < n_3 < ...$ and that a subsequence $\{y_k\}_1^{\infty}$ of $\{x_k\}_1^{\infty}$ may be chosen with $y_k \in \mathbb{E}[u_{n_k} < t < v_{n_k}]$ for each k.

In the first case $y_k \to a$, $y_k \in D$, hence $a \in D$, so that $f(y_k) = \varphi(y_k)$, $f(a) = \varphi(a)$, and hence $f(y_k) \to f(a)$ which is a contradiction, since $\varrho[f(y_k), f(a)] > 2\alpha > 0$ for all k.

In the second case $y_k \to a$, $u_n < y_k < v_n$, hence $u_n \leq a \leq v_n$, so that $f(y_k) = \psi_n(y_k)$, $f(a) = \psi_n(a)$, and hence $f(y_k) \to f(a)$, which is a contradiction.

In the third case $y_k \to a$, $u_{nk} < y_k < v_{nk}$, hence $|y_k - u_{nk}| < v_{nk} - u_{nk} \to 0$, hence $u_{nk} \to a$, hence $a \in D$, hence $f(u_{nk}) = \varphi(u_{nk})$, $f(a) = \varphi(a)$ and hence $f(u_{nk}) \to f(a)$. As $\alpha > 0$, there is an index p such that $p^{-1} < \alpha$. Since $n_1 < n_2 < n_3 < \dots$ and since $f(u_{nk}) \to f(a)$, there is an index k such that $i_p \leq n_k$ and that $\varrho[f(u_{nk}), f(a)] < \alpha$. As $\varrho[f(y_k), f(a)] < 2\alpha$, we have evidently $\varrho[f(y_k), f(u_{nk})] > \alpha$. Thus, $f(y_k) \neq f(u_{nk})$. Since $u_{nk} < y_k < v_{nk}$, we have, by VI, $\varphi(u_{nk}) \neq \varphi(v_{nk})$. Since $i_p \leq \alpha_k$, there is an index $m \geq p$ such that $i_m \leq n_k < i_{m+1}$. Thus, by VIII, we have $f(y_k) = \psi_{nk}(y_k) \in C_{nk} \subset G_{nk} \subset \Omega[\varphi(u_{nk}), m^{-1}]$, i.e. $\varrho[f(y_k), \varphi(u_{nk})] < m^{-1}$. As $\varphi(u_{nk}) = f(u_{nk})$, $\varrho[f(y_k), f(u_{nk})] > \alpha$, we have $m^{-1} > \alpha$. This is a contradiction, since $m \geq p$, $p^{-1} < \alpha$.

The proof just finished is simple; however, it is based not only on theorem 17.8.4, but also on theorem 22.3.

Second proof of theorem 23.2.3: I. For every $x \in P$ denote by V(x) the component of $\Omega(x, \frac{1}{4})$ containing x. Thus, V(x) is connected and $x \in V(x)$. Moreover, $d(V(x) \leq \leq \frac{1}{2}$ and V(x) is open by 22.1.4. As $\bigcup_{x \in P} V(x) = P$, by 17.5.4 there is a finite point sequence $\{x_k\}_{k=1}^p$ such that $\bigcup_{\lambda=1}^p V(x_\lambda) = P$. By 18.4.2 there is a finite point sequence $\{y_i\}_{i=1}^h$ such that $\{y_i\}$ is a subsequence of $\{x_\lambda\}$, every term of $\{y_i\}$ is equal to some member of $\{x_\lambda\}$ and $V(y_i) \cap V(y_{+1}) \neq \emptyset$ for $1 \leq i \leq h - 1$. The sequence $\{y_i\}$ may be modified by repeating the last term several times, so that we may assume $h = 2^{m_1} = 2^{N_1}$. Put $U_i^{(1)} = V(y_i)$ $(1 \leq i \leq h)$.

II. Assume that we have determined for some n (= 1, 2, 3, ...) a finite sequence $\{U_i^{(n)}\}_{i=1}^{h_n} (h = 2^{N_n})$ of point sets (as just done for n = 1) such that

$$[1]_n \bigcup_{i=1}^{h_n} U_i^{(n)} = P,$$

$$[2]_n U_i^{(n)} \cap U_i^{(n+1)} \neq \emptyset \text{ for } 1 \leq i \leq h_n - 1,$$

$$[3]_n \text{ the sets } U_i^{(n)} (1 \leq i \leq h_n) \text{ are open},$$

$$[4]_n \text{ the sets } U_i^{(n)} (1 \leq i \leq h_n) \text{ are connected},$$

$$[5]_n d(U_i^{(n)}) \leq 2^{-n} (1 \leq i \leq h_n).$$

For a given $i(1 \le i \le h_n)$ denote by $W_i(x)$, for every $x \in \overline{U_i^{(n)}}$, the component of $\Omega(x, 2^{-n-2})$ containing x. Thus, $W_i(x)$ is connected and $x \in W_i(x)$. Moreover, $d[W_i(x)] \le 2^{-n-1}$ and $W_i(x)$ is open by 22.1.4. As $\bigcup_{x \in \overline{U_i^{(n)}}} [\overline{U_i^{(n)}} \cap W_i(x)] = \overline{U_i^{(n)}}$ and as $\widetilde{U_i^{(n)}}$ is compact by 17.2.2, by 17.5.4 there exists a finite point sequence $\{z_{\mu}^i\}_{\mu=1}^q$ such that $\bigcup_{\mu=1}^q W_i(z_{\mu}^{(i)}) \supset \overline{U_i^{(m)}}$.

By [2]_n we may assume that, for every $i \ge 2$, we have $z_1^{(i)} \in U_{i-1}^{(n)} \cap U_i^{(n)}$ and that, for $i \le h_n - 1$, we have $z_q^{(i)} \in U_i^{(n)} \cap U_{i+1}^{(n)}$. Therefore, we see easily that we may assume $z_1^{(i+1)} = z_q^{(i)}$ for $1 \le i \le h_n - 1$. Since $\overline{U_i^{(n)}}$ is connected by [4]_n and 18.1.6, by 18.4.2 there is a finite point sequence $\{u_r^{(i)}\}_{r=1}^{k_i}$ such that the sequence $\{z_{\mu}^{(i)}\}$ is a subsequence of $\{u_r^{(i)}\}$, every term of $\{u_r^{(i)}\}$ is equal to some term of $\{z_{\mu}^{(i)}\}$ (in particular $u_1^{(i)} = z_1^{(i)}$, $u_{k_i}^{(i)} = z_{q_i}^{(i)}$), and $W_i(u_r^{(i)}) \cap W_i(u_{r+1}^{(i)}) \neq \emptyset$ for $1 \le r \le k_i - 1$. The sequence $\{u_r^{(i)}\}$ may be modified by repeating the last term several times, so that we may assume $k_i = 2^{m_{n+1}}$, where the number m_{n+1} is the same for all $i \ (1 \le i \le h_n)$. Let us combine the sequences $\{W_i(u_r^{(i)})\}_{r=1}^{2m_n}$ into a new sequence $\{U_j^{(n+1)}\}_{j=1}^{h_{n+1}}$ where $h_{n+1} = 2^{N_{n+1}}$, $N_{n+1} = N_n + m_{n+1}$. We take first the sets $W_1(z_r^{(1)})$ ($1 \le r \le 2^{m_n+1}$); they are followed by $W_2(u_r^{(2)})$ ($1 \le r \le 2^{m_n+1}$) etc. and, finally, by the sets $W_{h_n}(u_r^{(h_n)})$ ($1 \le r \le 2^{m_n+1}$). Then all the properties $[1]_{n+1} - [5]_{n+1}$ are satisfied. Moreover, we have (see 10.2.6).

$$[6]_n \ 1 \leq i \leq h_n, \ 1 \leq r \leq 2^{m_{n+1}} \Rightarrow U_{(i-1)h_n+r}^{(n+1)} \cap U_i^{(n)} \neq \emptyset.$$

III. Thus, we may construct recursively, for n = 1, 2, 3, ..., finite sequences $\{U_i^{(n)}\}_{i=1}^{h_n}$ of point sets such that, for every n, $[1]_n - [6]_n$ hold. We have $h_n = 2^{N_n}$, $N_1 = m_1$, $N_{n+1} = N_n + m_{n+1}$ and hence $N_n = \sum_{s=1}^n m_s$. By $[2]_n$ or $[4]_n$, $U_i^{(n)} \neq 0$. Choose a $z_i^{(n)} \in U_i^{(n)}$ $(n = 1, 2, 3, ..., 1 \le i \le h_n)$.

IV. For n = 1, 2, 3, ... define a mapping f_n of the interval $J = E[0 \le t \le 1]$ as follows: Put $I_i = E[(i - 1) \cdot 2^{-N_n} \le t < i \cdot 2^{-N_n}]$ $(i = 1, 2, ..., h_n^t - 1), I_{h_n} = E[(h_n - 1) \cdot 2^{-N_n} \le t \le 1].$

Then, put $f_n(t) = z_i^{(n)}$, where *i* is uniquely determined by the relation $t \in I_i$. (If $t \in J$, then there is a unique index $i (1 \le i \le h_n = 2^{N_n})$ such that $(i - 1) \cdot 2^{-N_n} \le \le t < i \cdot 2^{-N_n}$ provided $i < h_n$ and $(i - 1) \cdot 2^{-N_n} \le t \le i \cdot 2^{-N_n}$ provided $i = h_n$. Put $f_n(t) = z_i^{(n)}$.)

V. Let $t \in J$, $f_n(t) = z_i^{(n)}$, $f_{n+1}(t) = z_j^{(n+1)}$. We see easily that there is an index r such that $1 \le r \le 2^{m_{n+1}}$, $j = (i-1) 2^{m_{n+1}} + r$. As $z_i^{(n)} \in U_i^{(n)}$, $z_j^{(n+1)} \in U_j^{(n+1)}$, we have, by [5]_n and [6]_n

$$\varrho[f_n(t), f_{n+1}(t)] \leq d(U_i^{(n)}) + d(U_j^{(n+1)}) < 2^{-n+1}.$$

Thus, for n = 1, 2, 3, ...; m = n + 1, n + 2, n + 3, ... we have

$$\varrho[f_n(t), f_m(t)] < \sum_{s=n}^{\infty} 2^{-s+1} = 2^{-n+2}.$$

Thus, $\{f_n(t)\}\$ is a Cauchy sequence, so that, by 17.2.1, there exists

$$f(t) = \lim_{n \to \infty} f_n(t) \in P.$$

VI. If $t_1 \in J$, $t_2 \in J$, $|t_1 - t_2| < 2^{-N_n}$, $f_n(t_1) = z_{i_1}^{(n)}$, $f_n(t_2) = z_{i_2}^{(n)}$, we have $(i_1 - 1) \cdot 2^{-N_n} \leq t_1 \cdot 2^{-N_n}$, $(i_2 - 1) \cdot 2^{-N_n} \leq t_2 \leq i_2 \cdot 2^{-N_n}$, so that evidently $|i_1 - i_2| \leq 1$. Thus, by [2]_n and [5]_n,

$$\varrho[f_n(t_1), \dot{f_n}(t_2)] \leq d(U_{i_1}^{(n)}) + d(U_{i_2}^{(n)}) \leq 2^{-n+1}$$

This yields easily that f is a continuous mapping of the interval J into P. In fact, let $t_v \in J$, $\tau \in J$, $t_v \to \tau$ and let $\varepsilon > 0$. There is an index n with $2^{-n+4} < \varepsilon$. As $t_v \to \tau$, there is an index p such that $|t_v - \tau| < 2^{-N_n}$ for v > p and hence $\varrho[f_n(t_v), f_n(\tau)] \leq 2^{-n+1}$. On the other hand, by V,

$$\varrho[f_n(t_v), f(t_v)] \leq 2^{-n+2}, \quad \varrho[f_n(\tau), f(\tau)] \leq 2^{-n+2},$$

so that, for v > p, $\varrho[f(t_v), f(\tau)] \leq 2^{-n+1} + 2^{-n+2} + 2^{-n+2} < 2^{-n+4} < \varepsilon$. Thus, $f(t_v) \to f(\tau)$.

VII. It remains to prove that f(J) = P. Let, there be on the contrary, an $a \in P - f(J)$.

By VI and 17.4.2, f(J) is compact, so that (see 17.2.2) f(J) is closed, and hence P - f(J) is open. As $a \in P - f(J)$, there is a $\delta > 0$ such that $\Omega(a, \delta) \subset P - f(J)$. There is an index *n* with $2^{-n+3} < \delta$. As $a \in P$, by [1]_n there is an index *i* ($1 \le i \le h_n$) such that $a \in U_i^{(n)}$, so that, by [5]_n, we have $\varrho(a, z_i^{(n)}) \le 2^{-n}$. If $t = (i - 1) \cdot 2^{-N_n} \in J$, then $f_n(t) = z_i^{(n)}$, so that, by V, $\varrho(z_i^{(n)}, f(t)) \le 2^{-n+2}$. Thus, $\varrho[a, f(t)] \le 2^{-n} + 2^{-n+2} < 2^{-n+3} < \delta$, so that $f(t) \in \Omega(a, \delta) \subset P - f(J)$, which is a contradiction.

23.2.4. Let P be a locally connected continuum. Let $\varepsilon > 0$. Then there exists a finite number of locally connected continua P_i $(1 \le i \le m)$ such that $P = \bigcup_{i=1}^{m} P_i$ and $d(P_i) \le \varepsilon$ $(1 \le i \le m)$.

Proof: By 23.2.3 there exists a continuous mapping f of the interval $J = \underset{t}{\text{E}[0 \le t \le 1]}$ onto P. By 17.4.4 (see also 9.6.1) there is a $\delta > 0$ such that $0 \le \underset{t}{\leq} t_1 < t_2 \le 1$, $t_2 - t_1 < \delta$ imply $\varrho[f(t_1), f(t_2)] < \varepsilon$. Choose a natural number $n > \delta^{-1}$ and denote by A_k $(1 \le k \le n)$ the set of all $t \in J$ with $(k - 1) n^{-1} \le \underset{t}{\leq} t \le kn^{-1}$. Then $P = \bigcup_{k=1}^{n} f(A_k)$ and the sets $f(A_k)$ are less than or equal to ε in diameter. We see easily by 23.2.2 that every $f(A_k)$ which is not a one-point set is a locally connected continuum. On the other hand, the equation $P = \bigcup_{i=1}^{m} f(A_k)$ remains valid after omitting the one-point summands on the right-hand side (see the proof of theorem 23.1.7).

23.2.5. Let P be a locally connected continuum. Let $() \neq F \subset G \subset P$. Let F be closed. Let G be open and connected. Then there exists a locally connected continuum K with $F \subset K \subset G$.

Proof: F is compact by 17.2.2. Thus (see 17.3.4) there is an $\varepsilon > 0$ such that $x \in G$ whenever $\varrho(x, F) \leq \varepsilon$. By 23.2.4, $P = \bigcup_{i=1}^{m} P_i$, where P_i are locally connected continua of diameter less than or equal to ε .

G is a topologically complete space by 15.5.2 (see also 17.2.1). Moreover, G is connected and locally connected (see 22.1.3).

Denote by N the system of all couples (i, k) with $1 \le i \le k \le m$, $F \cap P_i = \emptyset = F \cap P_k$. If $(i, k) \in N$, choose points $a \in P_i$, $b \in P_k$, $a \ne b$. We have $a \in G$, $b \in G$, so that, by 22.3.1 there exists a simple arc $C_{ik} \subset G$ with end points a, b.

Denote by K_1 the union of all P_i $(1 \le i \le m)$ with $F \cap P_i \ne \emptyset$. As $P = \bigcup_{i=1}^{n} P_i$,

we have $F \subset K_1$. Since $d(P_i) \leq \varepsilon$, $\varrho(x, F) < \varepsilon$ imply $x \in G$, we have $K_1 \subset G$. Denote by K_2 the union of all C_{ik} with $(i, k) \in N$. Put $K = K_1 \cup K_2$. Evidently $F \subset K \subset G$. By 23.1.11 K is a locally connected compact set. Evidently K is not a one-point set, and we obtain easily by 18.1.5 that K is connected. Thus, K is a locally connected continuum.

Exercises

The spaces P_1, P_2, \ldots, P_{12} were defined in the exercises to § 19.

- 23.1. P_4 and P_6 are locally connected continua. Moreover, every continuum embedded into P_4 is locally connected (this is not true for P_6).
- 23.2. At which points are P_1, P_2, P_5, P_7 locally connected?
- 23.3. The continuum P_3 is locally connected at a unique point; P_{12} is locally connected at no point.
- 23.4. Let $C \subseteq P_5$ or $C \subseteq P_{12}$. Let C be a locally connected continuum. Then C is a simple arc.
- **23.5.** Let P be a locally connected continuum. Let $\varepsilon > 0$. Then there is a number $\delta > 0$ such that for every $a \in P$, $b \in P$ with $0 < \varrho(a, b) < \delta$, there is a simple arc $C \subseteq P$ with end points a, b and with diameter less than ε .
- 23.6. Let $K \subset \mathbf{E}_m$ be a continuum. There exist locally connected continua $K_n \subset \mathbf{E}_m$ (n = 1, 2, 3, ...)such that $K_n \supset K_{n+1}$, $\bigcap_{i=1}^{\infty} K_n = K$.
- 23.7. Let $K \subseteq \mathbf{E}_m$ be a continuum. There are simple arcs $C_n \subseteq \mathbf{E}_m$ (n = 1, 2, 3, ...) such that $K \cup \bigcup_{n=1}^{\infty} C_n$ is a locally connected continuum.
- **23.8.** Pet P be a continuum. P is locally connected, if and only if for any two disjoint closed F_1 , F_2 there are separated A_1 , A_2 and a closed Φ such that Φ has a finite number of components and $P \Phi = A_1 \cup A_2$, $A_1 \supset F_1$, $A_2 \supset F_2$.
- 23.9. There exists a continuous mapping of \mathbf{E}_1 onto P if and only if there exist locally connected continua $K_n \subseteq P$ (n = 1, 2, 3, ...) such that $K_n \subseteq K_{n+1}$, $P = \bigcup_{i=1}^{\infty} K_n$.
- 23.10. Let P be a locally connected continuum. Let $Q \subset \mathbf{E}_m$ be a locally connected continuum. There exists a continuous mapping of Q onto P.