Mařík, Jan: Other works

Jan Mařík

Characteristic functions that are products of derivatives

Real Anal. Exchange 12 (1) (1986/87), 67-68
Persistent URL: http://dml.cz/dmlcz/502162

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

Jan Mařik, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

CHARACTERISTIC FUNCTIONS THAT ARE PRODUCTS OF DERIVATIVES

Let D be the system of all (finite) derivatives on the real line R. For each set $A \subset R$ let C_{A} be its characteristic function. Let a be the system of all sets $A \subset R$ such that $C_{A}=f g$ for some $f, g \in D$. (It is not difficult to prove that every closed set belongs to α.) Since each derivative is a Baire 1 function and since $A=\left\{x ; C_{A}(x) \geqq l\right\}=\left\{x ; C_{A}(x)>0\right\}$, we see that every set in α is ambiguous (i.e. at the same time an F_{σ}-set and a $G_{\delta}-$ set $)$. Now let $A \in R, \quad f, g \in D, \quad C_{A}=f g, \quad p, x_{n}, y_{n} \in R, \quad p<x_{n}<y_{n}$ $(n=1,2, \ldots)$ and $\lim \inf \frac{y_{n}-x_{n}}{y_{n}-p}>0$. Let $f=F^{\prime}, \quad g=G^{\prime}$. It is easy to prove that $\frac{F\left(y_{n}\right)-F\left(x_{n}\right)}{y_{n}-x_{n}} \rightarrow F^{\prime}(p) \quad(=f(p)) ; \quad$ similarly for G. Write $J_{n}=$ ($\mathrm{X}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$) and suppose that $\mathrm{J}_{\mathrm{n}} \in \mathrm{A}$ for each n . Using the Cauchy inequality and the Darboux property of derivatives we get $\left(y_{n}-x_{n}\right)^{2}=\left(\int_{J_{n}} \sqrt{\mathrm{fg}_{g}}\right)^{2} \leqq$ $\int_{J_{n}} f \cdot \int_{J_{n}} g=\left(F\left(y_{n}\right)-F\left(x_{n}\right)\right) \cdot\left(G\left(y_{n}\right)-G\left(x_{n}\right)\right)$ for each n. Dividing by $\left(y_{n}-x_{n}\right)^{2}$ and passing to the limit we obtain $1 \leqq f(p) \cdot g(p)=C_{A}(p)$ so that $p \in A$. Hence: If $A \in \mathbb{A}, B=R \backslash A$ and $p \in B$, then such intervals J_{n} do not exist. (Intuitively: There are no essential holes in B close to p.) This (and a "symmetrical" argument) shows that B is nonporous (i.e. nonporous at p for each $p \in B$). Since A is ambiguous if and only if B is, we have the following simple result: If $A \in Q$, then B is ambiguous and nonporous.

It can be proved that these two properties of B imply ithat $A \in a$. Actually, we have a more precise statement:

Theorem 1. Let. $A \subset R, B=R \backslash A$. Then the following three conditions 1), 2) and 3) are equivalent to each other:
1). There is a natural number m and functions $f_{1}, \ldots, f_{m} \in D$ such that $C_{A}=f_{1} \cdots f_{m}$.
2) B is ambiguous and nonporous.
3) There are functions $f, g \in D$ such that $f=g=1$ on A and $\mathrm{fg}=0$ on B.

Let us compare Theorem 1 with an earlier result (see [1], pp. 33-34):
Theorem 2. Let $A \subset R, B=R \backslash A$. Then the following three conditions 4), 5) and 6) are equivalent to each other:
4) There is a natural number m and nonnegative functions $f_{1}, \ldots, f_{m} \in D$ such that $C_{A}=f_{1} \cdots f_{m}$.
5) B is ambiguous and each point of B is a point of density of B.
6) There are functions $f, g \in D$ such that $f=g=1$ on $A, 0 \leqq f<2$, $0 \leqq g<2$ on R and $f g=0$ on B.

Theorem 2 suggests that it is probably possible to improve or modify Theorem 1 in various ways. (Can we require f to be bounded [nonnegative] in 3)? Can we say more about f and g, if we drop the requirement $f=g=1$ on A ? I was not able to find any reasonable answers to similar questions.)

Reference

[1] Baire one, null functions, A.M. Bruckner, J. Mařík, and C.E. Weil, Contemporary Mathematics, Vol. 42, 1985, 29-41.

