Mařík, Jan: Other works

Jan Mařík

Characteristic functions that are products of derivatives

Real Anal. Exchange 12 (1) (1986/87), 67-68

Persistent URL: http://dml.cz/dmlcz/502162

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

CHARACTERISTIC FUNCTIONS THAT ARE PRODUCTS OF DERIVATIVES

D be the system of all (finite) derivatives on the real line R. Let For each set A G R let CA be its characteristic function. Let G be the system of all sets $A \subseteq R$ such that $C_A = fg$ for some $f, g \in D$. (It is not difficult to prove that every closed set belongs to a.) Since each derivative is a Baire 1 function and since $A = \{x; C_A(x) \ge 1\} = \{x; C_A(x) > 0\}$, we see that every set in α is ambiguous (i.e. at the same time an F_{σ} -set and a G_{δ} -set). Now let $A \subseteq R$, $f,g \in D$, $C_A = fg$, $p,x_n,y_n \in R$, $p < x_n < y_n$ $\begin{array}{ll} (n=1,2,\ldots) & \text{and lim inf } \frac{y_n^{-x}n}{y_n^{-p}} > 0. \quad \text{Let} \quad f=F', \quad g=G'. \quad \text{It is easy to} \\ & prove \text{ that } \frac{F(y_n)^{-F}(x_n)}{y_n^{-x}_n} \to F'(p) \quad (=f(p)); \quad \text{similarly for G.} \quad \text{Write } J_n=1, \ldots, \\ & \frac{F(y_n)^{-F}(x_n)}{y_n^{-x}_n} \to F'(p) \quad (=f(p)); \quad \text{similarly for G.} \end{array}$ (x_n,y_n) and suppose that $J_n \subset A$ for each n. Using the Cauchy inequality and the Darboux property of derivatives we get $(y_n - x_n)^2 = (\int_{J_n} \sqrt{fg})^2 \le$ $\int_{J_n} f \cdot \int_{J_n} g = (F(y_n) - F(x_n)) \cdot (G(y_n) - G(x_n)) \quad \text{for each } n. \quad \text{Dividing by}$ $(y_n - x_n)^2$ and passing to the limit we obtain $1 \le f(p) \cdot g(p) = C_A(p)$ so that $p \in A$. Hence: If $A \in C$, $B = R \setminus A$ and $p \in B$, then such intervals J_n do not exist. (Intuitively: There are no essential holes in B close to p.) This (and a "symmetrical" argument) shows that B is nonporous (i.e. nonporous at p for each $p \in B$). Since A is ambiguous if and only if B is, we have the following simple result: If $A \in C$, then B is ambiguous and nonporous.

It can be proved that these two properties of B imply that A ϵ C. Actually, we have a more precise statement:

Theorem 1. Let. $A \subseteq R$, $B = R \setminus A$. Then the following three conditions 1), 2) and 3) are equivalent to each other:

1) There is a natural number m and functions $f_1,...,f_m \in D$ such that $C_A = f_1 \cdots f_m$.

- 2) B is ambiguous and nonporous.
- 3) There are functions $f,g \in D$ such that f = g = 1 on A and fg = 0 on B.

Let us compare Theorem 1 with an earlier result (see [1], pp. 33-34):

Theorem 2. Let $A \subseteq R$, $B = R \setminus A$. Then the following three conditions 4), 5) and 6) are equivalent to each other:

- 4) There is a natural number $\,m\,$ and nonnegative functions $\,f_{\,1}\,,...,f_{\,m}\,\in\,D\,$ such that $\,C_{A}\,$ = $\,f_{\,1}\,$... $\,f_{\,m}\,$
 - 5) B is ambiguous and each point of B is a point of density of B.
- 6) There are functions $f,g\in D$ such that f=g=1 on A, $0\leq f<2$, $0\leq g<2$ on R and fg=0 on B.

Theorem 2 suggests that it is probably possible to improve or modify Theorem 1 in various ways. (Can we require f to be bounded [nonnegative] in 3)? Can we say more about f and g, if we drop the requirement f = g = 1 on A? I was not able to find any reasonable answers to similar questions.)

Reference

[1] Baire one, null functions, A.M. Bruckner, J. Mařík, and C.E. Weil, Contemporary Mathematics, Vol. 42, 1985, 29-41.