Jan Mařík The equation $f^2 + g^2 = h^2$, where f, g, and h are derivatives

Real Anal. Exchange 17 (1) (1991_92), 37-38

Persistent URL: http://dml.cz/dmlcz/502163

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, MI 48824.

THE Equation $f^2 + g^2 = h^2$, where f, g, and h Are Derivatives

It is easy to show that the sum of squares of two derivatives is not always the square of a derivative. (Take, e.g., $f(x) = \sin \frac{1}{x}$, $g(x) = \cos \frac{1}{x}(x \neq 0)$, f(0) = g(0) = 0.) To investigate our equation we introduce the following notation: I = [0,1]; D is the class of all derivatives on I; $C[C_{ap}]$ is the class of all continuous [approximately continuous] functions on I; bC_{ap} is the class of all bounded elements of C_{ap} ; $M = \{f \in D; fg \in D \text{ for each } g \in bC_{ap}\}$. It can be proved that $M \cap C_{ap}$ is the class of all Lebesgue functions and that each bounded derivative is in M.

It is easy to see that $\sqrt{f^2 + g^2} \in D$, if $f, g \in D$ and $g/f \in C$. This simple result leads to the question whether the relation

(1)
$$f^2 + g^2 = h^2, \ f, g, h \in D$$

implies something about g/f, if $f \neq 0$. The following theorem points in this direction:

<u>Theorem 1.</u> Let (1) hold and let

(2) $\liminf ap h(y) > 0 \ (y \to x, y \in I) \ for \ each \ x \in I.$

Then f/h, $g/h \in C_{ap}$.

(This follows from [1], Proposition 4.6 with m = 2 and $|(x, y)| = \sqrt{x^2 + y^2}$.) If, moreover, $f \neq 0$, then, clearly, $g/f \in C_{ap}$. Now it is natural to ask whether the relations $f, g \in D$ and $g/f \in C_{ap}$ imply that $\sqrt{f^2 + g^2} \in D$. The next theorem gives a negative answer to this question.

Theorem 2. Let $f \in D \setminus M$, f > 0. Let $\varepsilon \in (0,1)$. Then there is a $\beta \in C_{ap}$ such that $|\beta - 1| < \varepsilon$, $g = \beta f \in D$ and $\sqrt{f^2 + g^2} \notin D$.

We get, however, an h fulfilling (1) if we impose some restrictions on f and g; at the same time the requirement $g/f \in C_{ap}$ can be weakened, as Theorems 3 and 4 show.

<u>Theorem 3.</u> Let $f, g \in M$; let $\alpha, \beta \in C_{ap}$, $\alpha^2 + \beta^2 > 0$; let ψ be a function such that $f = \alpha \psi$, $g = \beta \psi$. Set $\gamma = \sqrt{a^2 + \beta^2}$, $h = \frac{\alpha}{\gamma}f + \frac{\beta}{\gamma}g$. Then (1) holds.

(The proof is easy.)

<u>Theorem 4.</u> Let $f \in M$, $g \in D$, $f^2 + g^2 > 0$; let $\alpha, \beta \in C_{ap}$ and let ψ be a function such that $f = \alpha \psi$, $g = \beta \psi$. Suppose that there is an $A \in (-\infty, 0)$ such that $g \ge A|f|$. Then $\sqrt{f^2 + g^2} \in D$.

Example 5.12 in [1] shows that in Theorem 1 we cannot replace the requirement (2) by h > 0. However, we have Theorem 5 that points in the same direction as Theorem 1:

Theorem 5. Let $f \in M$, f > 0 and let (1) hold. Then $g, h \in M$.

A characterization of M and the proofs of Theorems 2, 4, and 5 will be published later.

Reference

 Jan Mařík and Clifford E. Weil, Sums of powers of derivatives, Proc. Amer. Math. Soc. 112 (1991), 807-817