Mařík, Jan: Other works

Jan Mařík

The equation $f^{2}+g^{2}=h^{2}$, where f, g, and h are derivatives

Real Anal. Exchange 17 (1) (1991_92), 37-38
Persistent URL: http://dml.cz/dmlcz/502163

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

Jan Marík, Department of Mathematics, Michigan State University, East Lansing, MI 48824.

THE Equation $f^{2}+g^{2}=h^{2}$, where f, g, and h Are Derivatives

It is easy to show that the sum of squares of two derivatives is not always the square of a derivative. (Take, e.g., $f(x)=\sin \frac{1}{x}, g(x)=\cos \frac{1}{x}(x \neq 0), f(0)=$ $g(0)=0$.) To investigate our equation we introduce the following notation: $I=$ $[0,1] ; D$ is the class of all derivatives on $I ; C\left[C_{a p}\right]$ is the class of all continuous [approximately continuous] functions on $I ; b C_{a p}$ is the class of all bounded elements of $C_{a p} ; M=\left\{f \in D ; f g \in D\right.$ for each $\left.g \in b C_{a p}\right\}$. It can be proved that $M \cap C_{a p}$ is the class of all Lebesgue functions and that each bounded derivative is in M.

It is easy to see that $\sqrt{f^{2}+g^{2}} \in D$, if $f, g \in D$ and $g / f \in C$. This simple result leads to the question whether the relation

$$
\begin{equation*}
f^{2}+g^{2}=h^{2}, f, g, h \in D \tag{1}
\end{equation*}
$$

implies something about g / f, if $f \neq 0$. The following theorem points in this direction:

Theorem 1. Let (1) hold and let

$$
\begin{equation*}
\operatorname{liminfap} h(y)>0 \quad(y \rightarrow x, y \in I) \text { for each } x \in I . \tag{2}
\end{equation*}
$$

Then $f / h, g / h \in C_{a p}$.
(This follows from [1], Proposition 4.6 with $m=2$ and $|(x, y)|=\sqrt{x^{2}+y^{2}}$.) If, moreover, $f \neq 0$, then, clearly, $g / f \in C_{a p}$. Now it is natural to ask whether the relations $f, g \in D$ and $g / f \in C_{a p}$ imply that $\sqrt{f^{2}+g^{2}} \in D$. The next theorem gives a negative answer to this question.

Theorem 2. Let $f \in D \backslash M, f>0$. Let $\varepsilon \in(0,1)$. Then there is a $\beta \in C_{a p}$ such that $|\beta-1|<\varepsilon, g=\beta f \in D$ and $\sqrt{f^{2}+g^{2}} \notin D$.

We get, however, an h fulfilling (1) if we impose some restrictions on f and g; at the same time the requirement $g / f \in C_{a p}$ can be weakened, as Theorems 3 and 4 show.

Theorem 3. Let $f, g \in M$; let $\alpha, \beta \in C_{a p}, \alpha^{2}+\beta^{2}>0$; let ψ be a function such that $f=\alpha \psi, g=\beta \psi$. Set $\gamma=\sqrt{a^{2}+\beta^{2}}, h=\frac{\alpha}{\gamma} f+\frac{\beta}{\gamma} g$. Then (1) holds.
(The proof is easy.)
Theorem 4. Let $f \in M, g \in D, f^{2}+g^{2}>0$; let $\alpha, \beta \in C_{a p}$ and let ψ be a function such that $f=\alpha \psi, g=\beta \psi$. Suppose that there is an $A \in(-\infty, 0)$ such that $g \geqq A|f|$. Then $\sqrt{f^{2}+g^{2}} \in D$.

Example 5.12 in [1] shows that in Theorem 1 we cannot replace the requirement (2) by $h>0$. However, we have Theorem 5 that points in the same direction as Theorem 1:

Theorem 5. Let $f \in M, f>0$ and let (1) hold. Then $g, h \in M$.
A characterization of M and the proofs of Theorems 2,4 , and 5 will be published later.

Reference

[1] Jan Mařík and Clifford E. Weil, Sums of powers of derivatives, Proc. Amer. Math. Soc. 112 (1991), 807-817

