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SOME DIFFERENTIAL EQUATIONS WITH DELAY 

by C. C O R D U N E A N U 

During the last few years, a good deal of research activity has been concentrated 
on the investigation of a class of difference-integral operators formally given by 

oo r 

(Ax)(t) = £ Ajx(t - t,) + J B(t - s)x(s)ds, teR+. (1) 
j ••= 0 0 

The following two hypotheses are usually assumed with respect to A: 

OO 

E K I I <+«>- (2) 
1 = 0 

and 
| |R( / ) | |eL(R+ ,R) , (3) 

where ||. || denotes the euclidean norm of a (square) matrix and L stands for the space 
of Lebesgue integrable functions. It is also assumed that the operator A acts on certain 
vector-function spaces whose elements are defined on the positive half-axis R+ and 
take the values in Rn (the euclidean space of dimension n with the usual norm). 
The meaning of the symbol (AX) (l), where X denotes a square matrix of order w, 
is obvious. 

Two recent monographs contain a considerable amount of results related to the 
operators of the form (1) acting on various function spaces. The first one is a "pure 
mathematics" product (see I. C. GOCHBERG and I. A. FELDMAN [4]) while the second 
is dedicated to some applied topics and emphasizes the significance of these operators 
in the theory of feedback systems (see J. C. WILLEMS [6]). These monographs display 
consistent lists of references, though, there is no attempt to give a complete covering 
of the mathematical and engineering literature related to this subject. 

The aim of this paper is to establish some stability results concerning the differen­
tial systems of the form 

x(0 = (Ax) (t), (S0) 
or 

x(t) = (Ax)(t)+f(t), (S) 
or 

x(t) = (Ax)(t)+f(t;x), (S,) 

all of them considered on the positive half-axis R+ and under suitable initial condi­
tions. In the system (S,),/(r; x) stands for an operator acting on convenient function 
spaces :f(t; x) = (fx) (t), t e R+ . A particular case of (S,), namely 

x(t) = (Ax) (t) + bq>(a), a = <c, x>, (S2) 
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where b, ceRn and <., .> denotes the scalar product, will be also investigated in 
view to obtain a criterion of absolute stability. As usual, we shall assume that cp 
is a map of R into itself. 

A condition we shall assume throughout this paper concerns the sequence {tj; 
j = 0, 1, 2, . . .} . In order that A be a Volterra operator, or —using applied termino­
logy—a causal operator, it is necessary to assume 

0_-<W = 0,l ,2,. . . (4) 

The considerations we shall develop below are valid for both bounded or unbounded 
sequences. In other words, the infinite delays are allowed. 

The first task we undertake is to construct a fundamental matrix-solution for the 
system (S0). More precisely, we shall find a matrix-function X(t) verifying 

X(t) = (AX)(t),t>0, (5) 
and 

X(t) = 0 for t < 0, X(0 +) = /, (6) 

where / denotes the unit matrix of order n and X(0 + ) stands for the limit of X(t) 
at the right of t = 0. 

We shall construct the matrix X(t) as being the unique solution of the integral 
equation 

t 

X(t) = / + J (AX) (s) ds, t e R+ (7) 
o 

with X(t) = 0 for t < 0. 
The proof of the existence of X(t) can be obtained by the method of successive 

approximations applied to the equation (7), starting with Xo(0 defined as follows: 
X0(t) = 0 for t < 0 and X0(l) = /for t = 0. We define then 

Xfc(t) = / + J (AXfc_J (s) ds, t e R+, k = 1, (8) 
o 

with Xk(t) = 0 for t < 0. In order to be sure that (8) makes sense for all k ^ 1, it 
suffices to remark that for any continuous matrix-function X(t) and t > 0, we have 

| | („J!0(0 | |_Msup | | .¥( i i ) | | , (9) 
«_t 

with 

M = £ |K-1 |+? || 2J(s) || ds. (10) 
j = o 0 

Since (AX) (0 is measurable for any X(t) contiouous on R+ and such that X(t) = 0 
for t < 0, the inequality (9) implies (AX)(t)eLco, on any bounded interval of R+. 
Therefore, each Xk(t) is defined on R+ and is absolutely continuous on any bounded 
interval of R+ . We obtain easily from (8) and (9) 

|| Xk+1{t) - Xk{t) || _ M j (sup || Xk{u) - Xk_t {u) ||) ds, 
0 Kgs 
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which gives for t > 0 and k ^ 1 

sup 1 Xk+.(«) - Xt(w)|| ^ M J (sup || Xk(u) - Xfc_.(»)|i) dj. (11) 
U^t 0 M^S 

By standard arguments, from the inequality (11) we obtain 

s u p | | X t + 1 ( M ) - Z , ( « ) | | ^ C ( f ) i ^ - > (12) 

where C(l) = sup || Xx(u) — X0(u) || for u _ t. From the inequality (12) we see 
that {Xk(t)} converges uniformly on any bounded interval of R+ to a continuous 
matrix-function X(l). It is now a simple matter to show that X(t) satisfies (7) and 
is the unique continuous solution of this equation. Since X(l) is absolutely continuous 
on any bounded interval of R+, there results that it satisfies a.e. the equation (5). 

We shall prove now a result that we need in the sequel. It regards the integrability 
of X(t) on K+, but it can be also viewed as a result of asymptotic stability for the 
system (S0). 

First, let us associate with the operator A (see I. C. GOCHBERG and I. A. FELDMAN 

[4]) the matrix-function s/(s) defined by 
00 00 

s/(s) = £ Aj exp ( - tjs) + J B(t) exp ( - ts) ds, Re s = 0. (13) 
j = 0 0 

It appears in a natural way in connection with the Laplace transform of the function 
(Ax) (t). If we assume, for instance, that xeL(K+, Rn), then Ax is also integrable 
on R+ and simple calculations show that 

(Ax) (s) = j*(s) x(s), Res^O. (14) 

We agree to denote by x(s) the Laplace transform of the function x. 

Lemma 1. Consider the matrix function X(t) as constructed above and assume that 
conditions (2), (3) and (4) hold true. Moreover, if 

det [sI - j/(s)] ?- 0 for Re s = 0, (15) 
then 

\\X(t)\\eL(R+,R). (16) 

Proof. We shall prove first that X(l) satisfies a convenient integral equation. 
Let <P(t), t e R+, be a matrix-function of type n by n, satisfying the following condi­
tions: 1) $(t) is absolutely continuous on R+ and || <P(t) ||, || <}>(t) || eL(R+, R); 
2) <P(t) = 0 for t < 0 and <2>(0 + ) = I; 3) <P(s) is nonsingular for Re s = 0; 4) <2>(l) 
commutes with any square matrix of order n. An example of such a matrix-function 
is given by $(t) = I exp (— t) on R+ and $(t) = 0 for t < 0. If we multiply both 
sides of the equation 

oo u 

X(u) = £ AjX(u - tj) + J B(u - v) X(v) dv, u > 0, 
j = 0 0 
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by <P(t — u) and integrate with respect to u from 0 to 1, we get after performing an 
integration by parts in the first member and some elementary transformatios in the 
second one 

where 

X(t) + }K(t- u) X(u) áu = <P(f), t e R+, (17) 
o 

K(t) = *(t)-(A*)(t),teR+. (18) 

According to our conditions, we have || K(t) \\ eL(R+, R). We get further K(s) = 
= s£(s) - I - sf(s) S(s) = [sI - -«/(j)] <P(s) - / . Therefore, I + K(s) = [sI -
— «^(-0] ®(s)*S a nonsingular matrix for Re s ^ 0. This implies (see R. K. MILLER 
[5], p. 207) the relation [I + K(s)]_1 = I + Ki(s), where Kx(s) is the Laplace trans­
form of a certain matrix-function Kx(t), with || Kx(t) || eL(R+, R). Consequently, the 
solution of (17) can be expressed by means of the resolvent kernel Kx(t) in the form 

t 

X(t) = <f>(0 + J K,(t - u) 0(u) du, teR+. (19) 
o 

From (19) we obtain (16) if we take into account that both || &(t) || and || K^t) \\ 
belong to L(R+, R). 

Lemma 1 is thus proved. 

Remark 1. From (16) and (5) there results || Jf(l) || eL(R+, R), if we consider 
that || (AX)(t) || eL(R+, R). Under the additional condition that B(t) is absolutely 
continuous and || &(t) \\ e L(R+, K), we get also || X(t) || e L(R+, R). 

Remark 2. We have already mentioned that Lemma 1 can be regarded as a stabil­
ity result. Indeed, from (16) and || X(t) || eL(R+, R) one obtains || X(t) || —> 0 as 
t -> oo. This shows that the zero solution of (S0) is asymptotically stable. The precise 
meaning of this statement will become clear after investigating the initial value 
problems for the systems (S) and (Sx). 

Let us consider now the system (S), with the functional-initial conditions 

x(t) = h(t) for t<0 and x(0 + ) = x°eKM, (20) 

where h(t) is a given function with values in Rn. In the case when the sequence {tj} 
is bounded, it is enough to prescribe the values of x(t) only for t e (— T, 0>, for a 
convenient T > 0. In order to unify the discussion of the problem, we agree to 
extend h(t) at the whole negative half-axis, setting h(t) = 0 for t < —T 

The main result we have in view is to prove the variation of constant formula 
for the system (S), with the initial conditions (20). 

Lemma 2. Assume that (S) and h satisfy the following conditions: 1) the operator A 
is such that (2), (3) and (15) hold true; 2) f(t) is a continuous map from R+ into Rn; 
3) h(t) is a map from the negative half-axis R_ into R'\ such that 

h(t)eL(R„,Rn). (21) 
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Then the unique solution of the system (S), defined on R+ and satisfying the initial 
conditions (20), is given by the formula 

t 

x(t) = X(t) x° + Y(t; h) + J X(t - u)f(u) du, t e R+, (22) 
o 

where the operator Y is defined by 

00 0 

Y(t; h) = (Yh) (0 = £ J X(t - tj - u) Ajh(u) du, teR+. (23) 
1 = 0 -tj 

Proof. The existence and uniqueness follow easily by successive approximations. 
We have to find the solution in the form (22). From 

00 t 

x(t) = £ Ajx(t - tj) + J B(t - u) x(u) du + f(l), 
j=o o 

we obtain by formal application of the Laplace transform 

00 00 

sx(s) - x° = £ Aj J x(t - tj) exp ( -sO dt + B(s) x(s) + f(s). 
j=o o 

But taking into account (20) we can write 

oo oo 

J x(t — tj) exp ( -sO dl = exp (-stj) J x(0 exp [~s(t - ^)] dt = 
-tj o 

oo 00 

= exp ( — stj) J x(0 exp ( — st) dt = exp (—stj) J x(0 exp (—st) dt + 
-tj o 

0 o 

exp ( — sO J Ku) exP (—su) du = exp (—stj) x(s) + exp ( — stj) J h(u) exp (—su) du. 
-tj -tj 

We can write then 

oo oo 0 

sx(s) - x° = YJ AJ exp (-stj) x(s) + £ Aj exp (—stj) J h(u) exp (-su) du + 
1 = 0 j = 0 -tj 

+ H(s)x(s)+f(s), 
from which we get 

oo 0 

[sI - s/(s)~] x(s) = x° + £ Aj exp (-slj) J h(u) exp (-su) du + f(s). 
1 = 0 -tj 

On the other hand, (5) and (15) yield 

X(s) = [sI - jaf(s)]~\ Re s = 0. (24) 
Therefore, 

oo 0 

x(s) = X(s) x° + £ X(s) Aj exp (-stj) J h(u) exp (-su) du + X(s)f(s). (25) 
1 = 0 -tj 
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In order to obtain (22) from (25), it suffices to remark that 
o o 

X(s) Aj exp (-stj) J h(u) exp ( —su) du = J X(s) A} exp [ — s(t} + u)] h(u) du = 
-tj -tj 

0 oo 

= J ( J X(t - tj - u) exp (-st) dt) Ajh(u) du = 
-tj o 

oo 0 

= J ( J X(t - tj - u) Ajh(u) du) exp (-st) dt. 
0 -tj 

It remains now to prove that (22) defines indeed the solution of (S), with the initial 
conditions (20). 

First, it is obvious that x0(t) = X(t) x°, x° e R", represents a solution of the homo­
geneous system (S0), such that x0(t) -> x° as t -> 0 + . According to the construction 
of X(t), x0(t) corresponds to the initial function h(t) = 0 for t < 0. 

Second, the vector-function 

y{t) = (Yh) (0 = 1; J X{t - tj - u) Ajh{u)\\ du, (26) 
1 = 0 -tj 

is also a solution of the homogeneous system (S0), corresponding to the initial condi­
tions 

y(t) = h(t) for t<0, y(0+) = 0. (27) 

Indeed, the boundedness of X(t) and condition (21) allow us to write 

1 J X{t - tj - u) Ajh{u) du || ^ I A j || (sup I X{t) ||) J || h{u) || dM. 
— tj — 00 

Consequently, the series occuring in the definition of y(t) is uniformly convergent 
on R+. One can see by a similar argument that the series obtained by formal differen­
tiation from (26) is also uniform convergent. We have further 

o 
lim J X(t - tj - u) Ajh(u) du = 0, t -> 0 + , 

-tj 

due to the fact that we can interchange the order of the limit sign and of the integral 
(the dominated convergence theorem applies). We can therefore state that j(0+) = 0. 
The most relevant feature in this case consists in the fact that y(t) is integrable on R + . 
One obtains easily 

oo oo oo 0 

J || y{t) I df :£ ( £ || A j \\) (J || X{t) \\ dt) J || h{u) \\ du. 
0 1 = 0 0 - o o 

Consequently, the Laplace transform considerations concerning the way of obtaining 
y(t) are justified. 

Finally, the last term in the right member of (22) 
t 

z{t) = J X{t - u)f{u) du, t € R+ 
0 
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gives a solution of (S), with Z(0+) = 0. We agree to consider z(t) identically zero 
on the negative half-axis. 

For any t ^ u i_ 0, we have 

oo t — u 

X(t - u ) = £ ^ 0 - 0 " w) + 1 ^ ) - * ( * - « - v)dv-
j = 0 0 

Multiplying both sides by f(u) and integrating from 0 to t, we obtain 

t 00 t 

J £(t - u)f(u) du = £ Aj J X(l - l,- - u)f(u) du + 
0 j = 0 0 

t t-u 

+ J ( J B(v) X(t - u - v) dv)f(u) du. 
o o 

The term by term integration of the series is allowed because we deal with a uniform 
convergence series on any bounded interval of R+. Moreover, if we take into account 
that 

t 

jX(t - tj - u)f(u)du = 0, j = 0, 1,2, ... 
t-tj 

and change the order of integration in the double integral, we obtain 

t OO t 

J X(t - u)f(u) du = £ Ajz(t - tj) + J B(u) Z(t - u) du. 
0 j = 0 0 

On the other hand, z(t) is absolutely continuous on any bounded interval of R+. 
This easily follows from the absolute continuity of X(t). Furthermore, elementary 
considerations show that 

t 

lim z(< + u)- <f) = / ( 0 + f X(* ~ v) f(v) dv, 
u-»0+ U * J 

0 

at any t e R+ . Consequently, we can write for almost all t in R+ 

m-f(t) = ix(t-u)f(u)du. 
o 

t 

Comparing the two expressions we have obtained for J X(t — u)f(u) du, there results 
o 

00 t 

z(t) = £ Ajz(t - tj) + J B(u) z(t - u) du + f(t), 
j = 0 0 

for almost all t e R+. 
Summing up the above considerations, one obtains that x(t) — x0(t) + y(t) + 

+ z(t), as given by (22), represents the solution of the system (S) with the initial 
conditions (20). 
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Lemma 2 is thereby proved. 
We can pass now to the investigation of the nonlinear system (SJ . If we are 

interested in finding the solution of (Sj) under initial conditions (20), then the problem 
can be reduced to the following nonlinear integral system: 

t 

x(t) = X(t) x° + (Yh) (t) + J X(t - u)f(u; x) du, t e R+, (28) 
o 

The space C0 = C0(K+, Rn) will be chosen as underlying space. It consists of all 
continuous maps from R+ into Rn, such that || x(l) || approaches zero as t -» oo. 
The norm is that induced by the space C of all continuous and bounded maps from 
R+ into Rn: \x\c = sup || x(t) || for te R+. This choice is motivated by the fact 
that it appears naturally in connection with the asymptotic stability. 

The following Poincare —Liapunov type stability theorem can be easily obtained 
by means of the contraction mapping principle: 

Theorem 1. Consider the system (Sj) under the following conditions: 1) A satisfies 
(2), (3) and (15); 2) h satisfies condition (21); 3) the map x -> fx, from the ball £ = 
= {x; x e C0(K+, Rn), | x \c ^ r} into C0, is such that f(t; 0) = 0 on R+ and 

\fx-fy\cSm\x-y\c. (29) 

Then there exists in E a unique solution of (Sx), corresponding to the initial conditions 
(20), as soon as \\ x° ||, | h \L and m are sufficiently small. 

Proof. We consider the following operator from I into C0(K+, Rn)'. 
t 

(Fx) (t) = X(t) x° + (Yh) (t) + \ X(t - u)f(u; x) du, t e R+ . (30) 
o 

As pointed out in the Remark 1 to Lemma 1, we have lim || X(l) || = 0 as t -> oo. 
It has been proved in Lemma 2 that YheL(R+,Rn). Hence, (Yh)'eL(R+, Rn) 
inasmuch as Yh is also a solution of (S0). It follows then that lim || (Yh) (t) || = 0 
as t -> oo, for any initial function satisfying (21). Consequently, X(t) x° + (Yh) (t) e 
e C0(K+, Rn). Since C0 is invariant with respect to the convolution operator with 
integrable kernel (see, for instance, [2]), there results that the last term in the right 
member of (30) belongs also to C0. Therefore, Fx e C0, for any x e Z. If || x° ||, | h \L 

and m are sufficiently small, then FI c= S. Indeed, the following inequalities hold 
true: 

| |X( t)x°| | ^ ( sup | |X ( t ) | | ) | |x° | | , teR+, 
00 

I (Yh) (t) II £ ( £ || Aj |) (sup || X(t) ||) | h \L, teR+, 
j=o 

J X(t - u)f(u; x) du || ^ mr f | X(t) || dt, teR+. 
o o 
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Moreover, Pis a contraction mapping on S as soon as m(\ || X(t) || dt) < 1. We have 
o 

for x, y e E 

|| (Tx) (t) - (7» (0 1 = J || X(f - u) || || f(u; x) - f(u; j ) || du = 
o 

t oo 

^m\x-y\c\\\X(t-u)\\du^ m(\ fl X(0 || df) | x - j | c , 
0 0 

and taking the supremum in the first member we obtain 
00 

\Tx-Ty\c^m(l\\X(t)\\dt)\x-y\c. 
0 

Theorem 1 is thus proved. 

Remark. If condition 3) of Theorem 1 is replaced by the following one: the map 
x -*fx from T,± = {x; x e C(R+, Kn), | x \c = r} into C(K+, Rn) is such that 
\fx — fy \c = m\ x — y \c for any x9yel,l9 then a boundedness result can be obtained 
using the same kind of arguments. It is also necessary to assume that |f(l; 0) \c is 
sufficiently small. 

Another stability result we want to establish is concerned with systems of the form 
(S2). They arise in the study of feedback systems and the absolute stability is the 
concept we shall deal with. 

The system (S2), with the initial conditions (20), can be reduced by means of 
variation of constants formula to the nonlinear scalar equation 

t 

o(t) = <c, X(t) x°y + <c, (Yh) (0> + J <c, X(t - u) by cp(o(u)) du, (31) 
0 

whose kernel k(t) = <c, X(t) by is integrable on R+ (see Lemma 1). This feature is 
particularly adequate in view of application of frequency stability criteria (see, for 
instance, [2]). 

Theorem 2. Assume that the following conditions hold with respect to the system (S2) 
and the initial conditions (21): 1) A satisfies (2), (3) and (15); 2) h satisfies (21) and 
x° e Rn; 3) b and c are constant vectors from Rn; 4) the mapping o -» cp(o) of R into 
itself is continuous, bounded and such that ocp(o) > Ofor o ^ 0; 5) there exists q — 0, 
such that 

Re {(1 + icoq) <c, [icol - ^(ico)]_1b>} = 0, (32) 

for any real co. Then, there exists at least one solution x(t) e C0 of our problem. More­
over, any continuous (on R+) solution belongs necessarily to C0. 

Proof. We shall apply Theorem 3.2.2 in [2]. If we denote 

f(t) = <c,x(t)x°y + <c,(Yh)(t)y, 
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then (31) can be written as 

o(t) = f(t) + J k(t - u) <p(a(u)) du, t e R+. (33) 
o 

The following conditions are obviously satisfied: \f(t) ||, ||/(l) ||, || k(t) ||, || Ji(t) \\ e 
e L(R+, R). Conditions 4) and 5) of the statement are nothing else but restatements of 
the corresponding conditions of Theorem 3.2.2 in [2]. Hence, equation (33) has at 
least one solution in C0(R+, Rn), no matter how we choose heL(R_ , Rn), x° e Rn. 
We have from the variation of constants formula 

t 

x(t) = X(t) x° + (Yh) (t) + J X(t - u) b(p(o(u)) du, t e R+ , 
o 

from which we get x(t)e C0 because q>(a(t)) belongs to C0. 
The proof of Theorem 2 is now complete. 
The system (S2) constitutes only an example when the method used above is 

applicable. Related systems could be also investigated in the same manner. Let us 
remark that the particular case 

t 

(Ax) (t) = A0x(t) + J B(t - u) x(u) du (34) 
o 

has been widely discussed in [3]. 
In concluding this paper, the author wishes to express his thanks to Prof. D. F. SHEA 

for the amiability to communicate the proof of Lemma 1 in the particular case when 
the operator A is given by (34) and to DR. V. BARBU for helpful discussions. 
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