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CRITERIA FOR ALMOST PERIODICITY AND SOME 
APPLICATIONS TO DIFFERENTIAL EQUATIONS 

by V. LOVICAR 

1. Let C(Rn) denote the linear space of uniformly continuous bounded functions 
on the set R of reals with values in Rn. On the set C(Rn) we have a topology ax given 
by supremum norm, and a topology a2 given by the metric Q : 

^Hrr¥B^' 
where dn(x — y) = sup | x(t) — y(t) \ . 

For x e C(Rn) let P(x) denote the set (ptx; t e R) of translates of x(ptx(s) = x(t + s) 
for s e R). Further we set H(x) = cla2P(x). For any x e C(Rn) the set H(x) is compact 
in the topology a2. 

A function x e C(Rn) is called minimal if H(y) = H(x) for any y e H(x). For any 
x e C(Rn) there exists y e H(x) which is minimal. If x e C(Rn) is minimal, then for 
any e > 0 the set S = (t e R; g(ptx — x) :g s) is relatively dense in R (this means 
that there exists 1 > 0 such that any interval from R of the legth 1 has nonvoid 
intersection with S). 

Theorem 1. Let x e C(Rn) be minimal and let H(x) be separable in the supremum 
norm. Then x is almost periodic. 

Theorem 1 follows from the following topological theorem, which in fact is due to 
Gelfand: 

Theorem. Let X be a linear space on which the topologies a1 and a2 are defined 
such that in both of them X is a linear topological space. Let further 0 ^ M c X 
and let tj be the topology on M induced by the topology a;- on X (j = 1, 2). 

Let the following assumptions be fulfilled: 
1. There exists a countable fundamental system (Un; n e N) of (^-neighbourhoods 

of 0 G X such that clcJJn are cr2-closed; 
2. (M, T-L) is separable; 
3. (M, T2) is a compact Hausdorff space. 
Then there exists M0 <= M such that clX2M0 = M and the identical mapping 

from (M, T2) to (M, Tt) is continuous on the set M0. 
From the above theorem we also easily obtain 

Theorem 2. Let B be a semicomplete (i.e. sequentially weakly complete) Banach 
space and x a weakly almost periodic function on R with values in B. Then for any 
s > 0 there exists a relatively dense set M in R such that diam (x(M)) = sup | x(t) — 
- x(s) |B = 8. UseM 
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2. Let us consider the equation 
x' = Ax (1) 

in a Banach space B, where A is a linear operator in B. We suppose that 

1W-Л 

D(A*) = B*. 

By a solution of (1) we mean a continuous function x on R with values in 2? such 
that for any x* e D(A*) and/e CS(R) it holds 

+f((x(t), x*)f'(t) + (x(t), A*x*)f(t)) At = 0. 
— oo 

Theorem 3. Let B be a complex Banach space and let A be a linear operator in 2? 
which fulfils the assumption (2) and such that a(A) n iK does not contain any perfect 
subset. Then any bounded solution of (1) is weakly almost periodic. 

For the proof of Theorem 3 see [4]. 

Theorem 4. Let B be a semicomplete complex Banach space and let A be a linear 
operator in B, which generates bounded semigroup of operators in B and such that 
o(A) n iR does not contain any perfect subset. Then any bounded solution of (1) 
is almost periodic. 

This theorem follows from Theorems 2 and 3. 
3. As an easy consequence of the above theorem we have 

Theorem 5. Let J? be a semicomplete complex Banach space, let A be a generator 
of the bounded group of operators in B and let a(A) contain no perfect subset. 
Then the set of eigenvectors of A is total in B. 

BIBLIOGRAPHY 

[1] NAMIOKA, I.: Neighbourhoods of extreme points, Israel Journal of Mathematics, 5 (1967), 145 to 
152. 

[2] LOOMIS, L. H.: The spectral characterization of a class of almost periodic functions, Annals of 
Mathematics, Vol. 72, 1960, pp. 362-368. 

[3] ZIKOV, V. V.: Pocti — periodiceskie resenija differencialnykh uravnenij v Banakhovomprostranstve; 
Teorija funkcij, Funkcionamyj analiz i ikh prilozenija, vypusk 4, 1967, str. 176—188. 

[4] LoVICAR, V.: Weakly almost periodic solutions of linear equations in Banach spaces, to appear 
in Czech. Mat. J. 

Author's address: 

Vladimir Lovicar 
Mathematical Institute, Czechoslovak Academy of Sciences 

Zitnd 25, Praha 1 
Czechoslovakia 

188 


		webmaster@dml.cz
	2012-09-12T21:02:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




