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Mathematical Publications 

HETEROCLINIC CYCLES IN ECOLOGICAL 
DIFFERENTIAL EQUATIONS 

JOSEF HOFBAUER 

ABSTRACT. Differential equations on Rn that leave certain hyperplanes invari­
ant, arise as models in mathematical biology and in systems with symmetry. In 
such systems heteroclinic cycles occur in a robust way. We survey examples from 
the literature and propose a classification into "planar", simple, and multiple het­
eroclinic cycles (or heteroclinic networks). We associate a characteristic matrix 
to such objects, consisting of certain eigenvalues at the fixed points, and show 
how to read off stability properties from this matrix. Instead of Poincare sections 
we use average Lyapunov functions to obtain stability results. 

1. Motivation 

In mathematical biology ODE models often take one of the following forms. 
Ecological differential equations 

Xi -= XiJi\X\, . . . , Xn) , I = 1, . . . , 72 , (1J 

are defined on the nonnegative orthant R™ . Such equations are used to model 
ecological interactions of species. The Xi are interpreted as densities of species. 
The most prominent and important special case are the Lotka-Volterra equations 

ii = Xi(ri + (Ax);) . (1') 

If the independent variables Xi are frequencies or there is a conservation of total 
mass, (1) is replaced by the replicator equation 

n 

ii = Xi(fi(x) - / ( x ) ) , i = 1 , . . . , n , f(x) = ^Xifiix). (2) 
i = i 

Its state space is the simplex Sn = {x G W1: Xi > 0, Ylxi = * } • Ag a- n 

a much studied particular case of (2) is the replicator equation with linear fi 
which models the evolution of gene frequencies and game dynamics (see [HS]): 

ii = Xi [(Ax)^ - x • Ax]. (2') 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 34C37, 92D25. 
K e y w o r d s : heteroclinic cycle, stability, symmetry, replicator-equation, permanence and 

repelling set. 
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There are analogues of (2) and (2') where the state space is a product of 
simplices, e.g., for the dynamics of bimatrix games (see [HS]). 

Mathematically, these classes of ODEs are characterized by the invariance of 
the boundary faces of the state space. 

It should be noted that some of these equations occur also in other settings 
outside biomathematics. In particular, the Lotka-Volterra equation is quite ubiq­
uitous (see, e.g., [PM]). It occurs as truncated normal form of the codimension 
n bifurcation with n pairs of purely imaginary eigenvalues. Generally, equations 
on R n which have a reflectional 1% symmetry must leave the coordinate planes 
invariant and hence take the form (1). 

XI X2 -cз 
F1 0 + -
F2 - 0 + 
FЗ + - 0 

FIGURE 1. The May-Leonard system. The rock-scissors-paper game. The characteristic matrix. 

Therefore, it is desirable to discuss the generic behaviour of such systems. 
One type of behaviour which is not possible in general dynamical systems is 
the occurrence of robust (-= structurally stable within this class) attracting 
heteroclinic cycles on the boundary of the state space. The first example was 
given by M a y and L e o n a r d [ML] and studied further by [C], [CPC], [SI], 
[HS]. It consists of three competing species, where 1 beats 2, 2 beats 3, 3 beats 
1 (in the simplest case with LV dynamics and with cyclic symmetry). There is 
a robust heteroclinic cycle connecting the three one-species fixed points F\ —> 
P2 — • Fs — • F\ (see Fig. la) . Whether this cycle is attracting or repelling, 
depends on the eigenvalues at the fixed points, see section 4. The same example, 
now in the setting of systems with symmetry, was presented again in [GHj. An 
equivalent dynamics occurs in the so-called "rock-scissors-paper" game (see [Z, 
p. 482, 490] or [HS, p. 130]), a replicator equation (2') on the triangle S3 (see 
fig. lb) . Analogous cycles in higher dimensions were considered in [K2], [K3], 
[HS2], . . . 

A biologically plausible example of a heteroclinic cycle was given by K i r 1 i n -
g e r [Kl]. This is a two-prey two-predator system with Lotka-Volterra dynam­
ics. The two prey species x\ and X2 live in severe competition, i.e., the dy­
namics of the X1-X2 plane is bistable: There are two stable one-species fixed 
points Pi and F2. At F\ predator y\, which is specialized on prey 1, is able 
to invade, leading to a coexistence equilibrium F\. At this equilibrium, the 
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number x\ of prey 1 is reduced due to predation so much, that it will be out-
competed by prey 2. There is a heteroclinic orbit in the xi-xo-yi subsystem 
which connects i^1 to F2. Assuming some symmetry between 1 and 2, there 
is a heteroclinic cycle on the boundary of R+ connecting the four equilibria 
Fi —• Fl —• F2 —• F% —• F\ (see Fig. 2). Similar cycles were considered in 
[K3], [HS2], [MR], [SR]. 

Xi X2 2/1 2/2 

Fx 0 - + -
F\ 0 + 0 -
ғ2 

- 0 _ + 
ғì + 0 - 0 

FIGURE 2. Kirlinger's heteroclinic cycle and its characteristic matrix. 

2. The characteristic matrix of a heteroclinic cycle 

Suppose the state space of our dynamical system is a polyhedron X in some 
M.N , defined as the intersection of finitely many halfspaces {x £ RN : Xj > 0 } , 
j = l , . . . n . Here Xj denotes a linear functional on HlN which vanishes on 
one of the supporting hyperplanes of X. Let dX = [J{XJ = 0} fl X denote 

3 

the boundary of X, and int X = X\dX the interior of the polyhedron. More 
generally X could be a manifold with corners. 

If dX is invariant under the smooth flow then we can write our differential 
equation in the form 

x3 =xjfj(x)> 3 = l , . . . , n , (3) 

(there will be some relations between the fj if n > N). We can always assume 
that n> N and that a point x G X is uniquely determined by its "coordinates" 
Xj,j = 1 , . . . , n. If not, we simply add some additional variables to achieve that. 

Consider a fixed point x of (3), and rearrange indices such that the zero 

coordinates come first. Then the Jacobian at x takes the form ( J, where 

E is a diagonal matrix whose entries are the external eigenvalues jf |s = fj(x) -
They describe the motion transverse to the hyperplane j . 

Now let F C dX be a heteroclinic cycle which consists of m fixed points 
Fk and heteroclinic orbits between them. Then we associate to T a rectangular 
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scheme of external eigenvalues: The entry in row k and column j is the external 
eigenvalue fj(Fk)- (It is 0 if Xj > 0 at F&.) We call this scheme the character­
istic matrix C of V. E.g., in Fig. 1, at F i , there are two external eigenvalues, 
f2(F\) > 0 and fz(Fi) < 0. Since fi(Fi) = 0, these three numbers give the 
first row of the characteristic matrix in Figure lc. 

It seems that this matrix C contains the essential information about T. In 
particular the stability properties of F can be read off from C in all known 
cases, as shown in section 4. Apriori C is an m x n matrix (m = the number 
of fixed points, n = the number of boundary hyperplanes of the polyhedron 
X), but we can omit columns of zeroes, thus ignoring those hyperplanes which 
do not touch V. Each row of C contains at least one positive entry (under the 
generic assumption that the fixed points Fk are hyperbolic). 

Classification of heteroc l inic cyc les. If each row and each column of C 
contains only one positive entry then we call T a simple heteroclinic cycle. Note 
that there are heteroclinic cycles where each row contains only one positive 
entry (one unstable transverse direction at each Fk), but m > n (e. g. on the 
cube (m = 8, n = 6) or on any polyhedron with more corners than faces) so 
that there are several positive entries in one column. We do not consider such 
heteroclinic cycles here, since we don't have general stability results for them. 

If furthermore there is only one negative entry in each row and column (so 
that there are just two external directions at each Fk, one stable and one un­
stable) then we speak of a "planar" heteroclinic cycle. We will see below (Corol­
lary 2) that they behave like heteroclinic cycles in the plane. 

If some row of C contains at least two positive entries (so at least one Fk 
has an unstable manifold of dimension > 2) then T is a multiple heteroclinic 
cycle or a heteroclinic network. 

Since the numbering of the hyperplanes (or columns) and of the fixed points 
Fk (or rows of C) is arbitrary, the characteristic matrix is determined only up 
to permutations of rows and columns. Our stability criteria (Thm. 1 and 2) will 
therefore be independent against such permutations. 

EXAMPLES. 1) The May-Leonard cycle is "planar". Its characteristic matrix 
is given in Figure lc. 

2) Kirlinger's cycle is not "planar" but still simple. See Figure 2c for its 
characteristic matrix. 

3) The simplest robust heteroclinic cycle is probably the one shown in Fig­
ure 3. Two coordinate planes in R3 are supposed to be invariant, they contain 
the two connecting orbits. The two fixed points lie in the invariant line of inter­
section and are stable inthere. This is again a "planar" heteroclinic cycle. The 
third column in the characteristic matrix will be omitted before applying the 
stability criteria of section 4. 

4) Heteroclinic cycles in the plane. X is essentially an n-gon in this case. 
The characteristic matrix can be arranged such that it contains the positive 
eigenvalues A*, in the main diagonal and the negative eigenvalues — //& right next 
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x2 

ғ2 

X\ X2 X3 

+ 

ï l 

FIGURE 3. The simplest robust heteroclinic cycle in R̂_ . 

to it. Robust examples from biology are the rock-scissors-paper game (Figure lb) 
and the "battle of the sexes" on the square [0, l ] 2 (see [HS]). 

5) Heteroclinic cycles on the simplex. Let A be an n x n matrix with an = 0. 
If aij and aji have different sign for sufficiently many pairs (i,J), then A will be 
the characteristic matrix of a heteroclinic cycle or network on Sn. The simplest 
dynamics (a "normal form" for the heteroclinic cycle?) is given by the replicator 
equation (2'). The cycle is simple if a^+i > 0 and all other entries are < 0. This 
case was studied in [AH], [H2], [HS], etc. The classical "hypercycle" equation 
from prebiotic evolution [S2, HI, HS] is the prototype special or limiting case, 
for which the method of proof indicated in section 5 was originally developed. 
Networks were recently treated in [Br] and [KS]. 

FIGURE 4. Heteroclinic cycles and networks on the simplex 

6) In the same way as the rock-scissors-paper game and the May-Leonard 
example (Figure 1) are essentially equivalent, all the above examples on the 
simplex Sn can be imbedded to heteroclinic cycles or networks in equations 
(1) or (1') on RJJ.. Thereby the n corners of the simplex are replaced by fixed 
points on the n coordinate axes. The dynamics on R+ could be chosen to be 
competitive in the sense of Hirsch. 

7) Heteroclinic cycles on a cube and other polyhedra occur naturally in the 

109 



JOSEF HOFBAUER 

dynamics of n person games, whenever there is a cycle of best responses, see 
[GaH]. 

8) Another example can be found in [SR], again a two-prey two-predator 
system as in Ex. 2: It is a simple heteroclinic cycle of length three: F\ — • F-1 —> 
F\2 —> F\. The last connection is not in the X\-X2 plane (the boundary face 
spanned by F12 and Pi), but in the X\-X2~y2 subsystem. Therefore y2 > 0 
along this connection, but not at any of the equilibria, so that j/2 = 0 on the 
average along this cycle. Note also that the first column of C is zero (and hence 
can be ignored), since x\ > 0 along the cycle. (See Figure 5). 

xг x2 Уl 2/2 

FІ 0 — -f- — 

ғł 0 + 0 -
P12 0 0 - + 

FIGURE 5. The heteroclinic cycle of S i k d e r and R o y 

There are also heteroclinic cycles whose minimal center of attraction consists 
of more complicated invariant sets than fixed points. See [S3] for a first example 
(of "planar" type), where one of the fixed points is replaced by a periodic orbit. 
In Kirlinger's two-prey two-predator systems it is easy to imagine the fixed 
points Fl being replaced by predator-prey limit cycles (if the restrictive class of 
Lotka-Volterra dynamics is left). For examples in the context of symmetry see 
[MCG]. 

9) A May-Leonard like system in SR+ with three limit cycles in the XiX± 
planes (i = 1,2,3). Such a "planar" heteroclinic cycle would still be robust 
even if one of the three limit cycles is internally unstable, since there may be 
transverse intersections of their stable and unstable manifolds. 

Our approach applies also to such heteroclinic cycles, as long as the compo­
nents Afc of the minimal center of attraction are uniquely ergodic invariant sets. 
The entries of the characteristic matrix are then given as the external Lyapunov 
exponents 

T 

\i(Ak) = J i m 1 J fi(x(t))dt = J fi(x) dfik(x) (4) 

0 Afc 

with respect to the unique invariant measure nk on the invariant set Ak. 

110 



HETEROCLINIC CYCLES IN ECOLOGICAL DIFFERENTIAL EQUATIONS 

3. Permanence and repelling sets 

In all these examples it is of interest to know the stability properties of 
this heteroclinic cycle. In particular, one would like to know whether F does 
attract interior orbits or repels them all. This is closely related to the question 
of persistence or permanence of ecological systems ([HS], [HuS]). A system (1), 
(2) or (3) is called permanent if the boundary of the state space X is a repeller 
in the sense that there is a 6 > 0 such that liminf Xi(t) > 6 > 0 holds for each 

t-H•CO 

solution x(t) > 0 of (1), (2) or (3). If X is unbounded (e.g. K" ) we also assume 
that the (semi)flow is dissipative. 

We call a compact invariant subset A of dX repelling (a better terminology 
might be: dX is repelling near A), whenever both of the following two conditions 
are satisfied: 

(i) there is no x G i n t X with u(x) C A, and 
(ii) there is a neighbourhood U of A in X such that for each x G U\dX 

3t G K: x(t) £ U. (dX is isolated near A.) 

The following characterization of permanence follows from classical stability 
results in [BS]. 

A system on X is permanent iff dX is repelling in the above sense. 

This can be sharpened to (see [G, H3]): 

A system on X is permanent iff every chain-recurrent invariant subset 
A C dX is repelling in the above sense. 

Heteroclinic cycles are such chain-recurrent subsets and it is therefore of 
importance to characterize when they are repelling. 

4. Stability conditions for heteroclinic cycles 

Let A C dX be a compact invariant subset of the boundary and Afc C A 
(k = 1 , . . . , ra ) be such that for each x G A there is a A: with u?(x) C A&. We 
assume further that each set A& is a compact invariant, uniquely ergodic subset 
of a single boundary face. Then the external eigenvalues are uniquely defined 
at Afc by (4) and can be arranged in the characteristic matrix C of the set A. 
We omit those columns which consist of zero entries only, thus ignoring those 
hyperplanes which do not touch A, as in Examples 3 and 8. We need not assume 
for the following that A is a heteroclinic cycle or network in the sense that each 
Afc can be reached by a sequence of heteroclinic connections from any other A;. 

THEOREM 1. a) If there is a vector p G Rn such that p > 0 and Cp > 0 
then A is repelling. 

b) If A is asymptotically stable within dX and there is a p < 0 such that 
Cp > 0 then A is asymptotically stable in X. 

I l l 



JOSEF HOFBAUER 

c) If A is asymptotically stable within dX and there is a p G Rn such that 
Pi < 0 for at least one i and Cp > 0 then A attracts at least one (actually an 
open set of) interior orbit(s) from X. 

The proof is deferred to Section 5. A consequence is 

THEOREM 2. Let A be asymptotically stable within dX; m = n1 (= number 
of nonzero columns) so that the (reduced) characteristic matrix C is a square 
matrix, and let de tC 7-= 0. Then A is repelling iff C - 1 > 0, i.e., the inverse of 
C has only nonnegative entries. 

P r o o f . If A is repelling then case c) of Theorem 1 must not apply and 
hence for any positive vector q > 0 in W1, we must have p = C _ 1 q > 0. This 
implies C""1 > 0. The converse follows immediately from case a). • 

Matrices C satisfying condition a) of Thm. 1 are called semipositive. The 
step from Theorem 1 to Theorem 2 is closely related to a result of [FP] on 
irreducibly semipositive matrices. The case where C is not square (nr ^ m) 
is largely unresolved. Thm. 1 gives only a partial result in this case. Also the 
stability assumption within the boundary should be relaxed. Sometimes it can 
be replaced by assuming A to have nontrivial index within dX, as in [CG]. 

Note that this property of C is invariant under interchanges of rows or 
columns of the characteristic matrix C. If one entry of C " 1 is negative then 
some interior orbit will converge to (some subset of) A. If A is a heteroclinic 
network, a more detailed analysis is necessary to decide which parts of it can 
attract interior orbits. See [Br] for some interesting results in this direction: He 
identifies (for a 4 x 4 matrix C) those 3 x 3 minors which determine the stability 
of the cycles of length 3. 

For simple heteroclinic cycles the situation is considerably simpler because 
case c) can be ignored: We can apply the theory of M-matrices to solve the 
arising linear inequalities. 

COROLLARY 1. Let A be a simple heteroclinic cycle, which is asymptotically 
stable within dX. (This is automatically satisfied if the cycle is robust and all 
Afc are fixed points.) Then C is a square matrix (after elimination of superflu­
ous columns) with positive entries occurring only in the main diagonal (after a 
suitable rearrangement of the rows or columns). Let det C ^ 0. 

If C is an M-matrix (all leading principal minors of C are positive) then A 
is repelling. 

If C is not an M-matrix (at least one leading principal minor is negative) 
then A is asymptotically stable. 

COROLLARY 2. Let A be a "planar" heteroclinic cycle, which is asymptoti­
cally stable within dX. Let Xk > 0 and — //& < 0 be the two external eigen­
values at Ak • If n ^k > E[ Mk then A is repelling. If J ] Afc < J | Mfc then A is 
asymptotically stable. 

Corollary 2 was known for heteroclinic cycles in the plane (Ex. 4) to Dulac, 
and rediscovered by [R], [HI], and others. It applies to our Examples 1, 3 and 

112 



HETEROCLINIC CYCLES IN ECOLOGICAL DIFFERENTIAL EQUATIONS 

9. Corollary 1 covers most of the examples of robust heteroclinic cycles, forced 
by invariance of hyperplanes, considered in the literature so far. In particular it 
applies to Examples 1-4, 7-9 above. The essential special case of Example 5 was 
treated in [AH, Thm. 5] and [HS, ch. 20.5], The stability of simple heteroclinic 
cycles was analyzed again with Poincare sections in [H2], [HS, ch. 29.3], [FS], 
[KM, Thm. 7.1]. For the behaviour of time-averages near (planar and simple) 
attracting heteroclinic cycles see [A], [Gau], [GaH] and [T], 

The method of Poincare sections is more involved (if done rigorously). First 
it requires the existence of a smooth linearization near the fixed points in order 
to compute the Poincare map. This point was ignored in most of the above 
papers. According to Sternberg, smooth linearizations exist if sufficiently many 
non-resonance conditions are satisfied. However, the existence of n invariant 
hyperplanes near a hyperbolic fixed point in Wl already implies the existence of 
a C1-linearization, even if there are resonances between the n real eigenvalues. 
This follows from the work of [Be] and [Sa]. 

Also the conditions obtained by Poincare maps are far less explicit (in higher 
dimensions at least, in terms of a spectral radius) and it is not obvious how to 
derive our explicit characterization on C from them. Moreover Poincare sections 
would be more difficult to apply if the A^ are not fixed points but more com­
plicated invariant sets. In this respect our method seems superior. On the other 
hand, the Poincare map contains more information on the dynamics and one 
can treat also the induced bifurcations. 

5. Appendix: Proof of Theorem 1 

Part a) is essentially contained (although not explicitly stated in this form) in 
[HI], [Hu], [H3]. The basic idea is to use P(x) = Y[x1k a s a n avera9e Ljapunov 
function: The assumption Cp > 0 means that P increases most of the time 
along orbits as long as they are close to A. Hence they finally have to move 
away from A. 

Part b) generalizes Thm. 3 in [AH]. The idea to consider p E Rn with both 
positive and negative entries as in case c) was first exploited by [J]. 

For the proof of b) and c) let P(x) = Y[ xiPi • Let I = {i : pi < 0} and 
X0 = {x G X : Xi = 0 for some i G / } be the part of dX where P vanishes. 

P x-
Now -— = — ^2 Pj ~ extends continuously to dX and takes the (average) value 

* 3 X3 
— ]C-Pj-\?(Ak) = —(Cp)k < 0 at the fixed point (resp. along the uniquely ergodic 

3 

set) Afc. Intuitively this means that P decreases exponentially (in the average) 
near A and we expect that orbits close to A will converge to X0. More precisely, 
with An = A D X0 we have the following 
LEMMA. Suppose there is a p G Kn such that Pi < 0 for at least one i and 
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Cp > 0 and that Ao is asymptotically stable within Xo . Then all orbits starting 
in a set {x G int X : P(x) < 8} and close enough to AQ will converge to AQ . 

If all pi < 0 then XQ = dX and the Lemma implies that A is asymptotically 
stable in X. This shows part b) of Theorem 1. If p has positive and negative 
components then the Lemma isolates a partially attracting part Ao of A. (It 
is easy to see that AQ 7-= 0.) The situation in the Lemma and its proof can be 
illustrated by the behaviour of the planar system in Fig. 6 which has an elliptic 
sector at 0: XQ corresponds to the x-axis, A to the y-axis, Ao to the origin, 
and the assumptions on C are replaced by the fact that P = y/x decreases 
in the positive quadrant. It may be interesting to remark that the return map 
near a heteroclinic network may have such elliptic sectors for an open set in 
parameter space, see [Br]. 

x = x(—x -Һ 2y) 
ý = y(-2x + y) 

FIGURE 6. An elliptic sector 

P r o o f . Since Ao is asymptotically stable within the invariant subset Xo 
one can find a neighbourhood U C Xo of Ao in Xo which is forward invariant 
and its smooth boundary is transverse to the vector field in Xo. (If Ao = Xo, 
then we set U = Xo.) For small enough e, the cylinder U£ = | J {x G X: 0 < 

iei 
Xi < e and 7Ti(x) G U} (where 7^ is a suitable projection onto the face {xi = 
0}), with base set U and height e, is then still forward invariant along its side 
surface (but not necessarily at its top). Let U* = U£ n {x G X : P(x) < 8}, with 
8 so small that min{xi : i G / } < e holds for all x with P(x) < 8. As in [HI] 
or [Hu] we can find constants T > 1, k < 1 and K > 0 such that for all x G X 
close to A there is a time T with 1 < T < T such that P(x(T)) < kP(x) 

and P(x(t)) < KP(x) for all 0 < t < T. So for x G U6JK and 0 < t < T , 

x(t) G J7g while x(T) G U£ . Iterating this argument we see that the forward 
orbit of x cannot leave U^ and P(x(t)) will converge exponentially to 0, as 
t — • 00. Hence UJ(X) C Ao (the maximal compact invariant subset of U^) and 
Ao is stable for the semiflow restricted to Ue . • 

An alternative way to prove the Lemma is to apply the approach of [G, H3] 
for backward time and show that there is no negative orbit in the set U^. 
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