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ORDINARY LINEAR DIFFERENTIAL
EQUATIONS — A SURVEY OF THE GLOBAL
THEORY

F. NEUMAN
Mathematical Institute of the Czechoslovak Academy of Sciences, branch Brno
Mendlovo nam. 1, 603 00 Brno, Czechoslovakia

I. History

Investigations of linear differential equations from the point
of their transformations, canonical forms and invariants started in
the last centurv. In 1834 E.E. Kummer [ 6] studied transformations of
the second order equations in the form involving a change of the
independent variable and multiplication of the dependent variable.
Till the end of the last century several mathematicians dealt also
with higher order equations. Let us mention at least E. Laguerre,
A.R. Forsvth, F.Brioschi, G.H.Halphen from many others. Perhaps the
most known result from this period is the so called Laguerre-Forsyth
canonical form of linear differential equations characterized by the
vanishing of the coefficients of the (n - 1)st and (n - 2)nd
derivatives.

However as late as in 1892 p, Stackel (and one vear later
independently S.Lie) proved that the form of transformation conside-
red by Kummer (as well as all his successors) is the most general
pointwise transformation that converts solutions of any linear homo-
geneous differential equation of the order greater than one into
solutions of an equation of the same kind. In fact, only this result
justified backwards the whole previous investigations.

Already in 1910 G.D. Birkhoff [1] pointed out that the investig-
ations, considered in the real domain, were of local character. He
presented an example of the third order linear differential equation
that cannot be transformed into any equation of the Laguerre-Forsyth
canonical form on its whole interval of definition.

The local nature of methods and results is not suitable for
dealing with problems of global character, as boundedness, periodicity,
asymptotic or oscillatorv behavior and other properties of solutions
that necessarily involve investigations on the whole intervals of
definition.

Only to demonstrate that even in the middle of this century there
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were just isolated results of a global character and no systematic
theory, let me mention G. Sansone’s example of the third order linear
differential equation with all oscillatory solutions. This result
occured as late as in 1948 in spite of the fact that the question
about the existence or norexistence of such an equation is as old as
the problem of factorization of linear differential operators.

It is now some 35 vears ago that O. Borlvka started the systema-
tic study of global properties of the second order linear differential
equations. He deeply developed his theorv and summarized his original
methods and results in his monograph [ 3] that appeared in 1967 in Ber-
lin and in an extension version in 1971 in London.

For linear differential equations of the second and higher orders
there have occurred results of a global character in papers of several
mathematicians. Let me mention at least N.V.Azbelev, J.H.Barrett,

E. Barvinek, L.M.Berkovi&, T.A.Burton, Z.B.Caljuk, T.A.Chanturija, W.A.
Coppel, W.N.Everitt, M.Gregu$, H.Guggenheimer, G.B.Gustafson, M.Hanan,
Z.Husty, I.P.Kiguradze, V.A. Kondratjev, M.K. Kwong, M.Laitoch, A.C.
Lazer, A.Ju.Levin, W.T.Patula, M.R4db, G.Sansone, S.Stanék, J.Suchomel,
C.A.Swanson, V.8eda, M.8vec, M.zldmal from several others. However,
there was still no unified and systematic theorv of global properties
of linear differential equations of an arbitrary order enabling us to
fortell what can and what cannot happen in global behavior of solu-
tions.

In the last 15 years we discovered enough general approach and
methods, we introduced new useful notions and derived results giving
answers to substantial questions and solving basic problems in the
area of global properties of linear differential equations of an
arbitrary order. O.Boridvka’s methods and results for the second order
equations were at the beginning of our approach to equations of
arbitrary orders and they still play an important role in the whole
theory. We cannot see the possibility how to handle the general situ-
ation without having had his results at our disposal.

Algebraic, topological, analytical and geometrical tools together
with methods of the theory of dynamical systems and functional equ-
ations make it possible to deal with problems concerning global pro-
perties of solutions by contrast to the previous local investigations
or isolated results. Theorv of categories, Brandt and Ehresmann grou-
poids, Cartan’s moving-frame-of-reference method among other differen-
tial geometry methods, and functional equations are some of the means

used in our approach.



61

The theory in question includes also effective methods for sol-
ving several special problems, e.g. concerning the global equivalence
of two given equations, or from the area of questions on distribution

of zeros of solutions, disconjugacy, oscillatory behavior, etc.

II. Global Transformations

For n 2 2, let Pn(y,x;I) denote a linear homogeneous ordinary

linear differential equation

(n) (n-1)

y + P (X)y +oo.t po(x) =0,

where Py € CO(I), i=20,1,...,n - 1, are real continuous functions

defined on an open interval I of reals. Similarly, Qn(z,t;J) denotes

(n) (n-1)

z +q,_,(t)z toeut q(£) =0, q; € c®w ,

i =0,1,...,n -1, J CR being an open interval.
We say that Pn(y,x;I) is globally transformable into Qn(z,t;J) if
there exist
a function f € Cn(J), f(t) # 0 on J, and
a Cn—diffeomorphism h of J into I,
such that
z(t) = £(t) . y(h(t)), t €J
is a solution of Qn(z,t;J) whenever y is a solution of Pn(y,x;I).

This definition complies with the most general form of a pointwise
transformation derived by Stdckel. The bijectivity of h guarantees the
transformation of solutions on their whole intervals of definition,
i.e. the globality of the transformation. Let me remark also, thét
recently M.ladek derived Stdckel’s result without any differentiability
assumption, [4].

It appears to be convenient to write the global transformation in
the following form. Let y = (yl,...,yn)T be the vector column function
whose coordinates‘!yi are linearly independent solutions of the equation
Pn(y,x;I) for i = 1,...,n. Let us call the y a fundamental solution of
Pn(y,x;I). Similarly, let z denote a fundamental solution of the
equation Qn(z,t;J). Then there exists a nonsingular n by n constant
matrix C such that
(a) z(t) = C.f(t).y(h(t)), t€J.

The global transformation expressed explicitely by this formula will be
denoted by o = (Cf,h) , and we shall write
Pn(y,x;I)a = Qn(z,t;J) ,

or shortly



Pa = Q .

The relation of global transformability is an equdivafence
nelation., Hence the set A of all linear homogeneous differential
equations of all orders greater than and equal to two, is decomposed
into the classes of globally equivalent equations.

Let B be one of the classes of the equivalence. For each three
equations P, Q and T of the class B there exist global tranformations
a and B such that

Pao = Q and QB =T

If we define a composition aB of the tranformations o and B by

(Pa)B = P(aB) = T ,
we introduce a cer%ain algebraic structure into each class B of
globally equivalent equations. This algebraic structure considered on
the whole set Ais a special categoiy, called the Ehresmann groupoid.
Linear differential equations are objects and global transformations
are morphisms of the category. The same algebraic structure restricted
to any class B of globally equivalent equations is a special Ehresmann
groupoid, called the Brandt groupodd.

The basic (and in fact, the only) structural notion of a Brandt
groupoid is the so called stationary group of any of its objects. In
our case of differential equations, the stationary group G(P) of an
equation P is formed by all global transformations that transform the
equation P into itself, i.e.

G(P) = {a; Pa = P} .

It can be shown that the stationary groups of any two equations

P and Q from the same equivalent class B are conjugate:

if Pa = Q then G(P) = aG(Q)a"1 .

Having a special (canonical) object (equation) Sp in the class B
of equivalent equations, all global transformations transforming P into
Q are described by the formula

S .

..1 _ -
Y G(SB)6, where P = Spy and Q = SB

We could observe that in each area of mathematics where a struc-
ture of an Ehresmann groupoid occurs as it is also in our case, the
following basic problems have to be solved in order to describe the
structure of sets of objects and transformations in this area, and in
this manner, to form a foundation of the corresponding theory:

1. Find sufficient and/or necessary conditions (if even effective,
the better) under which two given objects, two given equations are
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equivalent, i.e. cadtendion of global equivalence,

2, Characterize all possible stationary groups according to the
classes of equivalence.

3. Find, construct canonical objects, equations in each class of
equivalent equations.,

In what follows we shall answer the mentioned questions for
linear differential equations of arbitrary orders.

First, let us introduce also a geometrical nepresentation of our
global transformations very useful in the sequel when different
geometrical approaches are applied.

Again, let an equation P be represented by its (arbitrary, but
fixed) fundamental solution y, considered now as a curve in n-dimen-
sional vector space Vir the independent variable x ranging through the
interval I and being the parameter of the curve. Due to the form (a)
of a global transformation,

the change x = h(t) is only a reparametrization,

the factor f£(t) selects only another curve but on the same
cone K formed by straight lines going through the origin ¢ € Vn and
all points of the original curve y,

the matrix C performs a centroaffine mapping.

We may conclude that each fundamental solution, or curve z of any
equation Q globally equivalent to the equation P is a section of a
cone in n-dimensional vector space obtained as a centroaffine image of
a fixed cone determined by a fixed curve y.

Now, let us come to answer the above mentioned basic questions.

III. Global Equivalence

A sufficient and necessary condition for global equivalence of
the second order linear differential equations was found by 0. Borlv-
ka [3] in the sixties. First, some definitions:

The maximal number of zeros of nontrivial solutions of an equa-
tion of the second order P, gives the fype of the equation: either
g§inite, an integer m, or Linfinite. Moreover, the equation P, being of
finite type m is called of general kind, if it admits two linearly in-
dependent solutions with m - 1 zeros, everything considered on the who-
le interval of definition. Otherwise, P,y being of finite type m is
called of special kind. If the equation P, is of infinite type then
its kind is either one-side oscillatory or both-side oscillatonrny.

Now Bordvka's criterion reads as follows:

Two second onden Linearn differential equations are globally
equivalent if and only if they are of the same type and at the same
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time of the same hkind.
Our criterion of global equivalence of equations of higher
orders needs the following notion, Let
(p) u'’ + p(x)u = 0
be an equation of the second order whose coefficient p belongs to the

-2
class ¢"7°(I), and let u, and u, denote two of its independent solu-
tions. Define n functions

Y, i® uT_l, v, = u?—z.uz,..., Y, T ug_l

These functions are of the class C™(I) and they are linearly indepen-
dent. Hence they can be considered as solutions of the uniquely de-
termined n-th order linear differential equation, called the {teratdive
equation iterated from the equation (p). We denote the iterative
equation by p[nl(y,x;I), or simply by p[n]. The differential expres-
sion of the iterative equation normalized by the unit leading coeffi-

cient will be denoted as Iplnll. It can be shown (e.g. [5]) that

[n] (n-2) n+1

(), (a4t 4 )P’ (y

' )p(x)y (n—3)+

lpr 1=y + 2(

ee e o

In order to find whether two given linear differential equations
of the n-th order, Pn(y,x;I) and Qn(z,t;J) with sufficiently smooth

coefficients are globally equivalent, we rewrite them in the form

P (y,x;I) = Ip[nll + rn_3(x)y(n—3) + rn_4(x)y(n_4)+... =0

and

0 (z,t;3) = ™y s sn_3(t>z(“'3) + sn_4(t)z(n_4)+... =0,
where the first three coefficients of P_ and Q_ coincide with the
coefficients of the iterative expressions lp[n | and lq[n]l, respec#*
tively. I§ the equation Pn {8 globally trhansformable into the equaticn
Qn by means of a global transformation with the change x = h(t), then

A, the second ordern equation u’’ + plxju = 0 on I {8 globally
trhans formable into v’’ + q(t)v = 0 on J with the same change x = h(z%)
0f the independent variable,

B, the fofLowing relations are satisfied

r _s(eDn ) = s (0 on I

r (h(eNHnh )
n-4

|
0

(t) on J where s (t) =0,
n-3

1
0
~
t
~

r . (h(£))h’>(t) on J where s _(t) = s (t) =0,
n-5 n-3 n-4

ete.

Due to condition B the criterion is {n general effective, that



means, that it is expressible in terms of quadratures of coefficients

of given equations. Let us recall that for the second order equations
the criterion is not effective in this sense, since it requires the
number of zeros of solutions.

IV, Stationary Groups

Stationary groups for the second order equations, called groups
of dispensions, were studied and completely described by O. Borlvka
[3] in the sixties. Some results on stationary groups of linear
differential equations of an arbitrary order were obtained in 1977
mainly by using the theory of functional equations [11].

In 1979 J. Posluszny and L.A. Rubel [15] characterized (up to con-
jugacy) those transformations, called motions, of a linear differential
equation into itself that consist in a change of the independent
variable only.

Finally, in 1984 on the basis of our criterion of global equi-
valence a complete chanractenization of all possible stationary groups
was derived [ 14]. Here is the list of the groups up to conjugacy of
linear differential equations of all orders considered with respect to
global transformations in the most general form, i.e., involving
changes both the independent and the dependent variables:

1. The functions h : R - R, h(x) = Arctan %—%;}%%%—%, lad - bc| = 1
- a tan x
2, h: R+* R+, h(x) = Arctan TEanx T I/’ @ + 0

3m. For each positive integer m, h : (0,mr) - (O,mn),

_ a tan x
h(x) = Arctan CTtan x T 173 ' a0

4m. For each positive integer m, h : (O,mrt - n/2) - (O,mn - w/2),
h(x) = Arctan(k tan x) and h(x) = Arctan(k cot x), k > 0

5. The functions h : R+ R, h(x) = x + ¢ and h(x) = -x + ¢, ¢ € R
6. The increasing functions from 5
7. The functions h : R+ R, h(x) = x + k and h(x) = -x + k, R € Z
8. The increasing functions from 7
9. idy and -idp
10. Only idg.

These groups range from the maximal one, a three-parameter group
in case 1, through an infinite cyclic group in case 8, to the trivial
group in case 10 consisting from the identity only. Let me point out

that the maximal group has already occured as the fundamental group in
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Bordvka’s investigations of the second order equations.

For each case of the stationary groups we can characterize the
corresponding equations and each of the cases listed here actually
occurs. E.g., the case 1 takes place exactly when the equation is an
iterative equation of an arbitrary order iterated from a both-side
oscillatory second order equation.

Let us note that if we consider global transformations with only
increasing changes of the independent variable then, up to conjugacy,
there are 5 possdible cases of stationary groups with respect to the
number o4 parametens as announced in 1982 [12].

V. Canonical Forms

The next important notion is the notion of canonical forms of
linear differential equations. Such forms were studied from the early
beginning of investigation of the equations in the middle of the last
century.

W= have mentioned that already in 1910 G.D. Birkhoff pointed out
that the so called Laguenne-Forsyth canonical form L4 not globaf. It
can be shown [13] that also the other canonical form that has oecurred
in the literature, the so called Hafphen canonical form £is not globatl
eithen,

For constructions of global canonical forms we may proceed in two
ways, either we use a certain geometrical approach, or we may apply the
criterion of global equivalence.

First let us explain shortly our geometrical approach. We have
seen that fundamental solutions Z, considered as curves in an n-dimen-
sional vector space, corresponding to all equations globally equivalent
to one equation with a fundamental solution ¥, a curve y, are obtained
as sections of a cone determined by the curve y. To find a canonical,
that means, a special equation in the class of equivalent equations,
we need a special section of the cone. By applying Cartan’s moving-
frame-of-reference method we come unfortunately again to the Halphen
forms that are not global. However, if we consider the euclidean
n-dimensional space and take the central projection of our curves and
then their length parametrization, we obtain special sections of the
cone, special curves. Fortunately, this can be done without any restric-
tions on the whole intervals of definition. Then by using differential
geometrical methods the explicit forms of the special, canonical equa-
tions corresponding to the special curves are obtained.

These global canonical forms anre
n = 2: y''" +y=0 on (different) I CR,
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n = 3: y' - (pf(x)/p(x))y’’ + (1 + pz(x))y’—(p’(x)/p(x))y =0
on I CR,
(one) arbitrary function p € Cl(I), p(x) # 0 on I,

atc.

For n = 2 the canonical equations coincide with the canonical
forms studied by O.Borivka.

There is also another procedure producing global canonical forms.
This procedure is analytical and the construction is based on our
criterion of global equivalence. Among many different global canonical
forms obtained by this appkoach [13] the following equations

(n)

- + 0 (n-3)

y(n—l) + 1.y(n—z)

+ pn_3(x)y +..0+ po(x)y = O,ICR,

ane global canonical forms.for equations with sufficiently smooth
coefficients. They are characterized by their first three coefficients
1, 0, 1.
Comparing with the local Laguerre-Forsyth canonical forms having the
corresponding sequence
i, 0, 0,
we may conclude that if Laguerre and Forsyth had taken 1 as the coef-
ficient of the (n-2)nd derivative instead of their zero they would
have got global forms instead of their local.

VI. Invariants

Invariants of linear differential equations with respect to trans-
formations have been derived from the middle of the last century either
directly, or mainly on the basis of the Halphen canonical forms. These
invariants are local.

A global invariant of the second order linear differential
equations is in fact their type:finite (a positive integer) or infinite,
and their kind, as introduced and derived by O.Bordvka in the sixties,

Due to the criterion ©of global equivalence we have now also
global invariants for equations of an arbitrary orden., Indeed, the
type and kind of the equation (p): u’’ + p(x)u = 0 on I 44 a global
invarniant of the n-th onden equations P newnditten in the form
[n] (n-3),

Pn(y,x;I) = Ip (y,x;I)| + rn_3(x)y ees =0,

Another interesting invariants have occurred recently. It is a bit
misleading fact that each second order equation with only continuous
coefficients can be globally transformed into an equation with even
analytic coefficients, e.g., into y’’ + 1.,y = 0 on some I C R, For

higher order equations the degree of the smoothness of their coeffi-
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cients is in some respect an invariant property. From many results of
this kind let me introduce at least the following simplest one:
If the coefficients of the equation Pn(y,x;I) satisfy

€™, p_, €c"?

p 2

j-1
n-1 (I),u0e, pj € C (I) for some
j £n-1,
then the coefficients of any globally equivalent equation to the

Pn(y,x;I) have the same onden of differentiability.

VII. Equations with Solutions of Prescribed Properties

The main idea how to construct linear differential equations with
solutions of some prescribed properties is based on the following
"ecoondinate approach".

Having global canonical forms (the globality is essential), each
linear differential equation P of an arbitrary order can be "coordi-
nated" by a couple {S,a} consisting of its global canonical form S and
of the global transformation a converting S into P, i.e., P = Sa.

If we succeed to reformulate a given property of solutions of P
equivalently into properties of S and o, we may construct all required
equations. Also problems concerning relations among certain properties
are then converted into (sometimes simple, or even already solved)
problems from the theory of functions,

By using this approach there were constructed linear differential
equations that have important applications in differential and integral
geometries. E.g., it was possible to generalize Blaschke’s and Santald’ s
isopenimetnic theonems, [8].

Connections between boundedness of solutions and their Lz-pro—
perties were easily explained by the above methcd [7].

Relations between d{stributions of zeros and asymptotic behavion
of the solutions were also deeply studied by means of the coordinate
approach.

There is also another way, a geometrical one, how to see what
happens with zeros of solutions and how to construct equations with
prescribed distribution of zeros of their solutions.

VIII. Zeros of Solutions

This geometrical approach is based on the representation of a
fundamental solution y of an equation Pn(y.x;I) as g curve in n-dimen-
sional vector or even euclidean sovace Vn mentioned in the previous
sections.

Let the curve v be the central oroiection of the curve y onto the
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unit sghere Sh-1 in the space Vn without a change of parameter x. Each

solution y of Pn(y,x}I) can be written as a scalar product ¢ ., y where

¢ is a nonzero constant vector in Vn' Let H(y) denote the hyperplane
H(y) := {d € Vi oo d = 0}

going through the origin and corresponding to the vector ¢, Evidently
0 = y(xo) =c ., y(xo) =c ., v(xo)ly(xo)l @ ¢ o, V(xo) =0

since Iy(xo)l # 0. Thus we have shown that

to each so0fution y‘oé the equation P thene cornresponds a hypen-
plane H(y) in Vn going through the origin such that

zeros o4 the solution y occur as parameters of {intersccitions of
the panticulan hyperplane H(y) with the curve v, and vice versa.

Multiplicities of zeros occurn as orndens of contacts, [9],

Let us recall that all this happens on the unit sphere, a compact
space, where strong topological tools are at our disposal.

Several open problems were solved and many complicated constuc-
tions were easiiy explained by using this approach, [10]. As a simple
demonstration of the method let us present Sansone’s result by con-
structing a thind onden Linean differential equation with all oscil-
Latorny solutions.

For this purpose it is sufficient to have an enough smooth (of the
class C3) curve u on the unit aphere S2 in 3-dimensional space without
points of inflexion (that means, that Wronskian of u is nonvanishing)
such that each plane going through the origin intersects u for infini-
tely many values of parameter. The picture of a closed "prolonged
cvcloid" infinitely manv times surrounding the equator as its parameter
ranges from - to +° may serve as an example of a curve with the

required property.

IX. Applications

To the end of my survey let me mention some fruitful applications
of the presented theory.

The above methods were succesfully applied to systems of Linean
diffenential equations. E.g., construction of certain second order sys-
tems with only periodic solutions, [10], plays an important role in geo-
metry of manifolds whose all geodesics are closed [2].

By using the above approach there were solved some problems con-
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cerning Linear and nonfinear differential equations and systems with
one on several delays. There are useful applications.in generalized
differential equations and £inear differential expressions with quasi-
denivatives as well. Last but not least, there are many fruitful

connections with the theory of functional equations.
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