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1 Introduction and preliminary remarks

The present note is a review of the paper [12] and some element from the re-
lated works [11], [17]. see also [18] for further results. For a few general references
on stochastic Navier-Stokes equations see [2], [20], [21], [9], among many others,
while for general references on Navier-Stokes equations on one side and infinite
dimensional stochastic analysis on the other, see [19] and [5].

1.1 Could probability tell us something new about classical problems
in fluid dynamics?

This difficult challenging problem has a few positive answers and works in progress.
A first example is the ergodicity for the 2D stochastic Navier-Stokes equations,

proved first by [10] under some assumptions on the noise, and later on by many
authors under various sets of assumptions and with different techniques, see for
instance [6], [1], [14], [22]. Some ergodic properties are often tacitly assumed in
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statistical fluid mechanics, but a proof for the deterministic Navier-Stokes equa-
tions is still out of reach, in spite of the efforts spent on outstanding theories like
the Ruelle-Bowen-Sinai one.

A second example is the probabilistic analysis of singularities for the 3D de-
terministic and stochastic Navier-Stokes equations developed in [11], [12]. This is
the subject of the present note.

Finally we mention a number of other directions like the probabilistic represen-
tations of solutions to Navier-Stokes equations, the vortex method, probabilistic
model of turbulence, statistical solutions of Foias-like equations, diffusion of pas-
sive scalars, stochastic vortex filaments. Without the aim to list contributions in
all these fields, we mention only [4], [13], [15], [16], [7].

Two typical tools, beyond others, are employed: 1) irreducibility, 2) stochastic
stationarity. Tool (1) is usually introduced by means of a noise forcing term in
the Navier-Stokes equations. It is somewhat an idealization of the real behaviour
of a fluid, but it captures in a sort of idealized limit the extreme variability ob-
served in turbulent fluids. Tool (2) has some of the technical advantages of time-
invariance, even if the single realizations (trajectories) may have a very complex
time evolution.

1.2 3D Navier-Stokes equations and singularities

Consider the Navier-Stokes equation in a bounded regular domain D C R?

ou B 5B

div u=0, wulsgp =0, ul=o=1ug

Physically speaking, u is the velocity field, P the pressure, f a slowly varying
forcing term, %—? a fast fluctuating forcing term. The kinematic viscosity v is
assumed to be strictly positive, while the noise intensity ¢ > 0 may be equal to
zero (deterministic case), depending on the theorem.

Before giving a rigorous definition of suitable weak solution, let us mention the
concept of singular points. A point (¢,2) € (0,00) x D will be called regular if
u is locally (essentially) bounded around it. Otherwise, the point (¢, z) is called
singular. The set of singular points of u will be denoted by S(u). We have S (u) C
(0,00)x D C R*. The fundamental result of Caffarelli, Kohn and Nirenberg [3] tells
us that the 1-dimensional Hausdorff measure of S(u) is zero, when w is a suitable
weak solution:

H (S (u)) = 0.

This result is a refinement of previous results of Scheffer. Whether S (u) is empty
or not is a main open problem. It is empty for time-invariant solutions. In a sense,
we shall prove that it is empty also for stochastically stationary solutions.

A singularity corresponds to a local concentration of energy. The global ki-
netic energy cannot blow up: for 0 =0, 1 [, |u (t, 2)|? dz (plus dissipation energy)

is bounded by %fD lug (x)\2 dz plus the work done by the body forces, and the
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same result is true (with a more involved inequality) also for ¢ > 0 under reason-
able assumptions on B. However, energy may concentrate, it may be transferred
to smaller scales, and the (energy)/(unite volume) may blow up at some point:
5 fBr(:co) lu (t,2)|° dz — oo as r — 0 (this is an open problem). This problem is
similar to the concentration of energy in finite regions that can be seen for Hamil-
tonian systems of co-many particles. Here and below we denote the ball of center
xo and radius r by B, (zo) or simply by B;.

Roughly speaking, the idea of the blow-up control is the following one. On one
side, we have a local energy balance of the form

d ’ i
@ / Jul” + ,// |Vul® < / ‘u—|u -n + work done by forces
dt B, 2 B, OB, 2

which says that the local variation (possible concentration) of kinetic energy

2
&[5 [l plus the local dissipation v [ B, |Vu|?, are controlled by the energy flux

2
/. 9B [ n plus work terms. On the other side, we have the Sobolev inequality

2
.
/|u3sc(/ |Vu|2) (/ |u2) +—3(/ |u2)
B, B, B, r2 B,

which allows us to control terms of the order of the energy flux by local kinetic and
dissipation energy. These two tools together give rise to iterative nonlinear rela-
tions for the previous quantities, on a sequence of nested balls B, . The resulting
inequalities may be closed if some quantity is small. The criterium discovered by
Calffarelli, Kohn and Nirenberg is that

1 t+r? 9

lim sup — / [Vul” =0 (2)
r—0T Ji_r2 r(z)

(or just smaller than a certain universal constant) implies (¢,z) regular. Having

established this fact, it is not difficult to prove that H* (S (u)) = 0.

How probability may enter this problem?

1) As for co-many particle Hamiltonian systems, one could try to prove a good
result in a stationary regime and for many initial conditions with respect to a prob-
ability measure. This is the content of this note.

2) Perhaps the emergence of singularities requires a great degree of organi-
zation (only special fluid configurations may produce singularities). Perhaps this
coherence is broken by the noise. We cannot solve this problem with a true under-
standing of the geometry of emerging singularities. We can only prove that in the
presence of noise that activates all modes, our results hold true for most initial
conditions.

1.3 Suitable weak solutions

The martingale suitable weak solutions for the Navier-Stokes system are solutions
of a stochastic differential equation driven by an additive noise which satisfy almost
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surely a local balance of energy. Let H be the Hilbert space
H={u:D—R¥uc (LZ(D))?)7 divu =0, (u-n)|ap = 0}

where n is the outer normal to 9D (see for example Temam [19]), and V be the
space of all v € (H* (D))3 N H such that u|gp = 0. Define the (Stokes) operator
A: D(A) C H— H as Au = PAu, where P is the orthogonal projection from
(L2 (D))? onto H and D(A) = (H2 (D))’ NV,

Definition 1. A martingale suitable weak solution is a process (u, P) defined
on a stochastic basis (Q, F (Ft)iso: P (Bt)tzo), where B is a Brownian motion
adapted to the filtration (F;),~, with values in D(A?), for a 3 > 0, such that

weN— (u(w),Pw))eL?*0,T;H) x L}

loc ((07T) X D)
is a measurable mapping and there exists a set 2y C {2 of full probability such
that for each w € (2

u(w) € L>(0,T;L*(D))NL* (0, T;H" (D)), P(w )eL ((0,T) x D),

loc
the new variables v (w) = u (w) — z (w) and 7 (w) = P (w) — Q (w) satisfy the modi-
fied Navier-Stokes equations (4) below in the sense of distributions over (0,7) x D,
where (z, Q) is the solution to the Stokes problem (3) below. Moreover the follow-
ing local energy inequality has to hold for all w € 2y

frobora [ e [ o (320

+/ / (J0(@)[? +20(w) - 2(w)) (v(w) + 2(w)) - Vo)

+2//<pz ) + 2(w) //m

for every smooth function ¢ : R3 x D — R, ¢ > 0, with compact support in
(0,T) x D.

It is worth noticing that such solutions exist. A proof of this claim is given in
[L7]. Also, the concept of martingale solution is equivalent to the one of statistical
solution, as given by Foias, Temam, and others. In the previous definition we did
not insist on the regularity properties of the auxiliary variables (z, Q); see [12] for
the details.
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2 Main results

2.1 Extention of C-K-N theorem to stochastic Navier-Stokes
equations

Theorem 2. Assume f € L? ((0,T x D)), B € Cz~¢ ([O,T} ;D(A%"‘ﬂ)) for so-
me p > % and 3 > ¢ > 0. Let u be a suitable weak solution of the deterministic
Navier-Stokes equation forced by f + %—th. Then H! (S (u)) = 0.

The interpretation of this statement may be: fast (distributional in time) fluc-
tuations of the forces do not deteriorate the (upper) estimate on singularities.

The result is expressed for an individual solution of the deterministic Navier-
Stokes equation forced by f + %—’f, but if we replace the deterministic distribution
%—‘;’ by the white noise with path having the regularity specified by the theorem
and interpret the equation as a stochastic equation, and if v denotes a stochastic
process solving that equation in the sense of martingale suitable weak solutions,
then we have H* (S (u)) = 0 with probability one.

About the proof, that is quite long, we only notice that one has to introduce
the auxiliary Stokes system

0z 9B
div 2=0, zlap=0, z|i=0=0.

Then v = u — z, m = P — @ satisfy the equation

ov
{E—k((v—&—z)-V)(v—kz)—FVw:VAv (4)

div v=0, v|op =0, v|=0 = uo.

After the necessary preliminary results on z are established, one has to adapt the
proof of [3] to this new equation. See [12] for details.

2.2 Improvement for stationary solutions

We want to study stationary solutions for the Navier-Stokes equations, stationary
in the sense of probability or ergodic theory. In the spirit of ergodic theory, we will
speak of probability measures on the space S of all trajectories, invariant for the
time shift.

The space S CL?, . ([0,00); H) x C ([0,00); D(AP)) (for a 3 > 0) contains all
the trajectories of the stochastic processes which are solutions to the stochastic
Navier-Stokes equations, namely the set of all pairs (u, B), where B is a trajectory
of the fast fluctuating forcing term and u is a suitable weak solution in each time
interval [0, 7], of the Navier-Stokes equation forced by 9;B. In this setting the
pressure P is treated as an auxiliary scalar field.
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We define a metric on S in the following way. If (u', B') and (u?, B?) are in
S, the distance between them d ((u', B'), (u?, B?)) is defined as

> oo (1 /\/ vt — v2|2dt> +y 2" (1 A sup |B' — BZ|> . (5
n=1 0

n=1 (0,n)
Let Cy (S) be the space of all bounded real continuous functions on & with the
uniform topology, let B be the Borel o-algebra of (S,d) and M; (S) be the set of
all probability measures on (S,B). Let 7 : S — S, (t > 0) be the time shift on S,
defined as

1/2

7t (u, B) (8) = (u(s + 1), B(t +s) — B(t))

A statistical suitable weak solution of Navier-Stokes equations is simply a proba-
bility measure p € M; (S). The classical case where (B;),~, is a Brownian motion
is recovered simply by assuming that the marginal law of p on the second compo-
nent of S is the law of the Brownian motion itself. It is not difficult to re-interpret
this concept by means of stochastic processes u, B satisfying the Navier-Stokes
equations. To this purpose it is sufficient to consider the canonical process defined
on S, under the law pu.

Definition 3. A probability measure p € M (S) is time-stationary if 7;p = p for
all ¢t > 0. We say that p has finite mean dissipation rate if

/S [/OT/D |Vu|2dxdt] (d(u, B)) < oo

A proof of the existence of a stationary solution is given in [17], when the
marginal measure of x in the second component is the law of a Brownian motion.
But we believe that this result may be proved also in the case when the marginal
measure is the law of some other process with stationary increments, such as
fractional Brownian motions, etc.

The main result in the framework of the statistical solutions is the following
one. Let p be a stationary solution. We assume that the marginal of x4 in the
second component is concentrated on the space C'z ([0, 00); D(A31#)) for some
8 >¢e>0.

for all T > 0.

Theorem 4. Let o be a stationary solution as above, then for every time t > 0
the set of singular points at time t is empty for p-almost every trajectory.

In other words, if Sy (u) denotes the set of all x € D such that (¢, x) is a singular
point for the function u, then for all given ¢ > 0, the set S; (u) is empty for y-almost
all trajectories (u, B).

About the proof (see [12]), by stationarity and finite mean dissipation rate we

have that
1 t+r? )
LIz [, ] ou?| udm) = cr
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2
for some constant C' > 0, so % ttj:Z fD |Vu|2 converges to zero as r — 0 with
probability one, by an argument based on Borel-Cantelli lemma and the mono-
tonicity in r of the previous integral. Notice that the result is true for all ¢ > 0,

hence it is uniquely due to the stationarity and not to the presence of noise.

2.3 Final results for a.e. initial conditions

JFrom this theorem, a regularity result for almost any initial condition can be
deduced. First we define a measure on the space H of initial conditions given by
a stationary solution p. Since weak solutions are continuous from [0, c0) to H with
the weak topology, the map

po:(u,B)eS —u(0) e H

is well defined and measurable. Hence it is possible to consider the image measure
of o with respect to pg. Denote by po such measure on H. In a heuristic sense, p
is an invariant measure in H for the Navier-Stokes equations, but we cannot state
this in the usual sense since the Navier-Stokes equations does not define a dy-
namical system or a Markov semigroup (one may use the concept of infinitesimal
invariance).

One can prove that 4 disintegrates with respect to g (see the details in [12]):

w() = /H 41 (0) = i) o (du) -

For po-a.e. ug € H, the measure p(.|u(0) =ug) is a statistical solution of the
Navier-Stokes equations with initial condition ug.
As a consequence of the previous theorem one can prove that (see [12]):

Corollary 5. For everyt > 0, for pg-a.e. ug € H,
Se(u)=10 w(Ju (0) = uo) -a.s.

The interpretation is that we do not see singularities at any given time ¢, not
only in the stationary regime (the theorem of the previous section) but also for
fo-a.e. initial condition. Hence only special (with respect to p) initial conditions
may produce a certain kind of singular behaviour.

The weak point of the previous theorem could be that pg is concentrated on
a very poor set, like a point or a periodic orbit. In the case of a single point it means
that p was the delta Dirac mass over a time-invariant solution, and therefore the
absence of singularities is a well know fact (easy consequence of the result of [3]). It
is therefore interesting to know that under suitable assumptions of non-degeneracy
of the noise the support of yg is H. This is our first theorem in which B cannot be
just a deterministic function. We assume that it is a Brownian motion in H (see [7]
for the definition). We also assume that this noise force directly acts on all Fourier
components, namely that the covariance is injective. Presumably this condition
can be weakened. It implies a form of irreducibility of the dynamic, proved in [3],
which implies that trajectories visit all open sets of H with positive probability.
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Theorem 6. Assume that o > 0 and B is a Brownian motion in H with injective
covariance, and with trajectories satisfying the reqularity conditions of the previous
theorems. Then the support of pg is the full space H:

supp (po) = H.

Therefore the set of initial conditions having the property of the corollary is

rich. This result is due to the noise, while all the previous ones hold true also for

o=0.
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