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Abstract. The class of linear differential systems with coefficient matri-
ces which commutative with their integrals is considered. The results on
asymptotic equivalence of these systems and their distribution among lin-
ear systems are given.
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Consider the linear system

dx

dt
= A(t)x, x ∈ R

n, t ∈ I = [t0,+∞[, (1)

where A(t) is an n × n matrix of real-valued continuous and bounded functions
of real variable t on the non-negative half-line I. Usually [1, p. 117], (1) is called
Lappo-Danilevskii’s system if the matrix A is commutative with its integral, i.e.

A(t)

t∫
s

A(u)du =

t∫
s

A(u)duA(t), (2)

for some s, t ∈ I.
We define three types of the Lappo-Danilevskii systems.

This is author’s version of the invited lecture.
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Definition 1. We say that
i) A(t) is a right Lappo-Danilevskii matrix with the initial point s (A ∈ LDr(s))

if there exists an s, s ∈ I, such that (2) is fulfilled for all t ∈ Ir(s) = [s,+∞[;
ii) A(t) is a left Lappo-Danilevskii matrix with the initial point s (A ∈ LDl(s))

if there exists an s ∈ I, s > t0, such that (2) is fulfilled for all t ∈ Il(s) = [t0, s];
iii) A(t) is a bilateral Lappo-Danilevskii matrix with the initial point s (A ∈

LDb(s)) if there exists an s, s ≥ t0, such that (2) is fulfilled for all t ∈ I.
The corresponding systems (1) are called right, left or bilateral Lappo-Dani-

levskii systems. Note that a special case of the bilateral Lappo-Danilevskii system
is system (1) with the functional commutative matrix A, where for all s, t ∈ I

A(t)A(s) − A(s)A(t) = 0. (3)

It is well known that if A is a right, left or bilateral Lappo-Danilevskii matrix,
then a fundamental solution matrix Xs(t) of (1) (Xs(s) = E, E is the identity
matrix) can be represented as

Xs(t) = exp

t∫
s

A(u)du (4)

for t ∈ Ir(s), t ∈ Il(s), t ∈ I respectively. This simple representation (4) of
the fundamental solution matrix does explain the fact that the class of Lappo-
Danilevskii systems is one of the main and interesting class of linear systems. For
example, in some cases it is possible to calculate asymptotic characteristics, in
particular, Lyapunov exponents of the solutions of (1) directly using coefficients
of (1) (see for instance [2]). In this connection we consider a problem of reducibility
of an arbitrary linear system with bounded coefficients to the Lappo-Danilevskii
system and to the system with functional commutative matrix of coefficients.

It is well known [3, p. 274] that any linear system is an almost reducible to some
diagonal system. It is trivial fact that any diagonal matrix is a functional commu-
tative matrix. But quite different is the case of linear systems under Lyapunov’s
transformations.

A linear transformation
x = L(t)y (5)

is a Lyapunov transformation if L(t) is a Lyapunov matrix, i.e.

max{sup
t≥t0

‖L(t)‖, sup
t≥t0

‖L−1(t)‖, sup
t≥t0

‖ d
dt
L(t)‖} < +∞. (6)

It is easy to see that if (5) reduces (1) to the system

dy

dt
= B(t)y, y ∈ R

n, t ∈ I, (7)

then

B(t) = L−1(t)A(t)L(t) − L−1(t)
d

dt
L(t). (8)
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We follow Yu. Bogdanov [4] and say that two linear systems are asymptotically
equivalent if there exists a Lyapunov transformation reducing one of them to
the other. Note that the Lyapunov transformations do not change asymptotic
properties of the solutions, in particular, their stability.

Theorem 1. The linear system (7) is asymptotically equivalent to the system (1)
with functional commutative matrix of coefficients if and only if the Cauchy matrix
KB(t, s) of (7) can be presented in the form

KB(t, s) = L(t) exp

t∫
s

A(u)duL−1(s) ∀t, s ≥ t0, (9)

where L(t) is Lyapunov’s matrix.

Proof. 1. Let (7) be asymptotically equivalent to (1) with the functional commu-
tative matrix A satisfying (3). Then there exist s0 ≥ t0 and non-singular constant
matrix C such that

Ys0(t)CX
−1
s0 (t) = L(t), (10)

where L(t) is Lyapunov’s matrix, Xs0 and Ys0 are fundamental matrices of the so-
lutions of (1) and (7) respectively (Xs0(s0) = Ys0 (s0) = E). Since A is a functional
commutative matrix, we have

KA(t, s) = exp

t∫
s

A(u)du, (11)

where KA(t, s) is the Cauchy matrix of (1). From (10) it follows that

KB(t, s) = Ys0(t)Y
−1
s0 (s) = L(t)Xs0(t)C

−1CX−1
s0 (s)L−1(s) = L(t)KA(t, s)L−1(s).

Using (11), we obtain the required relation (9).
2. Let transformation

y = L(t)x (12)

with the Lyapunov matrix L(t) satisfying (6) reduce (7) to some linear system
Dx = P (t)x. Then P satisfies (see (8)) the equality

P (t) = L−1(t)B(t)L(t) − L−1(t)
d

dt
L(t).

Since L(t) = KB(t, s)L(s) exp
(
−

t∫
s

A(u)du
)
, we have

d

dt
L(t) = B(t)KB(t, s)L(s) exp

(
−

t∫
s

A(u)du
)
−
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−KB(t, s)L(s) exp
(
−

t∫
s

A(u)du
)
D
(
exp

t∫
s

A(u)du
)

exp
(
−

t∫
s

A(u)du
)

=

= B(t)L(t) − L(t)
d

dt

(
exp

t∫
s

A(u)du
)

exp
(
−

t∫
s

A(u)du
)
.

Therefore, P (t) = d
dt

(
exp

t∫
s

A(u)du
)

exp
(
−

t∫
s

A(u)du
)
, hence

P (t) exp

t∫
s

A(u)du =
d

dt

(
exp

t∫
s

A(u)du
)

∀t, s ≥ t0.

Thus,

P (t)
(
E +

∞∑
m=1

1
m!

( t∫
s

A(u)du
)m)

=
d

dt

(
E +

∞∑
m=1

1
m!

( t∫
s

A(u)du
)m)

=

= A(t) +
∞∑

m=2

1
m!

m−1∑
k=0

( t∫
s

A(u)du
)k
A(t)

( t∫
s

A(u)du
)m−1−k

∀t, s ≥ t0.

Substituting t for s, we get P (t) = A(t) for all t ≥ t0. Therefore, (12) reduces (7)
to (1). It suffices to show that A is a functional commutative matrix.

Consider transformation (12); if Y is any fundamental matrix of the solutions
of (7), then X(t) = L−1(t)Y (t) is the fundamental matrix of (1). Therefore, from
(9) it follows that

KA(t, s) = X(t)X−1(s) = L−1(t)Y (t)Y −1(s)L(s) =

= L−1(t)KB(t, s)L(s) = exp

t∫
s

A(u)du ∀t, s ≥ t0.

From [5] it follows that A is a functional commutative matrix. The theorem is
proved.

The similar result is valid for the right and bilateral Lappo-Danilevskii systems.

Theorem 2. The linear system (7) is asymptotically equivalent to the right (bila-
teral) Lappo-Danilevskii system (1) if and only if there exists a fundamental matrix
Y (t) of (7) which can be presented in the form

Y (t) = L(t) exp

t∫
s

A(u)du ∀t ≥ s ≥ t0 (∀t ≥ t0),

where L(t) is Lyapunov’s matrix and A ∈ LDr(s) (A ∈ LDb(s)).
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There is no problem to reduce linear systems to left Lappo-Danilevskii systems,
because it is easy to prove that any linear system is asymptotically equivalent to
some left Lappo-Danilevskii system. On the other hand, the following result is
valid [6,7].

Theorem 3. There exists a linear system which is asymptotically equivalent nei-
ther to any system with functional commutative matrix of coefficients nor to any
right (bilateral) Lappo-Danilevskii system.

To prove this fact it is sufficient to consider the linear system with the following
matrix of coefficients (En−2 is the (n− 2)× (n− 2) identity matrix)

0 1 0 ... 0
0 (t− t0 + 1)−1 0 ... 0

0 0
· · · · · · En−2

0 0

 , t ∈ [t0,+∞[, (13)

and to use the specific structure and the distribution of zeros of the integrals of
the Lappo-Danilevskii matrices.

However, system (13) is a regular system (in the Lyapunov sense) and it can
be reduced (Basov-Grobman-Bogdanov’s criterion [8, p. 77] to the system with
functional commutative coefficients by generalized Lyapunov transformation (5)
with the matrix L such that lim

t→+∞
t−1 ln ‖L(t)‖ = lim

t→+∞
t−1 ln ‖L−1(t)‖ = 0.

But even if we expand the set of our transformations up to the set of gener-
alized Lyapunov transformations there is a statement which is similar to Theo-
rem 3 [9,10].

Theorem 4. There exists a two-dimensional linear system which is generalized
asymptotically equivalent neither to any system with functional commutative ma-
trix of coefficients nor to any right (bilateral) Lappo-Danilevskii system.

We think that this fact holds for the linear systems of the arbitrary dimension
n, but now we have the proof only for n = 2.

Note that condition (2) is sufficiently strong and small perturbations of the
elements of A can output the matrix from the class of the Lappo-Danilevskii
matrices. So we consider some problems on the behavior of the Lappo-Danilevskii
matrices in the set of all matrices.

Let the distance between matrices A and B be defined by the following formula
ρ(A,B) = supt≥t0 ‖A(t)−B(t)‖, where ‖ · ‖ be an arbitrary matrix norm.

The following results are fulfilled [11].

Theorem 5. Let Ai ∈ LDα(si), i ∈ N, α ∈ {b, r}, and ρ(A,Ai) → 0 as i→ +∞.
If there exists M such that si ≤ M < +∞ for all i ∈ N, then A is a bilateral
(right) Lappo-Danilevskii matrix.
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Theorem 6. Let Ai ∈ LDl(si), i ∈ N, and ρ(A,Ai) → 0 as i → +∞. If there
exist m, M such that t0 < m ≤ si ≤ M < +∞ for all i ∈ N, then A is a left
Lappo-Danilevskii matrix.

However, if the sequences (si) for the sequences of right and left Lappo-Dani-
levskii matrices are not bounded, then the previous results are not valid, namely,
the following facts hold.

Theorem 7. There exists a sequence Ai, Ai ∈ LDr(si), (Ai ∈ LDl(si),) i ∈ N,
ρ(A,Ai) → 0 and si → +∞ (si → t0 + 0) as i → +∞, such that A !∈ LDr

(A !∈ LDl.)

To prove this statement it is sufficient to construct the following sequences of
Ak (k ∈ N, t0 = 0):

Ak(t) =

(
Bk(t) O1

O2 C(t)

)
, Bk(t) =

(
g(t) fk(t)

e−t g(t)

)
, t ∈ [0,+∞[,

where O1, O2 are the 2 × (n − 2), (n− 2)× 2, zero-matrices respectively, C(t) is
an (n − 2) × (n − 2) functional commutative matrix, g is a continuous bounded
function on [0,+∞[. If

fk =

{
(1− e−t)e−t, 0 ≤ t ≤ k,

(1− e−k)e−t, t > k,

then Ak ∈ LDr(k), but the limit matrix A does not belong to LDr; if

fk =


e−

1
k−t, 0 ≤ t ≤ 1

k
,

e−2t, t >
1
k
,

then Ak ∈ LDl( 1
k ), but the limit matrix A does not belong to LDl.

The following result establishes the closure of the set of two dimensional bilat-
eral Lappo-Danilevskii matrices in the set of all matrices.

Theorem 8. Let Ai ∈ LDb(si), i ∈ N. If ρ(A,Ai) → 0 as i → +∞, then A is a
bilateral Lappo-Danilevskii matrix.

To complete our review of the Lappo-Danilevskii systems we say some words
about connection of the properties (2) and (4).

It is well known that condition (2) is sufficient for the representation (4).
J. F. P. Martin proved (see [12]) that if the differences of the eigenvalues of the
integral of A were not zero roots of the equation

ez − z − 1 = 0, (14)
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then (4) implied (2). From the results of J.F.P. Martin [12] and V.N. Laptinskii
[13] it follows that if coefficients of (1) are analytic functions on I, then (4) also
implies (2). However, it was open question on the existence of a linear system with
infinitely differentiable non-analytic coefficients such that this system was not a
Lappo-Danilevskii system but its fundamental solution matrix had the form (4).
We proved that such system exists [14].

To verify this fact it is sufficient to consider system (1) with the matrix

A(t) =

−µa(t) 0 −νa(t)
b(t) 0 0
νa(t) 0 −µa(t)

 , t ∈ [0,+∞[,

where µ ± iν are roots of the equation (14), a and b are infinitely differentiable
non-analytic functions such that

t∫
0

a(u)du > 0 ∀ t ∈]0, s0],

s0∫
0

a(u)du = 1, a(t) = 0 ∀ t ≥ s0 > 0, (15)

b(t) =


0, t ∈ [0, s0[,

bk(t) !≡ 0, t ∈ [s2k, s2k+1[,
0 t ∈ [s2k+1, s2k+2[, k = 0, 1, ...,

(16)

((sk) is an arbitrary sequence of positive numbers such that sk+1 > sk and sk →
+∞ as k → +∞). In this case the fundamental solution matrix X0(t) of (1) may
be represented as (4) with s = 0 but A(t) is not a Lappo-Danilevskii matrix with
initial point s = 0.

Note that for two dimensional real-valued matrix A condition (2) is necessary
and sufficient for representation (4), it follows from the distributions of the roots
of (14) and the eigenvalues of the integral of A. But for two dimensional complex-
valued matrix A condition (2) is not necessary for (4). For example, if γ is a root
of (14) and the functions a, b satisfy (15) and (16), then the matrix

A(t) =

−γa(t)
2 0

b(t) γa(t)
2

 , t ∈ [0,+∞[,

is not Lappo-Danilevskii’s matrix with initial point s = 0, however the fundamental
solution matrix X0(t) of (1) may be represented as (4) with s = 0.
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