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Abstract. We outline a solution method for mixed finite element dis-
cretizations based on dissecting the problem into three separate steps. The
first handles the inhomogeneous constraint, the second solves the flux vari-
able from the homogeneous problem, whereas the third step, adjoint to the
first, finally gives the Lagrangian multiplier. We concentrate on aspects
involved in the first and third step mainly, and advertise a multi-level
method that allows for a stable computation of the intermediate and final
quantities in optimal computational complexity.
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1 Introduction

There are well-known examples in the finite element literature of problems that
are cast into the form of a saddle-point problem as a result of applying mixed
variational principles. Already in 1973, Babuška [1] handled non-homogeneous
Dirichlet boundary conditions for an elliptic problem by introducing a Lagrange
multiplier and solving the resulting saddle-point problem. Around the same time,
also Brezzi [5] published his abstract theory of approximation of saddle point
problems, which led to the development of mixed finite element methods for elliptic
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equations, starting with the elements of Raviart and Thomas [10] in 1979. Since
then, a large amount of attention has been paid to several aspects of saddle-point
problems, ranging from the design of stable finite element spaces to the efficient
solution of the indefinite linear systems that arise from the discretization [2], [4],
[12]. In particular concerning the latter, much progress has been made with the
realization that such systems can often be solved in three separate steps [6], [8].
The first step handles the inhomogeneous constraint, the second step involves the
homogeneous problem, whereas the third step constitutes a problem that is adjoint
to the first. In the literature, the emphasis is on the analysis of the second step,
whereas for the first and third step either unstable methods are suggested, or
stable methods left unanalyzed. In this paper we perform a rigorous analysis of
the first and third step, and present recent insights that follow from employing
several aspects of the papers [6], [8], [9].

We start by introducing the mixed finite element discretization of a model
problem in Section 2, and proceed to illustrate the three separate solution steps.
In Section 3 we present a stable method for handling steps one and three, both of
optimal computational complexity. We conclude with some further comments in
Section 4.

2 Mixed discretization of a model problem

Consider the Poisson problem with, for simplicity, homogeneous Neumann bound-
ary conditions,

−∆u = f in Ω, ∇uT ν = 0 on ∂Ω, (2.1)

where f ∈ L2
0(Ω), the space of L2(Ω) functions from L(Ω) with mean zero. For

simplicity, we will assume that Ω is a bounded polygonal domain in IR2, although
the arguments remain valid for three-dimensional domains. The mixed weak for-
mulation of (2.1) introduces a second variable p = −∇u ∈ H0(div;Ω), the space
of vectorfields in [L2(Ω)]2 with weak divergence in L2(Ω) and with vanishing nor-
mal trace on ∂Ω. It seeks a pair (u,p) ∈ L2(Ω) × H0(div;Ω) such that for all
(w,q) ∈ L2

0(Ω)×H0(div;Ω),

(p,q)− (u, div q) = 0 and (div p, w) = (f, w). (2.2)

For the discretization of (2.2) we use, again for ease of presentation only, the
space Wh of piecewise constant functions with mean value zero, and the space
Γ0h = Γh ∩H0(div;Ω). Here, Γh is the lowest-order Raviart-Thomas [10] space of
all piecewise linear vector fileds with constants and continuous normal fluxes on
each edge. With this choice, the mixed finite element approximations (uh,ph) ∈
Wh × Γ0h satisfy

(ph,qh)− (uh, div qh) = 0 and (div ph, wh) = (f, wh) (2.3)

for all (wh,qh) ∈ Wh×Γ0h. To conclude, we note that div Γ0h = Wh and moreover
that Γ0h and Wh satisfy the Babuška-Brezzi condition and (see also Section 3.2)
which guarantee that there exists a unique solution.
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2.1 Optimal complexity solution of the mixed system

The system of algebraic equations that results from (2.3) after choosing a suitable
basis, is symmetric indefinite. Various methods have been proposed to solve it.
Here we will discuss a method of optimal complexity. It makes use of the well-
known property [7],

qh ∈ Γ0h and div qh = 0 ⇔ qh ∈ curl V0h, (2.4)

where V0h is the space of continuous piecewise linear functions that are zero on
the boundary - the usual standard finite element space. This property, together
with the first equation in (2.3), immediately gives that

(ph, curl vh) = 0 for all vh ∈ V0h. (2.5)

The key idea is now to split the solution process for the pair (uh,ph) in three
separate steps. We will discuss these steps in detail afterwards.

(A) Find a particular solution rh ∈ Γ0h such that (div rh, wh) = (f, wh) for
all wh ∈ Wh, or, equivalently, such that div rh = Phf , where Ph denotes
L2(Ω)-projection onto Wh.

(B) Compute the difference ph− rh, which by (2.4) equals curl ωh for some ωh ∈
V0h, by solving the positive definite system (curl ωh, curl vh) = (ph − rh,
curl vh) = −(rh, curl vh), where the latter (and crucial) equality is due to
(2.5).

(C) Compute uh ∈ Wh from the system (uh, div qh) = (ph,qh), ∀qh ∈ Γ0h. This
system, though usually overdetermined, admits a unique solution.

Step (B) is similar to solving a Poisson problem using standard nodal linear el-
ements, since (curl ·, curl ·) = (∇·,∇·). For the discretization of the Poisson
problem with continuous piecewise linear elements, optimal complexity solvers of
multi-grid type are available. To obtain in a similar fashion an optimal complex-
ity method for step (B) above, the size of the right-hand side should be bounded
uniformly in h. Thus, the procedure in step (A) should yield a uniformly bounded
solenoidal component curl ωh of the particular solution rh. For this, it is suffi-
cient that ‖rh‖L2 ≤ C‖f‖L2 with C independent of h. This point, which as far
as we know has been neglected in the literature [6], [8], necessitates the use of a
multi-level approach in step (A).

Remark 2.1. If the triangulation of the domain does not have internal nodes, then
by (2.4) the only divergence-free function is the zero function. In that case, step
(B) becomes redundant.

Remark 2.2. In three space dimensions, the homogeneous problem that results
in step (B) is the so-called curl-curl problem, for which there is also an optimal
complexity multi-level solver available [8].
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In step (C), which constitutes the adjoint of the operation performed in (A),
a similar multi-level approach is necessary since in practice ph is not computed
exactly in step (B). Instead, a perturbation p̂h is obtained, resulting in a perturba-
tion ûh of uh. Typically, one would like to have that ‖ûh−uh‖L2 ≤ C‖p̂h−ph‖L2

with C independent of h. As was shown in [11], this is not the case if more naive
solution methods are used.

3 Two procedures for steps (A) and (C)

We will now describe two procedures for steps (A) and (C) above. The first one
is based on a simple two-term recursion. The second procedure is a multi-level
version of the first. For the first procedure it is not guaranteed that the solenoidal
component that is introduced in the particular solution, remains bounded indepen-
dently of the mesh size, whereas for the second, it is. Both procedures are based on
the fact that div Γ0h = Wh, whereas generally dim(Γ0h) > dim(Wh). Implicitly,
subspaces Zh ⊂ Γ0h are defined such that div Zh = Wh and dim(Zh) = dim(Wh),
which means that rh is uniquely determined by Zh.

3.1 A marching process

A marching process for step (A) constructs a particular solution rh with div rh =
Phf by matching the prescribed divergence Phf triangle by triangle in the following
way.

(M1) Construct a list (Dj)Mj=1 of triangles such that Dj+1 shares an edge with Dj ,
and each triangle occurs in the list at least once,

(M2) Set rh = 0, fh = Phf initially,
(M3) For j = 1 to M − 1, let φj be the unique element from Γ0h such that

div φj = fh on Dj and supp(φj)=Dj ∪ Dj+1 and set rh := rh + φj and
fh := fh − div φj .

Remark 3.1. Note that φj in (M3) is a multiple of the function Γ0h with normal
flux equal to one on the edge between Dj and Dj+1 and normal flux zero on all
other edges. Clearly, its support is Dj ∪ Dj+1.

Proposition 3.2. The algorithm above results in an rh ∈ Γ0h with div rh = Phf .

Proof. Let K∗ = DM be the last triangle in the list and let K be a triangle in
the domain different from K∗. Let k be such, that Dk = K and Dj != K for all
j > k. The k-th execution of step (M3) sets fh = 0 on K. By definition of k, for all
j > k we have K ∩ supp(φj) = ∅, so fh remains zero on K until completion of the
algorithm. Since K != K∗ was chosen arbitrarily, and fh has mean value zero on
Ω, we conclude that fh = 0 also on K∗ and hence on Ω. Since div rh + fh = Phf
during the whole execution of the algorithm, we conclude that div rh = Phf .
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The list (Dj)Mj=1 can always be chosen such that M ≤ 2 dim(Wh), which shows
that the process has optimal complexity. The procedure (M1-M3) defines a linear
mapping Wh → Γ0h : fh #→ rh, which we will denote by div+

h . Proposition 3.2
states that div div+

h is the identity on Wh. Defining Zh as the image of div+
h in

Γ0h, rh is the unique element in Zh that satisfies (div rh, wh) = (f, wh) for all
wh ∈Wh.

The space Zh can alternatively be used as a testspace in step (C) to solve uh
once ph has been computed as rh + curl ωh in steps (A) and (B). Defining the
discrete adjoint div∗

h : Wh → Zh of the divergence by the relation

∀wh ∈ Wh, ∀zh ∈ Zh, (div∗
hwh, zh) = (wh, div zh) (3.1)

and denoting L2-orthogonal projection of Γ0h onto Zh by Πh, it is not difficult
to verify that the solution uh of the equation div∗

huh = Πhph results from the
following consecutive steps:

(N2) Assign an arbitrary value to uh(D1),
(N3) For j = 1 to M − 1, let φj ∈ Γ0h be such that supp(φj)=Dj ∪ Dj+1 and

compute uh(Dj+1) from uh(Dj) by using the relation (uh, div φj) = (ph, φj),
(N4) Shift the solution obtained to mean zero.

Theorem 3.3. There exists a constant C0 = C0(h) such that

∀zh ∈ Zh, ‖zh‖L2 ≤ C0‖ div zh‖L2 , (3.2)

or, equivalently, ∀w ∈ Wh, ‖wh‖L2 ≤ C0‖div∗
hwh‖L2 . In particular, for rh =

div+
h Phf and for the solutions of the perturbed and exact equations div∗

hũh =
Πhp̃h and div∗

huh = Πhph in step (C), we have

‖rh‖L2 ≤ C0‖f‖L2 and ‖uh − ũh‖L2 ≤ C0‖ph − p̃h‖L2 . (3.3)

Proof. Since Zh = div+
hWh and div div+

h is the identity on Wh, it follows that
div is a bijection between the finite dimensional spaces Zh and Wh. Obviously,
the norm of its inverse equals the norm of the inverse of its adjoint.

As discussed in Section 2.1, steps (A), (B) and (C) can only be expected to give
a method of optimal complexity for solving the mixed system when the procedure
div+

h , or equivalently the space Zh, is chosen such that (3.2) is valid with a constant
C0 that is bounded uniformly in h. Unfortunately, as can be deduced from an
example in [11], using marching as in this section, C0 may increase rapidly as h
tends to zero.

3.2 A multi-level procedure

We will now study the important practical case of nested sequences of discrete
spacesW0 ⊂W1 ⊂ · · · and Γ0 ⊂ Γ1 ⊂ · · · corresponding to a sequence of triangu-
lations (T0). We denote the discrete solution on T0 by (u0,p0). For simplicity, only
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spaces arising from uniform refinements of an initial triangulation T0 are consid-
ered. By this we mean that each T0 arises from T0−1 by subdividing each triangle
K ∈ T0−1 into four congruent subtriangles. Denote the orthogonal projection on
W0 by P0. Then (P0−P0−1)f is orthogonal toW0−1 and to each constant function,
and hence to the characteristic function χK ∈ W0−1 ⊕ IR of each K ∈ T0−1. This
implies that (P0 − P0−1)f has zero mean on each K ∈ T0−1. So, by Remark 2.1,
for each K ∈ T0−1 there exists a unique y0 ∈ Γ0 with supp(y0) ⊂ K such that
div y0 = (P0−P0−1)f on K and zero elsewhere. This leads to the following multi-
level method for finding a particular solution in step (A), in which each function
r0 is such that div r0 = P0f .

(S1) Use steps (M1-M3) to find r0 such that div r0 = P0f . Set D = 1.
(S2) For each K ∈ T0−1, find the function yK

0 ∈ Γ0 with supp(yK
0 ) ⊂ K such

that div yK
0 = (P0 − P0−1)f on K and zero elsewhere. Afterwards, set r0 =

r0−1 + y0, where y0 =
∑

K∈T�−1
yK
0 .

(S3) Until some final level is reached, set D := D+ 1 and return to step (S2).

Just as in the previous section, this procedure implicitly constructs linear mappings
div+

0 : W0 → Γ0 with div div+
0 equal to the identity on W0 and spaces Z0 =

div+
0 (W0). For all D ≥ 1, the space Z0 can then be written as Z0 = Z0−1⊕Y0, where

Y0 is the span of all functions in Γ0 with support contained in some K ∈ T0−1.

Lemma 3.4. There exists a constant C∞ such that with C0 = 2−0C∞(D ≥ 1),

∀y0 ∈ Y0, ‖y0‖L2 ≤ C0‖ div y0‖L2 . (3.4)

Proof. The statement follows easily from a homogeneity argument. One may con-
sult [9], where this result was used in a different context.

Theorem 3.5. There exists a β > 0 such that for each D ≥ 0,

∀z0 ∈ Z0, β‖z0‖L2 ≤ ‖ div z0‖L2 . (3.5)

Proof. Write z0 ∈ Z0 as z0 =
∑0

j=0 yj , with y0 ∈ Z0 and yj ∈ Yj for j ≥ 1. Then

‖z0‖L2 ≤
0∑

j=0

‖yj‖L2 ≤
0∑

j=0

Cj‖ div yj‖L2 ≤ ‖ div z0‖L2

√
C2

0 +
1
3
C2

∞ (3.6)

where we have used the triangle inequality, Theorem 3.3 applied to y0, Lemma 3.4
applied to the yj with j ≥ 1, the Schwartz inequality, the orthogonality of the
divergences of the yj , and the convergence of the geometric sum.

This proves the stability of step (A) uniformly in D. As noted before, Theo-
rem 3.5 is equivalent to the statement that for each D ≥ 0,

∀w0 ∈ W0, β‖w0‖L2 ≤ ‖div∗
0w0‖L2 , (3.7)



A Stable and Optimal Complexity Solution 33

which takes care of the stability of step (C). Finally, we show how all this is related
to the Babuška-Brezzi inf-sup condition for the pairs Z0,W0. For this, recall the
definition ‖q‖2

div = ‖ div q‖2
L2 + ‖q‖2

L2 .

Theorem 3.6. The spaces Z0,W0 satisfy the Babuška-Brezzi inf-sup condition

∃γ > 0, ∀D ≥ 0, ∀w0 ∈ W0, γ‖w0‖L2 ≤ sup
0
=z�∈Z�

(div z0, w0)
‖z0‖ div

. (3.8)

Proof. Theorem 3.5 shows that (1 + β−2)1/2‖z0‖ div ≤ ‖ div z0‖L2 for all q ∈ Z0,
and using this, (3.8) follows by choosing z0 = div+

0 w0 for given nonzero w0.

In fact, if (3.8) holds for some pair of spaces Z0,W0 with div Z0 = W0 then
there exists a β > 0 such that (3.7) holds. Indeed, using that ‖z0‖L2 ≤ ‖z0‖ div ,
we obtain

γ‖w0‖L2 ≤ sup
0
=z�∈Z�

(div z0, w0)
‖z0‖L2

≤ sup
0
=z�∈Z�

(z0,div∗
0w0)

‖z0‖L2
= ‖div∗

0w0‖L2 . (3.9)

If Z0 and W0 are finite dimensional, (3.7) is again equivalent to (3.5). This shows
that alternatively, the Babuška-Brezzi inf-sup condition could have been taken as
a starting point in proving the stability of the multi-level solvers.

It is interesting to note that since there are no nonzero divergence-free functions
in Z0, also the Babuška-Brezzi ellipticity condition is satisfied. So, the spaces
Z0,W0 themselves form a stable pair for the mixed discretization of the Poisson
equation as in (2.3). Even though this allows for an optimal complexity and direct
solver, the spaces Z0 unfortunately lack approximation properties.

4 Further remarks

For the Laplace equation, things simplify considerably, and the consequences will
be briefly outlined in Section 4.1. In Section 4.2 we note that Babuška’s saddle
point problem [1] can be treated similarly.

4.1 Solving the mixed discretization of the Laplace equation

Consider the Laplace equation with Dirichlet boundary data, that are assumed to
have mean zero without loss of generality,

−∆u = 0 in Ω, and u = g on ∂Ω with 〈g, 1〉 = 0. (4.1)

Its mixed finite element formulation seeks (uh,ph) in Wh × Γ0h satisfying

(ph,qh)− (uh, div qh) = 〈g,qTh ν〉 and (div ph, wh) = 0 (4.2)

for all (wh,qh) ∈ Wh × Γ0h, where Γ0h denotes the subspace of the Raviart-
Thomas functions with mean zero normal traces. By a variant of (2.4) we have
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that ph = curl ωh for some ωh ∈ Vh, where Vh is the space of continuous piecewise
linear functions, so step (B) reduces to finding a solution ωh of

∀vh ∈ Vh, (curl ωh, curl vh) = 〈g, curl vTh ν〉. (4.3)

This system also produces (modulo a constant) the standard finite element ap-
proximation ωh of the solution ω of the Laplace equation

−∆ω = 0 in Ω, ∇ωT ν =
∂

∂τ
g on ∂Ω, (4.4)

and as observed in [3], ω is related to u in the sense that the pair (ω, u) solves
the Cauchy-Riemann equations. Testing the left equation of (4.2) in the same
spaces Z0 as in Section 3.2, the boundary term vanishes because each z0 ∈ Z0

has normal trace zero on ∂Ω. So, given the standard approximation ωh of ω, the
multi-level method can be used to solve the mixed approximation uh of u from
div∗

0uh = Πh curl ωh in a stable way and in optimal complexity. See [3] for more
details.

4.2 The Poisson equation with inhomogeneous boundary data

Consider the Poisson equation −∆u = f with inhomogeneous Dirichlet boundary
condition u = g on ∂Ω. Let γ : H1(Ω) → H

1
2 (∂Ω) be the trace operator. Then

the Poisson problem can be written as a saddle point problem by looking for the
pair (u, λ) ∈ H1(Ω)×H− 1

2 (∂Ω) such that for all (v, µ) ∈ H1(Ω)×H− 1
2 (∂Ω),

(∇u,∇v)− 〈tr(v), λ〉 = (f, v) and 〈tr(u), µ〉 = 〈g, µ〉. (4.5)

Note that the trace operator takes the place of the divergence in the previous
section. Discretizing this in Vh and Wh = γ(Vh) gives the mixed discrete problem
of finding (uh, λh) ∈ Vh ×Wh such that for all (vh, µh) ∈ Vh ×Wh,

(∇uh,∇vh)− 〈tr(vh), λh〉 = (f, vh) and 〈tr(uh), µh〉 = 〈g, µh〉. (4.6)

Similar to the above, this problem can be solved in three separate steps: find-
ing a particular solution satisfying the second equation, solving the homogeneous
problem in V0h, and finally computing the Lagrangian multiplier. It can be shown
that a naive choice for the particular solution may hamper the overall solution
process and that a similar multi-level method should be used instead. An abstract
treatment of the methods presented in this paper is in preparation.
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