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SOME EXISTENCE RESULT TO ELLIPTIC EQUATIONS
WITH SEMILINEAR COEFFICIENTS∗

TSANG-HAI KUO†

Abstract. For the quasilinear elliptic equation

−
N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+ c(x, u)u = f(x, u,∇u)

on a bounded smooth domain Ω in RN with c(x, r) > α0 and |f(x, r, ξ)| 6 C0 + h(|r|)|ξ|θ, 0 6 θ < 2, we

note that every solution u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), p > 2N

N+2
, is L∞ -bounded by C0

α0
. Consequently, the

existence of such solution is irrelevant to aij(x, r) on |r| > C0
α0

. It is then shown that if the oscillation

aij(x, r) with respect to r are sufficiently small for |r| 6 C0
α0

, then there exists a solution u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω), 1 6 p < ∞.

Key words. Quasilinear elliptic problem, strong solution, W 2,p estimate

1. Introduction. For a bounded domain Ω in RN , N > 3, which is C1,1 diffeomor-
phic to a ball in RN , let Lv, L,Dv, and D are elliptic operators defined by

Lvu = −
N∑

i,j=1

aij(x, v)
∂2u

∂xi∂xj
+ c(x, v)u,

Lu = Luu,

Dvu = −
N∑

i,j=1

∂

∂xi
aij(x, v)

∂u

∂xj
+ c(x, v)u,

Du = Duu,

where the coefficients aij , c, and ∂aij

∂xi
, ∂aij

∂r are bounded Carathéodory functions,

c > α0 > 0 and
N∑

i,j=1

aijξiξj > λ|ξ|2 for some constants α0 and λ.

Let f(x, r, ξ) be a Carathéodory function satisfying |f(x, r, ξ)| 6 C0 + h(|r|)|ξ|2,
where h(|r|) is a locally bounded function. It is shown in [1] that there exists a solution
u ∈ H1

0 (Ω) ∩ L∞(Ω) to the equation

Du = f(x, u,∇u) in Ω. (1.1)

Moreover, every solution u ∈ H1
0 (Ω) ∩ L∞(Ω) to (1.1) is L∞ -bounded by r0 = C0

α0
. In

pursuit of strong solutions, we note that (1.1) can be reformulated as

Lu = f(x, u,∇u) +
N∑

i,j=1

∂aij

∂xi

∂u

∂xj
+

N∑
i,j=1

∂aij

∂r

∂u

∂xi

∂u

∂xj
. (1.2)
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It then suffices to examine the existence of solutions to (1.2) with aij(x, r) replaced by

bij(x, r) =

{
aij(x, r), if |r| < r0

aij(x, r0), if |r| > r0

(1.3)

For the main purpose of this paper, we shall study the existence of solutions u ∈ W 2,p(Ω)∩
W 1,p

0 (Ω) to the equation

Lu = f(x, u,∇u) in Ω, (1.4)

where

|f(x, r, ξ)| 6 C0 + h(|r|)|ξ|θ, 0 6 θ < 2. (1.5)

Recall that in the linear case when aij = aij(x) and f = f(x) ∈ Lp(Ω), one has the
W 2,p estimate from [2] that

‖u‖W 2,p(Ω) 6 C(‖u‖Lp(Ω) + ‖f‖Lp(Ω))

for every solution u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) to (1.4). This estimate remains valid if the

oscillation aij(x, r) with respect to r are sufficiently small [3]. A W 2,p estimate was then
performed to deduce the existence of solutions to (1.4). In Section 2, we observe that
every solution u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) to (1.4), p > 2N
N+2 , is L∞ -bounded by r0 = C0

α0
.

Thus, the existence of solution is irrelevent to aij(x, r) on |r| > r0. Our main result in
Theorem 2.4 shows that if the oscillation of aij(x, r) with respect to r for |r| 6 r0 are
sufficiently small, then there exists a solution u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for 1 6 p < ∞.

2. Existence of Strong Solutions. Our main result in this section aims to show
the existence of solutions u ∈ W 2,p(Ω)∩W 1,p

0 (Ω) to (1.4). In the light of [1, p. 45], every
solution u ∈ H1

0 (Ω) ∩ L∞(Ω) to (1.1) is L∞-bounded by r0, one gets readily that

Lemma 2.1. Every solution u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), p > 2N

N+2 , is L∞ -bounded by r0.

Proof. Let

f̃(x, r, ξ) = f(x, r, ξ)−
N∑

i,j=1

∂aij

∂xi

∂u

∂xj
−

N∑
i,j=1

∂aij

∂r

∂u

∂xi

∂u

∂xj
. (2.1)

(1.4) can be rewritten as

Du = f̃(x, u,∇u).

For every ε > 0, one deduces from (1.5) that |f̃(x, r, ξ)| 6 C0 + ε + h1(|r|)|ξ|2, where
h1(|r|) is a locally bounded function. Notice that a solution u ∈ H1

0 (Ω)∩L∞(Ω) to (1.1)
is L∞-bounded by r0 + ε

α0
. Therefore, every solution u ∈ W 2,p(Ω)∩W 1,p

0 (Ω), p > 2N
N+2 ,

is L∞-bounded by r0.
For a fixed x in RN , let aij(x, r; s) denote the oscillation of aij(x, r) with respect to

r for |r| 6 s, i.e.,

osc aij(x, r; s) = sup{|aij(x, r1)− aij(x, r2)| : |r1|, |r2| 6 s}.

Let osc a(x, r; s) = max
16i,j6N

osc aij(x, r; s) and osc a(x, r) = osc a(x, r; +∞).
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For operators Lv, we quote the following result from [3, p. 191]

Lemma 2.2. Let Ω be a bounded domain in RN which is C1,1 diffeomorphic to a ball
in RN , and the coefficients aij ∈ C0,1(Ω̄ × R), |aij |, |c| 6 Λ, where Λ is a positive
constant, i, j = 1, . . . , N . Assume that osc aij(x, r) is sufficiently small with respect to r

and uniformly for x ∈ Ω. Then if u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) and Lvu ∈ Lp(Ω), 1 < p < ∞.

One has the estimate

‖u‖W 2,p(Ω) 6 C(‖Lvu‖Lp(Ω) + ‖u‖Lp(Ω)),

where C is a constant (independent of v) dependent on N , p, λ, Λ, ∂Ω, and Ω, the
diffeomorphism and the moduli of continuity of aij(x, r) with respect to x in Ω̄.

Denote L̃v and L̃ the elliptic operators with aij(x, r) replaced by bij(x, r), i.e.,

L̃vu = −
N∑

i,j=1

bij(x, v)
∂2u

∂xi∂xj
+ c(x, v)u,

and

L̃u = L̃uu.

Consider now the equation

L̃u = f(x, u,∇u) (2.2)

Let fn be the truncature of f by ±n. For v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), the Dirichlet problem

L̃vu = fn(x, v,∇v) has a unique solution un ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) and by Lemma 2.2

‖un‖W 2,p(Ω) 6 C(‖un‖Lp(Ω) + ‖fn(x, v,∇v)‖Lp(Ω)).

An application of the weak maximum principle of A. D. Aleksandrov [2, p. 220] to-
gether with the Schauder Fixed Point Theorem implies that there exists a solution
un ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) to (2.2). Moreover, by the constraint (1.5) on f , one has
the following estimate from [3].

Lemma 2.3. The approximating solutions (un) are W 2,p-bounded.

The existence of solutions can now be deduced from above lemmas.

Theorem 2.4. Let Ω be a bounded C1,1-smooth domain in RN , N > 3, aij ∈ C0,1(Ω̄× R),
∂aij

∂xi
, ∂aij

∂r , c be bounded Carathodory functions, c(x, r) > α0 > 0. Assume that f(x, r, ξ)
satisfies (1.5) and osc a(x, r; r0) is sufficiently small uniformly for x ∈ Ω̄. Then there
exists a solution u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) to Equation (1.4).

Proof. By Lemma2.3 we get the approximating solutions (un) which are W 2,p-bounded.
It follows from the compact imbedding W 2,p(Ω) → W 1,p(Ω) that there exists a convergent
subsequence in W 1,p

0 (Ω), which is still denoted by (un), such that un → u a.e., ∇un → ∇u
a.e. and un → u in W 1,p(Ω). Moreover, since ‖un‖W 2,p(Ω) 6 M and the set {v ∈
W 2,p(Ω)∩W 1,p

0 (Ω)|‖v‖W 2,p(Ω) 6 M} is closed in W 1,p(Ω), the limit u of (un) belongs to
W 2,p(Ω) ∩W 1,p

0 (Ω).
Passing to the limit and using Vitali Convergence Theorem, one can show that Lun →

Lu in D́(Ω) and fn(x, u,∇un) → f(x, u,∇u) in L1(Ω), which proves that u is a solution
to (2.2).
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Notice that ‖u‖L∞ 6 r0 by Lemma 2.1, hence bij(x, u(x)) = aij(x, u(x)) a.e. There-
fore one concludes that u is in fact a solution to (1.4).
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