Toposym 4-B

T. Mackowiak

Planable and smooth dendroids

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. [260]--267.

Persistent URL: http://dml.cz/dmlcz/700645

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

PLANABLE AND SMOOTH DENDROIDS

T. MACKOWIAK
 Wrocław

§ 1. Introduction. All spaces considered in this paper are metric and compact. A continuum means a compact, connected space. A dendroid is a hereditarily unicoherent and arcwise connected continuum. If a dendroid has only one ramification point t (see [3], p. 230), it is called a fan with the top t (see [5], p. 6). A unique arc joining points a and b in a given dendroid X we denote by ab . A dendroid X is said to be smooth at p provided lim $a_{n}=a$ implies Lim $p a_{n}=p a(s e e[8], p .298)$. If a dendroid X has a point p, at which it is smooth, then we say simply that X is smooth.

A space X is said to be planable if there is a homeomorphism of X into the Euclidean plane. It is well known that the problem of a characterization of continua X which are not planable is solved in case when \dot{X} is locally connected. Namely, a locally connected continuum X, which is not the two-sphere, is planable if and only if it contains no homeomorphic image of the Kuratowski's primitive skew graphs K_{1} and K_{2} (see [14]) and of the Claytor's curves C_{1} and C_{2} (see [11]). The problem of the planability of continua which are not locally connected is open (for some partial results see [1], Theorem 4 and Example 1, p. 654). Even for dendroids this problem is very complicated. There is no finite (countable) collection \mathscr{O} of dendroids such that any not planable dendroid (smooth dendroid) contains a homeomorphic copy of some member of \boldsymbol{O} (see [6] and [9]). Exactly the same situation is for fans, which can be not planable (the first example was given in [2]). Namely, there does not exist also such countable collection $\not \subset$ for fans (see [16]). All smooth fans are planable, because they can be imbedded in the Cantor fan (see [5], Theorem 9, p. 27 and [12], Corollary 4, p. 90).

Recall that if A is a closed subset of a space X, then the point acA is called an inaccessible point of A in X provided there is no nondegenerate arc $a b$ in X such that $a b \cap A=\{a\}$.

Some sufficient conditions to the non-planability of dendroids in terms of inaccessible points are proved in [10].

A continuum K_{o} is said to be a convergence continuum of X if it is the topological limit of a sequence of continua K_{n} such that $K_{0}=$ $=\operatorname{Lim} K_{n}$ and $K_{n} \cap K_{m}=\varnothing$ for $n \neq m$ and $n, m=0,1,2, \ldots$ (see [15], p. 245).

It is easy to see (for example from Claytor's result) that every locally connected dendroid is planable. Thus, since the non-local connectedness of a given continuum X implies the existence of non-degenerate convergence subcontinua of X (see [15], § 49, VI, Theorem 1, p. 245) it seems possible to characterize planable dendroids in terms of the con-
vergence continua and of inaccessible points. In this paper we prove some results in this direction of investigation of nonplanable dendroids.
§ 2. Convergence continua of arcs. In this section we will prove that any convergence subcontinuum of planable dendroid is a convergence continuum of arcs. Firstly, from Brouwer's reduction theorem easily we obtain the following

THEOREM 1. Let a sequence $\left\{K_{n}\right\}$ of subcontinua of X be such that $\operatorname{Lim} K_{n}=K_{o}, K_{n} \cap K_{m}=\emptyset$ for $n \neq m$ and $n, m=0,1,2, \ldots$ Then there is a maximal subcontinuum Q_{0} of K_{o} for which there are arcs $a_{n_{i}} b_{n_{i}}$ converging to Q_{0} such that $a_{n_{i}} b_{n_{i}} \subset K_{n_{i}}$ for some subsequence $\left\{n_{i}\right\}$ of the sequence of natural numbers.

The following theorem generalizes Proposition 8 from [10].
THEOREM 2. Let a dendroid X contain a sequence of mutually disjoint simple triods $T_{n}=a_{n}^{1} p_{n} \cup a_{n}^{2} p_{n} \cup a_{n}^{3} p_{n}(n=1,2, \ldots)$, where a_{n}^{1}, a_{n}^{2}, a_{n}^{3} are endpoints and p_{n} is the top of T_{n}, and such that $A^{i}=\operatorname{Lim} a_{n}^{i} p_{n}, T_{n} \cap \bigcup_{i=1}^{3} A_{i}$ $=\varnothing$ and $b^{i} \in A^{i} \backslash \bigcup_{j \neq i} A^{j}$ for $i, j=1,2,3$ and $n=1,2, \ldots$ Then X is not planable.

Proof. Suppose X can be imbedded in the plane R^{2} under a homeomorphism $h: X \rightarrow h(X) \subset R^{2}$. We will write x instead of $h(x)$ to simplify denotations. Let B^{i} be regions in R^{2} such that $b^{i} \in B^{i}$ and $\overline{B^{i}} \cap\left(\bigcup_{j \neq i}\left(A^{j} \cup \bar{B}^{j}\right)\right)=$ $=\emptyset$ for $i, j=1,2,3$. Thus, since $b^{i} \in A^{i}=\operatorname{Lim} a_{n}^{i} p_{n}$, we can assume that (1) $a_{n}^{i} p_{n} \cap B^{i} \neq \varnothing, \quad a_{n}^{i} p_{n} \cap\left(\bigcup_{j \neq i} \bar{B}^{j}\right)=\varnothing$
for $i, j=1,2,3$ and for each $n=1,2, \ldots$
The arc $a_{1}^{1} p_{1} \cup a_{1}^{2} p_{1}$ contains an arc $c^{1} c^{2}$ such that $c^{1} c^{2} n\left(\bigcup_{i=1}^{3}\left(A^{i} \cup \bar{B}^{i}\right)\right)$ $=c^{1} c^{2} n\left(\bar{B}^{1} \cup \bar{B}^{2}\right)=\left\{c^{1}, c^{2}\right\}$. Similarly, the arc $a_{1}^{2} p_{1} \cup a_{1}^{3} p_{1}$ contains an arc $d^{2} d^{3}$ such that $d^{2} d^{3} n\left(\bigcup_{i=1}^{3}\left(A^{i} \cup \vec{B}^{i}\right)\right)=d^{2} d^{3} n\left(B^{2} \cup B^{3}\right)=\left\{d^{2}, d^{3}\right\}$.

Let $p a^{i}$ be an arc in $A^{i}=1$ such that $p a^{i} \cap \bar{B}^{i}=\left\{a^{i}\right\}$, and $p a^{i} \cap p a^{j}=\{p\}$ for $i \neq j$ and $i, j=1,2,3$. Then the continuum $U^{3}\left(p a^{i} \cup \bar{B}^{i}\right) \cup c^{1} c^{2} v d^{2} d^{3}$ separates the plane into three regions D^{1}, D^{2} and ${ }^{j} D^{3}$ such that pa ${ }^{i}, ~ D^{i}$ $\neq \varnothing$ for $i=1,2,3$. Infinitely many points p_{n} belong to D^{i} for some $i=$ $=1,2,3$. Let $p_{n_{j}} \in D^{i}$ for $j=1,2, \ldots$ It follows from (1) that $a_{n_{j}}^{i} p_{n_{j}} c$ $\subset D^{i}$. Therefore $A^{i} \subset \overline{D^{i}}$, because $A^{i}=\operatorname{Lim} a_{n}^{i} p_{n}=\operatorname{Lim} a_{n_{j}}^{i} p_{n_{j}}$. But $p a^{i} \subset A^{i}$ and $p a^{i} \backslash D^{i} \neq \varnothing$, a contradiction.

Now we will prove
THEOREM 3. Let a sequence of subcontinua $\left\{K_{n}\right\}$ of $p l a n a b l e ~ d e n d r o i d ~ X ~$ be such that lim $K_{n}=K_{0}$ and $K_{n} n K_{m}=\emptyset$ for $n \neq m$ and $n, m=0,1,2, \ldots$ Then there is a sequence $\left\{a_{n_{i}}^{1} a_{n_{i}}^{2}\right\}$ of arcs such that Lim $a_{n_{l}} a_{n_{i}}^{2}=K_{o}$ and
$a_{n_{i}}^{1} a_{n_{i}}^{2} \subset K_{n_{i}}$ for $i=1,2, \ldots$
Proo f. Let Q_{0} be a maximal subcontinum of K_{0} for which there are arcs $a_{n_{i}}^{1} a_{n_{i}}^{2}$ converging to Q_{0} and such that $a_{n_{i}}^{1} a_{n_{i}}^{2} c{ }_{n_{n}}$ for some subsequence $\left\{n_{i}\right\}$ of the sequence of natural numbers (such Q_{0} exists by Theorem 1). Suppose, on the contrary, that $K_{0} \backslash Q_{0} \neq \emptyset$. Let $a^{3} \in K_{0} \backslash Q_{0}$. Since $K_{o}=\operatorname{Lim} K_{n}=\operatorname{Lim} K_{n_{i}}$, we infer that there are points $a_{n_{i}}^{3}$ belonging to $K_{n_{i}}$ such that $\lim a_{n_{i}}=a^{3}$. For each $i=1,2, \ldots$ we take an arc $a_{n_{i}}^{3} p_{n_{i}}$ in $^{K_{n_{n}}}$ such that $a_{n_{i}}^{3} p_{n_{i}} n a_{n_{i}}^{1} a_{n_{i}}^{2}=\left\{p_{n_{i}}\right\}$. Since X is compact, we can assume that sequences $\left\{a_{n_{i}}^{j} p_{n_{i}}\right\}^{1}$ are convergent for $j=1,2,3$. Put $A^{j}=\operatorname{Lim} a_{n_{i}}^{j} p_{n_{i}}$ for $j=1,2,3$. By the choice of Q_{0} we conclude that there is a natural number i_{o} such that for each $i>i_{o}$ the $\operatorname{set} T_{n_{i}}=$ $=a_{n_{i}}^{1} p_{n_{i}} \cup a_{n_{i}}^{2} p_{n_{i}} \cup a_{n_{i}}^{3} p_{n_{i}}$ is a simple triod. Moreover,
(2) $A^{j} \backslash\left(\bigcup_{k \neq j} A^{k}\right) \neq \emptyset$ for $j, k=1,2,3$.

In fact, suppose that $A^{j} \backslash\left(\bigcup_{k \neq j} A^{k}\right)=\emptyset$ for some $j=1,2,3$. Then $A^{j} \subset \bigcup_{k \neq j} A^{k}$. Thus $\operatorname{Lim}\left(\bigcup_{k \neq j} a_{n_{i}}^{k} p_{n_{i}}\right)=\operatorname{Lim}\left(\bigcup_{k=1}^{3} a_{n_{i}}^{k} p_{D_{i}}\right)=A^{1} \cup A^{2} \cup A^{3}$. But sets $\bigcup_{k \neq j} a_{n_{i}}^{k} p_{n_{i}}$ are arcs for $i>i_{o}$ and Q_{o} is a proper subcontinuum of $A^{1} \cup A^{2} \cup A^{3}$, because $a^{3} \in\left(A^{1} \cup A^{2} \cup A^{3}\right) \backslash Q_{0}$. It is impossible, by the choice of Q_{0}. The condition (2) and Theorem 2 imply that X is not planable, a contradiction. The proof of Theorem 3 is complete.

From Theorem 3 we infer that
COROLLARY 4• Any convergence subcontinuum of planable dendroid X is a convergence continuum of arcs which are contained in X.
§ 3. Some properties of planable dendroids. We have (see [3], (47), p. 239, [4], XI, p. 217 and [15], §49, III, Theorem 10, p. 470)

PROPOSITION 5. If X is a plane dendroid, then the set $R^{2} \backslash X$ is connected.

Firstly, we will show the following
LEMMA 6. If a_{1}, \ldots, a_{n} are different accessible points of a continuum A in a plane dendroid X, then there are nondegenerate mutually disjoint $\operatorname{arcs} a_{1} b_{1}, \ldots, a_{n} b_{n}$ in X and a simple closed curve C in R^{2} such that $a_{i} b_{i} \cap A=\left\{a_{i}\right\}$ for $i=1,2, \ldots, n$ and
$\left(A \cup \bigcup_{i=1}^{n} a_{i} b_{i}\right) \cap C=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
In fact, since points a_{1}, \ldots, a_{n} are different and since they are
accessible points of a continuum A in a dendroid X, we infer that there are nondegenerate mutually disjoint arcs $a_{1} c_{1}, \ldots, a_{n} c_{n}$ in X such that $a_{i} c_{i} \cap A=\left\{a_{i}\right\}$ for $i=1,2, \ldots, n$. Sets A and $B=\left\{c_{1}, \ldots, c_{n}\right\}$ are disjoint and closed sets wich do not separate the plane (cf. Proposition 5) Thus, by Theorem 9 in [15], § 61, II, p. 514, we obtain that there is a simple closed curve C in R^{2} which separates A and B. Therefore $C \cap A=$ $=\emptyset$ and $C \cap a_{i} c_{i} \neq \emptyset$ for each $i=1,2, \ldots, n$. Let b_{i} be the first point in the arc $a_{i} c_{i}$ (in the order from a_{i} to c_{i}) which belongs to C for $i=$ $=1,2, \ldots, n$. Then C and arcs $a_{1} b_{1}, \ldots, a_{n} b_{n}$ satisfy required conditions.

Let X be a dendroid and let A be a subcontinuum of X. A point b of A is called a convergence point of A in X if there is a sequence $\left\{a_{n}\right\}$ of X such that $\operatorname{Lim} a_{n} b=A$ and $\operatorname{Lim}\left(a_{n} b \cap A\right)=\{b\}$.

It follows from the definition of the convergence point that
LEMMA 7. If b is a convergence point of a subcontinuum A of a dendroid X, then b belongs to the closure of the set of all accessible points of A in X.

Now, we will prove
THEOREM 8. Let b be a convergence point of a subcontinuum A of a planable dendroid X. Then the set of all accessible points of A in X is contained in some arc cb.

Proof. We assume that X is embedded in the plane R^{2}. Firstly we will prove that
(3) the set, of all accessible points of A in X is contained in some $\operatorname{arc} c_{1} c_{2}$.

In fact, suppose, on the contrary, that c_{1}, c_{2} and c_{3} are accessible points of A in X and they are endpoints of a simple triod T contained in A. According to Lemma 6 there are disjoint nondegenerate arcs $d_{1} c_{1}$, $d_{2} c_{2}$ and $d_{3} c_{3}$ in X and a simple closed curve C in R^{2} such that
$(4) \quad d_{i} c_{i} \cap A=\left\{c_{i}\right\}$ for $i=1,2,3$ and $\left(A \cup \bigcup_{i=1}^{3} d_{i} c_{i}\right) \cap C=\left\{d_{1}, d_{2}, d_{3}\right\}$.
The curve $D=C \cup \bigcup_{i=1}^{3} d_{i} c_{i} \cup T$ separates the plane R^{2} into four domains such that the closure of any of them fails to contain at least one of the points c_{1}, c_{2}, c_{3}. Since b is a convergence point of A in X, we conclude, by (4), that there are arcs $a_{n} a_{n}^{\prime}$ in X such that Lim $a_{n} a_{n}^{\prime}$ $=A$ and $a_{n} a_{n}^{\prime} \cap D=\varnothing$ for each $n=1,2, \ldots$ Therefore some subsequence $\left\{a_{n_{k}} a_{n_{k}^{\prime}}^{\prime}\right\}$ of the sequence $\left\{a_{n} a_{n}^{\prime}\right\}$ is contained in some domain into which D separates the plane. Then the set Lim $a_{n_{k}} a_{n_{k}}^{\prime}$ fails to contain some c_{i}. But $\left\{c_{1}, c_{2}, c_{3}\right\} \subset T \subset A=\operatorname{Lim} a_{n} a_{n}^{\prime}=\operatorname{Lim} a_{n_{k}} a_{n_{k}^{\prime}}^{\prime}$, a contradiction.

From Lemma 7 , we infer that $b \in c_{1} c_{2}$. Suppose, on the contrary, that
r_{1} and r_{2} are accessible points of A in X such that $c_{1} \leq r_{1}<b<r_{2} \leq c_{2}$ (in the natural order of $c_{1} c_{2}$). According to Lemma 6 there are disjoint nondegenerate arcs $s_{1} r_{1}$ and $S_{2} r_{2}$, and a simple closed curve S in R^{2} such that
(5) $s_{i} r_{i} \cap A=\left\{r_{i}\right\}$ for $i=1,2$ and $\left(A \cup s_{1} r_{1} \cup s_{2} r_{2}\right) \cap S=\left\{s_{1}, s_{2}\right\}$.

The curve $R=S \psi s_{1} s_{2}$ separates the $p l a n e R^{2}$ into three domains W_{1}, W_{2} and W_{3}. Since b is a convergence point of A in X, we infer that there is a sequence $\left\{a_{n}\right\}$ of points of X such that
(6) $\operatorname{Lim} a_{n} b=A$,
and
(7) $\operatorname{Lim}\left(a_{n} b \cap A\right)=\{b\}$.

We may assume, by (6), that $a_{n}{ }_{n} S=\varnothing$ for each $n=1,2, \ldots$, because $A \cap S=\emptyset$ by (5). Moreover, since sets $a_{n} b \cap_{s_{1}} s_{2}$ are connected for each $n=1,2, \ldots$, we may assume that all arcs $a_{n} b$ are contained in the closure of one of sets W_{1}, W_{2} and W_{3}. Say
(8) $a_{n} b \subset \bar{W}_{1}$ for each $n=1,2, \ldots$

From (6) and (7), we infer that there is a nondegenerate arc $r_{3} s_{3}$ in $X \cap W_{1}$ such that $r_{3} s_{3} \cap\left(A \cup s_{1} r_{1} \cup s_{2} r_{2}\right)=r_{3} s_{3} \cap A=\left\{r_{3}\right\}$. Thus r_{3} is an accessible point of A in X. Therefore, by (3), we conclude that $r_{1}<r_{3}<$ $<r_{2}$ (in the order of the arc $r_{1} r_{2}$).

Sets A and $B=\left\{s_{1}, s_{2}, s_{3}\right\}$ are disjoint and closed, and they do not separate the plane (cf. Proposition 5). We obtain that there is a simple closed curve S° in R^{2} which separates A and B (see [15], \& 61, II, Theorem 9, p. 514). Therefore $S^{\prime} \cap A=\emptyset$ and $S^{\prime} \cap r_{i} s_{i} \neq \emptyset$ for $i=1,2,3$. Let s_{3}^{\prime} be the first point in the arc $r_{3} s_{3}$ (in the order from r_{i} to s_{i}) which belongs to S^{\prime}, and let $\left[s_{1}^{\prime} s_{2}^{\prime}\right]$ be an arc in S^{\prime} containing s_{3}^{\prime} such that $\left[s_{1}^{\prime} s_{2}^{\prime}\right] \cap\left(S \cup s_{1} s_{2}\right)=\left\{s_{1}^{\prime}, s_{2}^{\prime}\right\}$. Then the set $\left[s_{1}^{\prime} s_{2}^{\prime}\right] \cup r_{3} s_{3}^{\prime}$ separates W_{1} into three commonents V_{1}, V_{2}, V_{3}, the closure of each of them does not contain both r_{1} and r_{2}.

Since $\left[s_{1}^{\prime} s_{2}^{\prime}\right] \cap a_{n} b \subset S^{\prime} \cap a_{n}{ }^{b}$ for each $n=1,2, \ldots$ and $S^{\prime} n A=\varnothing$, we can assume, by (b), that $\left[s_{1} s_{2}^{j}\right] n a_{n} b=\emptyset$ for each $n=1,2, \ldots$ Therefore, because sets $a_{n} b \cap\left(s_{1} s_{2} \cup r_{3} s_{3}\right)$ are connected for each $n=1,2, \ldots$, we infer from (8) that for each $n=1,2, \ldots$ the arc $a_{n} b$ is contained in the one of sets $\bar{V}_{1} \cup r_{3} b, \bar{V}_{2} \cup r_{3} b, \bar{V}_{3} \cup r_{3} b$. Therefore some subsequence $\left\{s_{n_{k}} b\right\}$ is contained, say in $\bar{V}_{1} \cup r_{3} b$. But set $\bar{V}_{1} \cup r_{3} b$ does not contain either r_{1} or r_{2}, and $\left\{r_{1}, r_{2}\right\} \subset A=\operatorname{Lim} a_{n_{k}} b=\operatorname{Lim} a_{n} b$, a contradiction. The proof of Theorem 8 is complete.

Combining Lemma 7 and Theorem 8 it is easy to obtain
COROLLARY 9. If A is a subcontinuum of nlanable dendroid X, then A has at most two convergence points.

Remark that if one will chance the definition of convergence points
distinguishing two situations, when sets $a_{n} b \cap A$ are degenerate and when they are nondegenerate, then he may prove other properties of planable dendroids, which do not follow from above proved properties.
§ 4. Two examples of plane smooth dendroids. It is known (see [13], Corollary 4.2) that there is no universal plane dendroid, i.e., there is no plane dendroid containing a homeomorphic copy of any plane dendroid. In spite of this one can ask whether there is a plane smooth dendroid which contains a homeomorphic copy of any plane smooth dendroid. The answer is negative. We consider firstly two special examples of plane smooth dendroids to obtain this result.

Let (x, y, z) denote a point of the Euclidean 3-space having x, y and z as its rectangular coordinates. Put

$$
\begin{aligned}
D_{1}= & \bigcup_{n=1}^{\infty}(\{(1 / n \cos t, 1 / n \sin t, 0): 0 \leq t \leq 3 / 2 \pi\} \cup \\
& \cup\{(x,-1 / n, 0): 0 \leq x \leq 1\} \cup\{(x, 0,0): 0 \leq x \leq 1\}) \\
D_{2}= & \bigcup_{n=1}^{\infty}\left(\left\{\left(t-\frac{1-t}{n}, \frac{t}{n}, 0: 0 \leq t \leq 1\right\} \cup\left\{\left(-t+\frac{1-t}{n},-\frac{t}{n}, 0\right): 0 \leq t \leq 1\right\} \cup\right.\right. \\
& \cup\{(x, 0,0):-1 \leq x \leq 1\}), \\
p= & (0,0,0), \\
I= & \{(0,0, z): 0 \leq z \leq 1\}
\end{aligned}
$$

and

$$
E_{i}=D_{i} \cup I \text { for } i=1,2
$$

It is easy to see that
PROPOSITION 10. D_{1} and D_{2} are both smooth plane dendroids with p as a unique point at which they are smooth.

One can prove more general
PROPOSITION 10°. If X is a smooth dendroid containing either D_{1} or D_{2} which is contained in the plane, then p is a unique point, at which X is smooth.

We have also
PROPOSITION 11. E_{1} and E_{2} are both nonplanable dendroids.
Smooth dendroids have the following property
PROPOSITION 12. If a dendroia X is smooth at r, A is a subcontinuum of X, and $r q$ is an arc such that $r q n A=\{q\}$, then A is smooth at q.

Now, we will prove
THEOREM 13. There is no smooth plane dendroid containing a homeomorphic copy of D_{1} and a homeomorphic copy of D_{2}.

Proof. Suppose, on the contrary, that X is plane dendroid which
is smooth at r and for $i=1,2$ a mapping $h_{i}: D_{i} \rightarrow h_{i}\left(D_{i}\right)$ is a homeomorphism such that $h_{i}\left(D_{i}\right) \subset X$. Let $r a_{i}$ be an arc in X such that $r q_{i} \cap h_{i}\left(D_{i}\right)$ $=\left\{q_{i}\right\}$ for $i=1,2$. By Proposition 12 we obtain that for $i=1,2$ the dendroid $h_{i}\left(D_{i}\right)$ is smooth at $h_{i}\left(q_{i}\right)$. Thus $h_{i}\left(q_{i}\right)=h_{i}(p)$ for $i=1,2$, by Proposition 10. Therefore, for $i=1,2$, if the arc ra_{i} is nondegenerate, then the continuum $\mathrm{ra}_{\mathrm{i}} \cup \mathrm{h}_{\mathrm{i}}\left(\mathrm{D}_{\mathrm{i}}\right)$ is homeomorohic to E_{i}, and, by Proposition 11, we obtain a contradiction. Hence $h_{1}(p)=h_{2}(p)$. But $h_{1}(p)$ is an endpoint of $h_{1}\left(D_{1}\right)$ and there are two arcs in $h_{2}\left(D_{2}\right)$ having only the point $h_{2}(p)$ in the common part. Thus X must contain a homemorphic copy of E_{1}. But this is impossible by Proposition 11, because X is planable.

COROLLARY 14. There is no universal smooth plane dendroid.
$\hat{\S}$ 5. Problems. Besides the general open problem of a characterization of plafe (smooth) dendroids the following problems are open.

Does a plane dendroid exist containing all plane smooth dendroids ?
Is an open image of a plane dendroid always a plane dendroid ? (compare [7]).

Remark that open mappings do not preserve the planability in general (see [17], Example, p. 189).

REFERENCES

[1] R.H. Bing, Snake-like continua, Duke Math. J. 18 (1961), 653-663. [2] K. Borsuk, A countable broom which cannot be imbedded in the plane, Colloq. Math. 10 (1963), 233-236.
[3] J.J. Charatonik, On ramification points in the classical sense, Fund. Math. 51 (1962), 229-252.
[4] , Confluent mapnings and unicoherence of continua, Fund. Math. 56 (1964), 213-22.0.
[5] , On fans, Dissertationes Math. Rozprawy Matem. 54 , Warszawa 1967, 1-40.
\qquad , A. theorem on non-planar dendroids, Bull. Acad. Polon. Sci. (to appear).
[7] A theorem on monotone mapnings of planable $\boldsymbol{\lambda}$-dendroids, ibid. (to apnear). and C. Eberhart, On smooth dendroids, Fund. Math. - 67 (1970), 297-322. collection of non-planable smoth nondroids, Bull. Acad. Polon. Sci., (to appear).
[10] and Z. Rudy, Remarke or morintarmete dendmids, Fund. Math. (to apnear) .
[11] S. Claytor, Peanian continua not imbeddable in a spherical surface, Annals of Mathematics 38 (1937), 631-646.
[12] C. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90.
[13] J. Krasinkiewicz and P. Minc, Nonexistence of universal continua for ceratin classes of curves, (to appear).
[14] C. Kuratowski, Sur le probléme des courbes gauches en Topologie, Fund. Math. 15 (1930), pp 271-283.
[15] K. Kuratowski, Topology, vol. II, Warszawa 1968.
[16] T. Maćkowiak, Some collection of non-planar fans, Bull. Acad. Polon. Sci., (to appear).
[17] G. T. Whyburn, Analytic topology, Providence, R.L., 1942.

INSITUTE OF MATHEMATICS, UNIVERSITY OF WROCŁAW,
Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland:

