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PLANABLE AND SMOOTH DENDROIDS 

T. MACKOWIAK 

Wroclaw 

§ 1. Introduction. All spaces considered in this paper are metric 

and compact. A continuum means a compact, connected space. A dendroid 

is a hereditarily unicoherent and arcwise connected continuum. If a den

droid has only one ramification point t (see [ 3], p. 230), it is called 

a fan with the top t (see f 5] f p. 6). A unique arc joining points a 

and b in a given dendroid X we denote by ab. A dendroid X is said to be 

smooth at p provided lim an = a implies Lim pan = pa (see [8], p. 298). 

If a dendroid X has a point p, at which it is smooth, then we say simply 

that X is smooth. 

A space X is said to be planable if there is a homeomorphism of X 

into the Euclidean plane. It is well known that the problem of a chara

cterization of continua X wtLch are not planable is solved in case when 

X is locally connected. Namely, a locally connected continuum X, which 

is not the two-sphere, is planable if and only if it contains nohomeo-

morphic image of the Kuratowski's primitive skew graphs K^ and Kp ( see 

[14]) and of the Claytor's curves C-. and Cp (see f11]) • The problem 

of the planability of continua which are not locally connected is open 

(for some partial results see f 1J, Theorem 4 and Example 1, p. 654). 

Even for dendroids this problem is very complicated. There is no finite 

( countable) collection SO of dendroids such that any not planable den

droid ( smooth dendroid) contains a homeomorphic copy of some member of 

JO (see f 6J and f 9J) • Exactly the same situation is for fans, which can 

be not planable (the first example was given in f 2])# Namely, tjiere 

does not exist also such countable collection t# for fans (see [16J). 

All smooth fans are planable, because they can be imbedded in the Can

tor fan (see [ 5J, Theorem 9, p. 27 and [12j, Corollary 4, p. 90) . 

Recall that if A is a closed subset of a ;?pace X, then the point 

a c A is called an inaccessible point of A in X provided there is no non-

degenerate arc ab in X such that abn A = {aj« 

Some sufficient conditions to the non-planability of dendroids in 

terms of inaccessible points are proved in f10J. 

A continuum K is said to be a convergence continuum of X if it is 

the topological limit of a sequence of continua K such that K « 

-» Lim Kn and KnnKffl = 0 for n ^ m and n,m = 0,1,2,... (see [15jtp. 245). 

It is easy to see (for example from Claytor's result) that every 

locally connected dendroid is planable. Thus, since the non-local conne

ctedness of a given continuum X implies the existence of non-degenerate 

convergence subcontinua of X (see f15], § 49, VI, Theorem 1, p. 245) it 

seems possible to characterize planable dendroids in terms of the con-
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vergence continua and of inaccessible points. In this paper we prove 

some results in this direction of investigation of nonplanable dendroids. 

§ 2. Convergence continua of arcs. In this section we will prove that 
any convergence subcontinuum of planable dendroid is a convergence conti
nuum of arcs. Firstly, from Brouwer's reduction theorem easily we obtain 
the following 

THEOREM 1. Let a sequence { K j of subcontinua of X be such that 

Lim K n = K Q , K n K m = 0 for n ?- m and n,m = 0,1,2,... Then there is a 
maximal subcontinuum Q of K for which there are arcs a b^ conver-

o o ni i 

ging to Q such that a b c K for some subsequence {n.^ of the 

sequence of natural numbers. 

The following theorem generalizes Proposition 8 from 110]. 

THEOREM 2. Let a dendroid X contain a sequence of mutually disjoint 

simple triods T n = a nP nu a^Pnu a nP n (n = 1,2,...), where an, an, a n are 
endpoints and p is the top of T , and such that A 1 = Lim a D,_, T O [ ) A . 

n n n n n -jTT'i --
a 0 and b^e A 1 \ U A^ for i,j = 1,2,3 and n = 1,2,... Then X is not 

planable. <^i 

2 
P r o o f . Suppose X can be imbedded in the plane R under a homeo-

morphism h: X -* h(X)cR2. We will write x instead of h (x) to simplify deno
tations. Let B 1 be regions in R 2 such that b 1€ B 1 and B xn ( U ( A ^ B , 3 | = 

i i i ^L 

= 0 for i,j = 1,2,3. Thus, since b € A = Lim a p , we can assume that n- n ғ 

(1) a ^ o B
1
^ , 4p

n
n( l̂/ B-») - 0 

for i,j = 1,2,3 and for each n = 1
 f
 2,...

 3
 _ 
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Let pa
1
 be an arc in A such that pa

X
n B

1
 = { a

1
] , and p a

1
^ pa

J
 = { p ] 

for i ^ j and i,j = 1,2,3. Then the continuum l^/fpa
1
^ B

1
) u c

1
c

2
c7 d

2
d

3 

separates the plane into three regions D ,D ani"~ D such that pa
1
\ D

1 

£ 0 for i = 1,2,3. Infinitely many points p belong to D 1 for some i = 
= 1,2,3. Let p n c D

1 for ,j = 1,2,... It follows from (1) that a 1 p n c 

C D1. Therefore A 1 C D 1 , because A 1 = Lim a1© = Lim a 1 p^ . But 
n^n n . ^ n . 

pa^-c A1 and p a x \ D1 ^ 0 , a c o n t r a d i c t i o n . 

Now we w i l l p rove 

THEOREM 3 . Let a sequence of s u b c o n t i n u a {Knl of p l a n a b l e dendro id X 
be such t h a t Lim K = K and K n K = 0 f o r n / m and n,m = 0 , 1 , 2 , . . . 

n O / j ^ m 1 2 
Then t h e r e I s n sequence { a n . a n . } o f a r c s such t h a t Lim a n i a n . = KQ and 
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al.^.CKn.
 f o г

 i =
 1

-
2
> " 

P r o o f . Let Q be a maximal subcontinuum of
 K

n
 for which there 

-j p ° " " " 1 2° 
are arcs a a converging to Q and such that a ^n.C

 K

n
 f°

r
 some sub-

n
i

 n
i i i i 

sequence (n.) of the sequence of natural numbers (such Q exists by 

Theorem 1) . Suppose, on the contrary, that K \ Q ^ 0. Let a e KQ\ Q
Q
. 

Since K = Lim K = Lim K , we infer that there are points ai , , 

o n n. n. belong-
ing to K such that lim a = a . For each i = 1,2,... we take an arc 
a 

s e t s s/ am Pr. a r e a r c s -*o r i > --0

 a n d QQ i s a proper subcontinuum of 

. p in K such t h a t a' p n n a n a n = t P n ] • Since X i s compact, we 
i l l i • l 1 1 l 

can assume t h a t sequences {a^ p I are convergent for j = 1,2,3. Put 

AJ = Lim a^ p for j =- 1,2,3. By the choice of QQ we conclude t h a t 

t h e r e i s a n a t u r a l number i such t h a t for each i > i the set T = 

1 2 3 "*" 
= a p u a p \j a p_ i s a simple t r i o d . Moreover, 

n . n . i n i i i 
(2) AJ\( U Ak) ^ 0 for j , k = 1,2,3. 

In fact , suppose that A
J
 \ ( Lj A ) = 0 for some j = 1,2,3. Then 

1
^

J
 I

3
/ 

A
J
C U A

k
. Thus Lim( U a£ p n ) = Lim ( C l a£ pQ ) = A1i/A2uA3. But 

A u A u A^, because a"€ (A u A u AJ)\ QQ. It is impossible, by the cho

ice of Q . The condition (2) and Theorem 2 imply that X is not planable, 

a contradiction. The proof of Theorem 3 is complete. 

From Theorem 3 we infer that 

COROLLARY km Any convergence subcontinuum of planable dendroid X is 

a convergence continuum of arcs which are contained in X. 

§ 3. Some properties of planable dendroids. We have ( see ( 3], (47) , 

p. 239, [4], XI, p. 217 and [15], §49, III, Theorem 10, p. 470) 

PROPOSITION 5. If X is a plane dendroid, then the set R2 \ X is con

nected. 

Firstly, we will show the following 

LEMMA 6. If a-j,..,a are different accessible points of a continuum 

A in a plane dendroid X, then there are nondegenerate mutually disjoint 
2 

arcs a1b1,...,a b in X and a simple closed curve C in R such that 

a.b.nA ={a.} for i = 1,2, ...,n and 

(Au U aibi)nCs{b1fb2f...fb}. 
i& j 

In fact, since points a^,•..,a are different and since they are 
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accessible points of a continuum A in a dendroid Xf we infer that there 

are nondegenerate mutually disjoint arcs â c-j, ... ,a c in X such that 

a.c.nA = {a.] for i = 1, 2,... f n. Sets A and B = { ĉ  ,..., c } are dis

joint and closed sets which do not separate the plane (cf. Proposition 5) 

Thus, by Theorem 9 in [15], § 61, II, p. 514, we obtain that there is 

a simple closed curve C in R which separates A and B. Therefore Co A = 

= 0 and Cna.c. ^ 0 for each i = 1,2, ...,n. Let b. be the first point 

in the arc a. c. ( in the order from a. to c.) which belongs to C for i = 

= 1,2, ...,n. Then C and arcs â b,.,..., a b satisfy required conditions. 

Let X be a dendroid and let A be a subcontinuum of X. A point b of 

A is called a convergence point of A in X if there is a sequence {a } 

of X such that Lim a b = A and Lim ( anbo A ) = {bj. 

It follows from the definition of the convergence point that 

LEMMA 7. If b is a convergence point of a subcontinuum A of a den

droid X, then b belongs to the closure of the set of all accessible 

points of A in X. 

Now, we will prove 

THEOREM 8. Let b be a convergence point of a subcontinuum A of a 

planable dendroid X. Then the set of all accessible points of A in X 

is cdntained in some arc cb. 
2 

P r o o f. We assume that X is embedded in the plane R . Firstly 

we will prove that 

(3) the set of all accessible points of A in X is contained in some 

arc c-|Cp. 

In fact, suppose, on the contrary, that c,,c2 and c-, are accessible 

points of A in X and they are endpoints of a simple triod T contained 

in A. According to Lemma 6 there are disjoint nondegenerate arcs d1c1, 
? d0c0 and d-,c-, in X and a simple closed curve C in R" such that 

(4) d ic ioA = {ci] for i = 1,2,3 and (Aujj d.c.jnC = {d1fd2fd3J. 
,3, i=1 2 

The curve D = C u U d.c.uT separates the plane R into four do-
i=1 x x 

mains such that the closure of any of them fails to contain at least 

one of the points c^c^c... Since b is a convergence point of A in Xf 
we conclude, by (4), that there are arcs anan in X such that Lim ana;n 
= A and a a'nD = 0 for each n = 1,2,... Therefore some subsequence 
ja a' 1 of the sequence (a^a'l is contained in some domain into which 1 n, n,/ ^ n n' 
D separates the plane. Then the set Lim a a' fails to contain some c.. 

nk nk 1 

But (c1 ,c2,c,} cTc A = Lim aRan = Lim an an , a contradiction. 

From Lemma 7, we infer that b^c^c^ Suppose, on the contrary, that 
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r>, and r ? are access ible po in t s of A in X such tha t c-j <r>j < b < r 2 ^ C p 
( i n the na tu ra l order of c-,Cp). According to Lemma 6 there are d i s j o i n t 
nondegenerate arcs s.-r., and Sprp, and a simple closed curve S in R such 
t h a t 
(5) s . r . n A = { r . J for i = 1,2 and ( A u s ^ r ^ u S p r ^ n S = { s^ ,Sp} . 

The curve R = Svs-Sp separates the plane R into three domains W^, 

W and W.,. Since b is a convergence point of A in Xt we infer that there 

is a sequence la } of points of X such that 

(6) Lim anb = At 
and 

(?) Lim (anbn A) = { bj . 

We may assume, by (6), that a b^S = 0 for each n = 1,2,..., because 
n 

AnS = 0 by (5). Moreover, since sets a bos^Sp are connected for each 

n = 1,2,..., we may assume that all arcs a b are contained in the clo

sure of one of sets W,., Wp and W,. Say 

(8) a bci-, for each n = 1,2,... 

From (6) and (7), we infer that there is a nondegenerate arc r-,s-, 

in XoW. such that r.s^nfAus.r, us?rp) = r,s,nA = { r-,}. Thus r-, is an 

accessible point of A in X. Therefore, by ( 3 ) , we conclude that r-j < r, < 

< rp (in the order of the arc r^ r^ • 

Sets A and B = {s>j,Spfs^] are disjoint and closed, and they do not 

separate the plane (cf. Proposition 5) • We obtain that there is a simple 

closed curve S' in R which separates A and B (see [15], § 61, II, 

Theorem 9, p. 514). Therefore S'n A = 0 and S'nr.s. £ 0 for i = 1,2,3* 

Let st be the first point in the arc r-,s-, (in the order from r. to s.) 

which belongs to S', and let [x*Sp] be an arc in S' containing sC such 

that f sjsp] r>(s o'S^Sp) *-{s.T,Spj. Then the set [s^Sp]ur-,s4 separates W>j 

into three components V*, V9, V-., the closure of each of them does not 

contain both r. and r9. 

Since C s*s% ] na be S n a b for each n = 1,2,... and sViA we can 

we 

assume, by (6), that fsjsp]na b = 0 for each n = 1,2,... Therefore, 

because sets a b n (s>j s9 u
 r-*s0 are connected for each n = 1,2,. 

infer from (8) that for each n = 1,2,... the arc a b is contained in 

the one of sets V, i; r,b, Vpur.b, V7ur,b, Therefore some subseauence 

{s bj is contained, say in V^ u r-,b. But set V,. \j r̂ ,b does not contain 

either r̂  or r0, and {r,.,rp̂ <--A = Lim a b = Lim a b, a contradiction. 
K 

The proof of Theorem 8 is comolete. 

Combining Lemma 7 and Theorem 8 it is easy to obtain 

COROLLARY 9. If A is a subcontinuum of nlanable dendroid X, then 

A has at most two convergence points. 

Remark that if one will change the definition of convergence points 
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distinguishing two situations, when sets s^bn A are degenerate and when 

they are nondegenerate, then he may prove other properties of planable 

dendroids, which do not follow from above proved properties. 

§ 4. Two examples of plane smooth dendroids. It is known (see f13J> 
Corollary 4.2) that there is no universal plane dendroid, i.e., there 
is no plane dendroid containing a homeomorphic copy of any plane den
droid. In spite of this one can ask whether there is a plane smooth den
droid which contains a homeomorphic copy of any plane smooth dendroid. 
The answer is negative. We consider firstly two special examples of plane 
smooth dendroids to obtain this result. 

Let (x,y,z) denote a point of the Euclidean 3-space having x,y and 
z as its rectangular coordinates. Put 

D1 = U ( { (1/n cos tf1/n sin t,0) : 0<t <3/2Ji] U 
' n=1 

u{(x,-1/n,0) : 0 < X < 1 } ^ { ( x , 0 , 0 ) : 0 < x < l j ) f 

D2= ^ ( { ( t - ^ ' n - ' 0 : 0 < t < l } u { ( - t + ^ , - £ , 0 ) : 0 < t < l j u 

U {(x,0,0} : - 1 < x < l ] ) , 

p = (0,0,0) , 
I = [(0,0,z) : 0<z<l} 

and 
E i = D ±u I for i = 1f 2. 

It is easy to see that 

PROPOSITION 10. D1 and Dp are both smooth plane dendroids with p as 
a unique point at which they are smooth. 

One can prove more general 
PROPOSITION 10'. If X is a smooth dendroid containing either D1 -or D 2 

which is contained in the plane, then p is a unique point, at which X 
is smooth. 

We have also 

PROPOSITION 11. E^ and Ep are both nonplanable dendroids. 

Smooth dendroids have the following property 

PROPOSITION 12. If a dendroid X is smooth at rf A is a subcontinuum 
of X, and rq is an arc such that rqnA » { q], then A is smooth at q. 

Now, we will prove 

THEOREM 13. There is no smooth plane dendroid containing a homeomor
phic copy of D̂  and a homeomorphic copy of Dp. 

P r o o f. Suppose, on the contrary, that X is plane dendroid which 
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is smooth at r and for i = 1,2 a mapping h..: Dj_""*ni(Di) is a homeomor-

phism such that h . ( D . ) c X . Let rq. be an arc in X such that rqinh.(D.) 

= i q.l for i = 1,2. By Proposition 12 we obtain that for i = 1, 2 the 

dendroid h.(D.) is smooth at hi(qi). Thus hi( q.,) = h^p) for i = 1, 2, 

by Proposition 10. Therefore, .for i = 1,2, if the arc rqi is nondegene-

rate, then the continuum rq. uh.(D.) is homeomorphic to E., and, by 

Proposition 11, we obtain a contradiction. Hence h^(p) = h2(p). But 

fcu(p) is an endpoint of h^D,.^ and there are two arcs in hp ( D.-,) having 

only the point h^(p) in the common part. Thus X must contain a homemor-

phic copy of E,.. But this is impossible by Proposition 11, because X 

is planable. 

COROLLARY 14. There is.no universal smooth plane dendroid. 

o t 

* 5. Problems. Besides the general open problem of a characteriza

tion of plane (smooth) dendroids the following problems are open. 

Does a plane dendroid exist containing all plane smooth dendroids ? 

Is an open image of a plane dendroid always a plane dendroid ? 

(compare [7j)» 

Remark that open mappings do not preserve the planability in gene

ral (seef17j, Example, p. 189)* 
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