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ON GENERALIZED VECTOR TOPOLOGIES 

S. G.SHLER 

Berlin 

The preeent paper deale with c e r t a i n claeeee of genera l ized 
vec to r topologiee which i n the invee t iga t i one on genera l ex t remal i ty 
theory i n [2 J a re of importance. For t h i e f l e t R be a l i n e a r space 
and Ify the se t of a l l (T^-Jvector topo log ies on R. Let 10x denote t he 
se t of a l l t r a n s l a t i o n inva r i an t T-- topologies on Rf each of which 
has an open base B at 0 cons i s t i ng of e q u i l i b r a t e d and absorbing 
s e t s such t h a t <yU 6 B for every a > 0 and every U ̂  B. Moreover, l e t 
40.-, denote the se t of a l l t r a n s l a t i o n i nva r i an t T . - topologies on R, 
each of which has an open base B at 0 cons i s t i ng of a l g e b r a i c a l l y 
open s e t s such t h a t c*U e B for every a > 0 and every U e B. 

Evident ly , <tfl- s 402 £ *Qy The equa l i ty s igns hold i f and only 
i f dim R * 1 (see [1J , Theorem 13, and [ 2 ] , Theorem 5 ) . In what 
fo l lows , we give examples of topologies of 402\1&j and of IQoM^ 0 

Let be dim R -= 2 and {e.-, e 2 ] a base of R. By B we denote t he set of 
a l l s e t s 

n*-«,*x"fp * £ T r i e i | , i r 1 , < £ 1 and ̂ W * {©^((-•••-^-J .̂cb))}, 

where C1, £ 2 a re p o s i t i v e r e a l numbers, r e s p e c t i v e l y the set of a l l 
a l g e b r a i c a l l y open s e t s 

U
e , P . t P l l - = { P = S T r i e i i £ T T i i < 1 i P + P i ' i = 1.-.—]> 

where I i s a p o s i t i v e r e a l number and p - f P2» •• • a s u i t a b l e s e 
quence of po in t s 4 0 converging r e l a t i v e t o the n a t u r a l topology of 
R t o 0. In both cases t h e r e e x i s t s a unique t r a n s l a t i o n inva r i an t 
topology T on R with B as open base at 0 . In the f i r s t case we have 
T £ 10 2 \ 4ft- and in the second case we have T € 10-V 402# 

As i s wel l known, a topology T £ 4©2 belongs t o '10- i f and only 
i f f o r every U € B t h e r e e x i s t s a V €• B with V + V £ U. A topology 
- ^ 3 belongs t o 'W.p i f and only i f t h e r e e x i s t s an open base B at 
0 c o n s i s t i n g of e q u i l i b r a t e d s e t s . 

The topo log ies of 102 and W^ may be cha rac te r i zed by cont inu-
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ity properties of the vector addition and the scalar multiplication 

in an analogous way as it is well known for vector topologies* 

Theorem 1. A ^-topology T on R belongs to lOp if and only if 

the following two conditions are satisfied: 

i. For every q € R the mapping p -* p + q of R into R is con

tinuous on R. 

ii. The mapping (of,p)—>orp of IfcxR into R is continuous at 

every point (ct,0) and at every point (0,p). 

A T . j - topo logy T on R belongs to 10^ if and only if the condi

tion i and the following condition are satisfied: 

ii'. For every ot > 0 the mapping p-*ocp of R into R is continu

ous at p = 0; for every p e R the mappings —> otp of 1R into R is 

continuous at ec = 0. 

Proof. Concerning the characterization of the topologies of 

^Q2>
 w e refer to C1]» Theorem 7. Now we show that for every T . . - t o -

pology T on R to belong to 4Q~ the conditions i and ii' are neces

sary and sufficient. At first, let be T t 4Q~. From the trans

lation invariance of T, for arbitrary q € R we get the continuity of 

the mapping p ~* p + q of R into R on R. Since for every oc > o and 

every neighbourhood U of 0 the set ~ U also is a neighbourhood of 0, 

the continuity of the mapping p--?©tp of R into R at p = 0 is true. 

The open sets being algebraically open, for every p £ R the mapping 

<*-y<xp of 1R into R is continuous at cc = 0. Therefore the conditions 

i and ii' are satisfied. Conversely, now let T be an arbitrary T.-

topology fulfilling i and ii1. Using condition i, easily we get the 

translation invariance of T. Let B denote the set of all open neigh

bourhoods of 0. By the second statement of condition iif and the 

translation invariance of T, the sets of B turn out to be algebra

ically open. From the first statement of condition ii* and the 

translation invariance of T, it follows <*U e B for every oc > 0 and 

U e B. Thus, we have T e 4Po and the proof of the Theorem is 

complete. 

Theorem 2. A topology T € 40 2 belongs to 4Q* if and only if the 

mapping (p,q) —? p + q of R x R into R is continuous at (0,0). A 

topology T e 40.. belongs to 40p if and only if the mapping (<*,p) -» ocp 

of IR * R into R is continuous at (0,0). 

Proof. The first statement of the Theorem is evident. By 

Theorem 1, also it is obvious that for T e 40 ̂ to belong to "10 2 *he 
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continuity property of the second statement of the Theorem is 

necessary. We now prove the sufficiency. Thus, we assume that for a 

given T £ 46~ the continuity property is fulfilled. For any neigh

bourhood U of 0 there exist a £ > 0 and a neighbourhood V of 0 with 

(-A»p)V - u- From this, for any <x > 0 we get (0,2o0(j£ V) c U and 

hence we have the continuity of the mapping (ot,p)—*otp of TRxR into 

R at the point (<x,0). For any p e R let f be a real number > 0 with 

^p e V. From (~p,p>)V £ U, we get (-J3f,/^)(— (V - jfp) + p) c U and 

hence we have the continuity of the mapping (e*,p) —>o*p of fi^xR into 

R at (0,p). By Theorem 1, T <=. 402
# Thus, the Theorem is true. 

For any non-empty set W. of topologies on R, by T we denote 

the coarsest topology on R which is finer than all topologies of W . 

As is well known, 1X1 c 4Q yields T w 6 /©... Analogous statements with 

regard to 4fl and 40.-. also are true, that is, we have 

Theorem 3« For TtL(* 0) c Q± (i = 2,3), T ™ £ X0±• 

Proof. [1], Theorem 11, and [2], Theorem 4. 

As for i = 1, because of Theorem 3, for i -= 2, 3 in 40. there 

exists a finest topology T *. Concerning a characterization of T 1, 

we refer to [3J , 6.C. By [1J, Theorem 12, and [2J, Theorem 5, we get 

the following 

Theorem 4. T * is the topology on R which has as an open base 

at 0 the set of all subsets U of R such that for every finite-dimen

sional subspace Rf of R relative to the natural topology of Rf the 

set UnR 1 is an equilibrated open neighbourhood of 0. T 3 consists 

of all algebraically open sets of R. 

Theorem 5. T x belongs to 40 if and only if dim R is finite. 

T10* belongs to 4ff2 (
and hence to 40^) if and only if dim R e 1. 

Proofs f1J, Theorem 12, andC2J, Theorem 5. 

With regard to the partial ordering * given by T i T ' ^ T c T', 

the topologies T*°2 and T^3 are the maximal elements of 4Q a n d ^ > 

respectively. As to minimal elements of '-Op anc* °$ ^ 3 * w e have the 

following 

Theorem 6. Let be dim R > 2. Then the minimal elements of 40 p 
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and of HO.-, do not belong to 40-j • 

Proof. The statement is an immediate consequence of [1], 

Theorem 13* 

In what follows, we restrict ourselves to the case in which R 

has a finite dimension n > 2. Let be {e+f ..., e ] a base of R and 

LL the euclidean norm on R with respect to this base. Moreover, let 

be K = {p 6 R; ju(p) < 1] and ^K = (p e R; ̂ (p) = 1]. For any p ^ K 

we denote by R the (n-1)-dimensional linear subspace of R con

sisting of all points of R orthogonally to p and by TT the ortho

gonal projection of R onto R . Let Tf be the natural topology of R. 
ir 

Theorem 7« For any T £ 402, T 6 Tf. For T e ^ 3 , T» ̂  T if and 

only if for every point pc- dK there exist an equilibrated T-open 

set U with 0 £ Un R c K, a point q & U with jx(v (q)) > 1, and an 

equilibrated T-open set V with 0 £ V c Uo(U + q). 

Proof. Concerning the first statement of Theorem 7, we refer to 

C1], Theorem 9. In f1], Corollary to Theorem 9, the second statement 

is proved in the special case T (z 4Q2. The proof in the case T £ 40 ~ 

is obtained from this by some slight modifications. 

Corollary. For T £ 402, T = T* if and only if for every point 

K there exist a T-c 

q & U with jic(Trp(q)) > 1< 

p e «)K there exist a T-open set U with 0 £ U ^ ^ D ^ ^
 an(* a point 
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