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TWO - NORM ALGEBRAS 

A#ALEXIEWICZ 

Po znan 

A two-norm space ( [1] f[4] # [5] ) is a triplet (Xf/7 H , V ) in 
which X is a vector space, // ff - a norm on Xf and T a lofeally co­
nvex metrizable topology on Xf coarser that the // // -norm topology# 
Therefore T may be determined by a sequence (sn) of seminorms# A 
sequence (xn) of elements of X is called a-convergent to *0(i*- symbols 
xn^*x0) if sup ||xnl|< oo and lim sk(xn- xQ)= 0 for k » l,2f### 

All continutity concepts in such spaces will be meant in sequential 
sense, referred to the ^- convergence; let us call this continuity 
the y- -continuity* Therefore two two-norm spaces with the same carri­
er X are called equivalent if the resulting J* -convergence is the 
same in both# Since T is coarser that the // // -norm topology, there 
exist constants an such that sn(x) -£ an // x // for each x€X there­
fore (X9II ll9T) is equivalent to (Xf//#f T°) where T° is the to-* 
pology of the norm //x//° « sup (nan) sn(x)# In this case //x//°<|/x// , 
and the space (Xf || l,t°) will be denoted by (Xf« II 9 II « ° ) # 

For linear maps the /* -continuity is equivalent to a topological 
continuity with respect to the topology constructed by A#Wiweger[7] » 
[3] ) # To describe this topology denote by 2 S the set w 2J S.-j 
let us also denote by B the unit ball in X # The neighbourhood ba­
sis, of the topology T of Wiweger consists of all sets of form 

Z2 * Unn B where Un are taken arbitrarily from a fixed neighbour­
hood basis B (T) o f f , Wiweger has proved that Tie the unique vector 
topology on X satisfying the conditions 

(a) V coincides on B with T , 

(b) any linear map from X to a locally convex topological vector 
space is continuous if and only if its restriction to B is continu­
ous for the topology induced on B by V m 

The sets bounded for T are precisely those which are absorbed by 
B# Therefore 
(c) a sequence (xn) converges /* to x if and only if it converges 
to x for the T -topology# 

We shall report about some class of two-norm spaces which also 

are linear algebras, and for which the multiplication is p -continu-
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ous in both variables jointly* We shall suppose without further refe­
rence that the algebras we deal with are commutative* 

So let (X, || || f f ) be a two-norm space and an algebra; the fo­
llowing theorem characterizes the case when (X9T) is a linear to­
pological algebra* 

Theorem 1* The multiplication is continuous in both variables 
jointly for the topology T if and only if the following conditions 
are satisfied 
(c-,) the set B»B is absorbed by B , 
(c2) given any Uc3(f) there exists a V £ 3 (T) such that 

(V O B) B C U * 

It follows from (c^) that the norm If // may be replaced by an 
equivalent submultiplicative norm, and this leaves the convergence j* 
unchanged* Therefore by a two norm algebra we shall denote a two-norm, 
space (Xf|| 11,1") which is also a linear algebra such that the multi­
plication is continuous for the Wiweger topology T * Without loss of, 
generality we. can require the norm \\ II to be submultiplicative* Obvi-

>* >* /* 

ouslyf in two-norm algebras xn —* x Q f yn —• yQ implies ^n7n-Lj^ ^0y0« 
Let us now suppose that X admits a unit 1 f let G(X) denote 

the group of invertible elements* The inverse will be called to be 
f> -continuous if the following conditions are satisfied 

(d^) if xn-^* x Qe G(X)f then almost all x aye in G(X)f 

(d2) if x n ^ x o f x n fx 0€G(X) f then x ^ 1 ^ ^ # 

The condition (dg) is equivalent to 
(d2) if X j ^ l , x n€G(X) f then sup \\ x^1// < oo # 

Theorem 2* The inverse in a two-norm algebra is y* -continuous* 
if and only if G(X) is open for the topology T and the map x r-* x 
is continuous on G(X) equipped with the topology T • 

By a theorem of Turpin it follows 

Theorem 3* Let (Xf// II9T) be a two-norm algebra with p -conti­
nuous inverse, then (JL9T) is locally m-convex* 

A two norm space (Xf// II9T) is called non-trivial if the to­
pology T is not identical with the // //-norm topology* There exist 
non-trivial two-norm spaces for which the conditions (d^) and (d2) 
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are s a t i s f i e d . Such a r e , for i n s t a n c e , [ 3 ] two-norm algebras (Xf(( llyHf) 

in which 

|xy||< WH|y|| + M ° |xl 

As an example may serve the space V of continuous functions of fi­
nite variation in an interval, with pointwise multiplication and with 
norms 

|}x|| « |x(a)| + var [x(t) : a <t< b} , 

||x||°- sup [ |x(t)| : a < t < b } • 

On the other hand there exists an ample class of two-norm alge­
bras in which the inverse is not u -continuous. Namely we have [3] 

Theorem 4. Let (Xf || ||f || ||°) be a non-trivial two-norm alge­
bra, let (Xf || ||) be a function algebra, then the condition (d2) is 
not satisfied. 

In algebras without unit we usually replace the inverse by the 
quasiinverse x° , and G(X) by the set Q(X) of quasi invertible 
elements* A result similar to Theorem 3 holds true: if the condition 
(d1) with G(X) replaced by Q(X) holds true and if ^ - ^ x

0 * 
xn,x0€ Q(X) implies x£ -^ x° , then the algebra (Xf r ) is m-
convex. 

In two-norm algebra three sets of continuous characters need to 
be considered; Dt °f 7ft f and Ttl composed of charaters which are 
continuous for the topology T f or /* -continuous, or continuous for 
the // //-norm topology, respectively. Even when the algebra X has 
a unit, Tfl° can be empty. If in two-horm space linear f u n c t i o n a l s . , 
continuous for the topology T coincide with these which are /«• -con­
tinuous, then [4] the two-norm space is trivial. In contrast, in non-
trivial two-norm algebras the case 1YL° S /Wt / (f> can occur. 

When X has the unit and a sequence (sn) of submultiplicative 
seminomas determining the topology V exists, then OUC0 t <p # In 
this case the. set of maximal ideals closed for the topology V is the 
union of (non-empty) sets M of maximal ideals closed with respect 
to the seminorm sv . If we endowe the set M -= U M with the to-
pology induced by the Gelfand topology of the set of all maximal ideals 

k then M become compact. Restricting the Gelfand representation. 
m f—• l3.(m) to the domain M we obtain a representation of a two-norm 

algebra with submultiplicative seminorms sn into an algebra C(S) of 
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bounded, continuous functions defined on a completely regular Haus-

dorff space S , such that S - U S
n
, S

n
 being compact subsets 

of S . Setting for ueC(S)
 n

"
1 

||uy s - sup[|u(s)| i ses} , 
[uTn - sup[|u(s)| : ses n ] , 

we obtain thus a representation H : X*-*C(S) satisfying the condi­

tions 

«H(x)й
s
 <flx|| , 

[H(x)]
n
 < s

n
(x). 
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