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STRUCTURE OP CONNECTED LOCALLY COMPACT GROUPS 

H.BOSECK and G.CZICHOWSKI > 

Greifswald 

0» Let G denote a connected locally compact topological gronp. 
By the theorem of YAMABE the group G is the projective limit 
of a family G. , i*I of Lie groups : G » j.im Gi . Denote by 
I*± the Lie algebra of the Lie group G^ j the inverse spectrum 
of the Lie groups ( G^ , g^ K induces an inverse spectrum of 
the corresponding Lie algebras ( L., , dg. ) T f the homomorphisms 
i* i1 x x x 

g* and dgt being connected by the exponential mappings : 
i* i* expi dg^ a g^ exPii • Tlie topological Lie algebra L of the 

group G is by definition the projective limit of the family 
1*^ 9 lei of finite dimensional Lie algebras : L * lim L i . 
The lift exp of the exponential mappings expi , iel is a 
continuous mapping of L into G • 
Proposition 1 • The algebraic subgroup G0 of G generated 

by exp L is dense in G • 
Proposition 2 • There exists a compact totally disconnected 

subgroup Ck of the center Z of G such that G « G *A • 

1. Assume L to be finite dimensional. In this cas it is pos
sible to strengthen the topology of G induced by G in such 
a way, that GQ becomes a Lie group with corresponding Lie al
gebra L • By proposition 2 exists a continuous epimorphism f 
which maps the direct product &0*A onto G , and by well known 
theorems on Lie groups the kernel of f is discrete and a sub
group of the center of G0*A • Let Hf denote the universal 
covering group of the Lie group G0 , i.e. the unique simply 
connected Lie group defined by L > we get 

Theorem A^ • Let G denote a finite dimensional connected 
locally compact topological group. There exists a unique 
simply connected Lie group % , a compact totally dis
connected abelian group A and a discrete subgroup D 
of the center of G*A such that 

G Sf 5*A/D • 
The topological group A can be chosen as a subgroup of 
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the center 2 of G • 

Since A * Z , there exists a continuous and open epimorphism 
which maps the direct product G *Z resp. GXZ onto G • 

Corollary . A finite dimensional connected locally compact 
topological group is a lie group if and only if its oenter 
is a lie group • 

2. Consider the general case. It is possible to strengthen the 
topology of GQ induced by G in such a way, that G be
comes a connected locally connected complete topological group 
and the exponential mapping from 1 into G is locally onto 
- exp maps a neighborhood of zero in L onto a neigborhood 
of the identity of G in the strengthened topology* The topo
logical group G is in general not locally compact but a 
projective limit of Lie groups : G^ == lim G . • The inverse 

At o 9" • oj 

spectrum ( G .. , g£* )j induces an inverse spectrum of the 
corresponding universal covering groups G .. of the lie groups 
Goj • **J ( Goj ' ^oj h t h e tomomorpMsms g ^ and g ^ 
being oonneoted by the covering epimorphisms f0. from £ . 
onto G . : tQ^ g ^ » g£* ̂ J f # The projective limit 
G » lim IT' * equals the projective limit of the inverse spectrum 
of the universal covering groups of the Lie groups G^ which 
occur in the representation of G as a projective limit of 
Lie groups t G =» lim GA • The topological group G is the uni
versal covering group of G as well as of G in the sense of 
LASHOP £6] 0 It must be noticed that the group G in general 

AS 

does not cover G , the lift f of the covering epimorphisms 
f* , i£l from G-. uuou »J 

G into G « 
By proposition 2 exists a continuous epimorphism h which 
maps the direct product G 0*A onto G and since the Lie al
gebras of all these groups coincide, the kernel of h0 is a 
totally disconnected subgroup, which is contained in the cen
ter of GQftA . 
We cite the following 
Proposition 3 (GLUSHKOV [5 J ) The topological Lie algebra of 

a locally compact group is topologically isomorphic to a 
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direct sum of finite dimensional lie algebras 

L = L'@ R ®ZM® -in • 
l1 denotes an arbitrary finite dimensional Lie algebra, 44, 

a cardinal number, and 1 f m*M a family of compact non 

abelian lie algebras* 

Taking the unique simply connected lie group to any finite di

mensional Lie algebra which occurs in the direct sum of propo

sition 3 we get the topological isomorphism 

G « H x R x T K . 
/we/V -n 

H denotes a simply connected Lie group not necessarily compact, 

while all groups K , m#M are compact simply connected non 

abelian Lie groups• 

The following theorem is a generalization of a result of 

PONTRJAGIB |j] . 

Theorem A 2 • Let G denote a connected looally compact topolo-

gical group. There exists a unique simply connected locally 

connected topological group G , a compact totally discon

nected abelian group A , and a totally disconnected subgroup 

D of the center of GnAsuch that 

G 5 GXA./D . 

The group G may be represented as a direct product of a 
•*v 

connected simply connected non abelian Lie group H , a 

cardinal number At* of copies of the additive group of the 

reals, and a family Km f m*M of connected simply connected 

compact non abelian Lie groups 

G S H x R x TM K • 

The topological group A can be chosen as a compact sub

group of the center Z of G • 

As in the finite dimensional case using the inclusion A t Z 

we get the following 

Corollary . A connected locally compact topological group is 

locally connected if its center is locally connected. 

3. The following theorem states necessary and sufficient con

ditions for the compact totally disconnected component A to 

vanish in the above description of the group G under the 
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assumption that the center Z of G is metrizable. 

Theorem B . Let G denote a connected locally compact topo

logical group with the property that the center Z is me

trizable. The following conditions are equivalent 

(1) G is locally connected 

(2) G is arcwise connected 

(3) G is an L-group - any finite dimensional quotient 

group of G is a Lie group 

(4) the universal covering group G covers G - the 

covering map f from G into G is an open epi-

morphism 

(5) the exponential mapping from L into G is locally 

onto - exp maps a neighborhood of zero onto a 

neighborhood of the identity • 

Corollary • A connected locally connected locally compact 

topological group with a metrizable center is the quotient 

group of a direct product of Lie groups by a totally dis

connected central subgroup. 
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