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DIRECT LIMITS OF HAUSDORFF SPACES 

D. W. HAJEK (1) and G. E. STRECKER (2) 

Gainesville and Pittsburgh 

It is well-known that for topological spaces direct limits have generally very 
poor preservation properties. Indeed, the direct limit of compact separable metrizable 
spaces can be an infinite indiscrete space [2, p. 422]. However if all of the bonding 
maps are injective, the direct limit of Tx spaces will be Tx. Likewise if all of the 
bonding maps are closed embeddings, the direct limit of a countable well-ordered 
spectrum of T4 spaces will be T4. (This preservation fails, however, if the countability 
condition is dropped.) Recently Herrlich [3] has shown that the direct limit of 
a countable well-ordered spectrum of completely regular Hausdorff spaces with closed 
embedding bonding maps may fail to be Hausdorff. In this paper we will exhibit 
sufficient conditions for the Hausdorff property to be preserved under direct limits. 

In [1] Banaschewski considered, for any T0 space, X, a space consisting of all 
open filters on X. To achieve our direct limit results, we use essentially the same type 
of construction. 

Definition 1. If AT is a space, then an open filter on X is a nonempty collection F 
of open sets of X such that: 

(i) Q$F, 

(ii) U, Ve F => U n Ve F, and 

(iii) W=> UeF*> WeF. 

For any space X, let yX denote the set of all open filters on X. If U is an open set in X, 
let £/* = {FeyX \ UeF}. Then {U* | U is open in X} is a base for a topology 
on yX. Henceforth yX will denote this space. 

Definition 2. If X and Y are spaces and / : X -> Y is a continuous function, then 

(1) / i s said to be dense provided that / [X] is dense in Y; and in this case (/, Y) 
is called a range ofX. 

(2) / i s said to be relatively open provided that for each open set U of X , / [ l / ] -= 
= Wn/[ -Y] for some open set WofY. 

(3) / i s said to be an embedding provided that it is injective and relatively open. 

(4) (/, Y) is called an extension of X provided that / is a dense embedding. 
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(5) (/, y) is called a C-distinguishable range of X provided that it is a range 
of X and for each y e yand each closed subset A of Y not containing y, there is an 
open neighborhood U of y such that/^fC/] 4= /"^[V] for any open set Vof ythat 
meets A. 

The following proposition shows that if X is a T0-space, then yX is a T0-com-
pactification of X which can be thought of as a "universal" C-distinguishable 
extension of X. 

Proposition 1. For every space X, yX^.is a compact T0-space with the following 
properties: 

(1) / / ( / , y) is a range of X, then there exists a continuous function J: y-» yX 
defined by:f(y) = the open filter generated by {Z" 1 ^ ] | U is an open neighborhood 
ofy}. 

(2) If (/, y) is a T0 C-distinguishable range of X, then f is an embedding. 
(3) lx

: X -> yX is an embedding if and only if X is a T0-space. 
(4) If X is a T0-space, then the set of all subspaces of yX that contain 1*[X1 

is (up to homeomorphisms) precisely the class of all T0 C-distinguishable extensions 
ofX. 

(5) / / (/, y) and (g, Z) are ranges of X and h: Y-+ Z is an embedding for 
which g = hof9 then / = §° h; i.e., if the left-hand triangle of the diagram 

commutes, then so does the right-hand triangle. 

Definition 3. Let I be a directed set and let (Xh g^j be a direct spectrum of 
spaces and bonding maps over /. 

(1) (Y,fi)t is called a natural source for the spectrum provided that: 

(i) yis a space, 
(ii) for each / e l , ft: Y-+ X( is a continuous function, and 

(iii) if i, jel and / ^ ;, then gtj o /, = fJm 
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Dually, 

(2) (/•, Y)j is a natural sink for the spectrum provided that ft : X, -» Y and 
ft = fj ° 9ij whenever i ^ j . 

(3) (/., F)j is a direc* /iwu'f of the spectrum provided that it is a maximal natural 
sink for it. 

We will denote the direct limit of the spectrum by (/ij, Lim Xt)j. 

Theorem 1. Let (Xi9 g^j be a direct spectrum of Hausdorjf spaces and 
bonding maps over a directed set I. If each gtj is an embedding and if there exists 
a natural source (F5/,)j/0r the spectrum, where Yis any space and eachft is dense9 

then Lim Xt is a Hausdorjf space. 

Proof. By Proposition 1, for all i9j e I there exist continuous functions/^: Xt -> 
-» yY and /,- : Xi -> yY such that ft -= fj o gijt Hence (fi9 yY)j is a natural sink for 
the spectrum, so that by the definition of direct limit there is a (unique) continuous 
function g: LimXt -» yYsuch that for all i, jel the diagram 

commutes. 

If x and y are distinct points in Lim Xi9 then, since J is directed, there is some 
kel and points a9b eXk such that fik(a) = x and ^ ( 6 ) = y. Since X* is Hausdorff, 
there are disjoint open sets U and V such that a eU and t e K Then since 0 cannot 
belong to any filter, (fk^Uj)* and ( / ^ [ V ] ) * are disjoint open sets in yY; so that 
ff"*[(/*" 1 [ ^ ] ) # ] a n d fi^K/jT1^])*] are disjoint open neighborhoods of x and j , 
respectively. 

Lemma 1. Let Ybe a Hausdorjf space and let f : X -> Y and h :Y'-» Z &e con-
tinuous functions for which f is dense, h is relatively open, and h<>f is a dense 
embedding. Then h is an embedding. 

Theorem 2. Let (Xi9 g^j be a direct spectrum of Hausdorjf spaces and 
bonding maps over a directed set I. If each gtj is relatively open and if there exists 
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a natural source (Y,ft)ifor the spectrum, where Y is any space and eachft is a dense 
embedding, then LimXj is a Hausdorff space. 

Proof. By the lemma, each gi} must be an embedding. Apply TYveoiem \ . 

Corollary 1. If (Xj, g^), is a direct spectrum of HausdorjJ spaces and dense 
embedding bonding maps over a directed set I, then LAm Xt is a Hausdorff space. 

Proof. If I = 0, then Lim X{ is the empty space which is Hausdotff. I? I % $, 
pick tel and let J = {i e I | f^ f}. Then J is cofinal in J; so UmjXj £ LimfXf. 
But (Xt,gxj)j is a natural source for (Xhgt^)j\ so that, by Theorem 2, UmjXj 
is Hausdorff. 

It seems difficult to weaken the hypotheses of the above theorems. Indeed, 
Dugundji [2, p. 422] has given an example of a direct spectrum of spaces (each 
homeomorphic to the unit circle) which satisfies all the hypotheses of Theorem 1, 
except that the bonding maps are not injective. They are, however, relatively open, 
so that the same example satisfies all of the hypotheses of Theorem 2, except that 
the natural source maps are not injective. Yet the direct limit space is infinite and 
indiscrete. 

Also Herrlich [3] has given an example of a direct spectrum of completely 
regular Hausdorff spaces which satisfies all of the hypotheses of Theorems 1 and 2 
except that the natural source maps are not dense. (They are, however, embeddings.) 
But the direct limit space is not Hausdorff. 

The following example shows that the hypotheses in the theorems that the 
bonding maps be relatively open cannot be deleted. Indeed, in the example each 
space is separable, metrizable and zero-dimensional, and each connecting map 
is a bijection and is relatively open at all points except one, yet the direct limit space 
is not Hausdorff. 

Example 1. For each positive integer k, let Xk be the rational numbers in the 
closed interval [0, 1] with the points {1/2" | n > k] removed and the points {1/2* | 1 ^ 
:g i ^ k} identified. For each n < m, let gnm be the obvious continuous bijection 
from Xn to Xm and let (jin, Lim Xn) be the direct limit of the spectrum (Xn, gnm)N. 
Then the points ^i(O) ai*d j"i(i) do not have disjoint neighborhoods in Lim Xn. 

It is also natural to ask whether or not the conclusions of the above theorems 
can be strengthened; i.e., whether or not stronger separation properties will be 
preserved by direct limits when the bonding maps are all dense embeddings. The fol­
lowing example shows that stronger separation properties are not preserved since 
the direct limit of a direct spectrum of separable, metrizable, zero-dimensional 
spaces with dense embedding bonding maps may fail to be Urysohn; i.e., there may 
exist distinct points which do not have disjoint closed neighborhoods. 

Example 2. For each positive integer k, let Xk be the rational numbers in the 
closed interval [ - 1 , 1] with the points {1 - 1/2", - 1 + 1/2" | n ^ fe} removed, 
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and for 1 < i < k each pair of points (1 — 1/2', — 1 + 1/21) identified. For each 

n < m, let gnm be the obvious inclusion map from Xn to Xm. Then (ATn, gnm)N is 

a direct spectrum with dense embedding bonding maps. However if (/*„, Lim Xn) 

is the direct limit of the spectrum, then /^(l) and nt( — 1) do not have disjoint closed 

neighborhoods in LimZ„. 
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