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SOME NEW CONCEPTS OF DIMENSION 
AND THEIR GENERALIZATION 

R. DUDA 

Wroclaw 

In dimension theory there are considered several concepts of dimension, two of 
a few more important are: Menger-Urysohn's small inductive dimension ind (cf. [9] 
and [13]) and Cecil's great inductive dimension Ind [4]. It is my intention to show 
that by their proper combination one can get 2K° new concepts of dimension which in 
turn can be still further generalized. In doing so I shall follow a fashionable pattern 
of modern mathematics consisting in forming continuously new and new concepts 
and establishing continuously greater and greater generalization of what is done so 
far, deriving thus a proper advantage of it. And by no means I am the first to enter 
this path (cf. [6]). 

The point I start with are the concepts of ind and Ind. Let me recall them shortly: 

The small inductive dimension ind X of a topological space X is an integer such 
that: 

(i) ind X = - 1 if and only if X = 0, 

(ii) ind X = n if and only if each point of X has arbitrarily small open neigh­
bourhoods U in X with ind (U — C/) = ri— 1. 

And analogously, the great inductive dimension Ind X of a topological space X 
is an integer such that: 

(i) Ind X = - 1 if and only if X = 0, 

(ii) Ind X = n if and only if each closed subset of X has arbitrarily small open 
neighbourhoods U in X with Ind (17— L7) = n — 1. 

The two concepts coincide for metric separable spaces but, as Roy's example 
shows [11], they fail to coincide even for metric spaces (for spaces "between" metric 
separable and metric, see article [1]). Hence they are essentially distinct. 

However, both are defined by induction and, as I have recently shown [3], one 
can assign to any sequence y = (yl9 y2, ...) consisting of O's and l's a new notion of 
dimension, called y-inductive dimension and denoted y-ind1), in a way that, vaguely 
speaking, in a consecutive step of calculating y-ind X for a topological space X one 
follows ind if yt = 0 or Ind if yt = 1. 

*) In my papers [3]—[5] I have used notation y-dim but y-ind seems to be the better one. 
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More precisely, let F be the set of all sequences consisting of 0's and ľs and let X 
be a topological space. If y = (yi,y2,...) 1s an element of F, then by X\yt we shall 
mean the space X itself if yt = 0 and the family of all closed and non-empty subsets 
ofXiîyi = 1. 

The y-inductive dimension y-ind X of a topological space X is now an integer 
such that: 

(i) y-ind X = - 1 if and only if X = 0, 

(ii) y-ind X _ n if and only if each element of X\yx has arbitrarily small open 
neighbourhoods U in X with (yъ y3, ...)-ind (Ü — U) ^ n ~ 1. 

Obviously, (0, 0, ...)-indX = ind X and (1, 1, ...)-indX = Ind X. 
Hence the combination of only two concepts of dimension has yielded un-

countably many diíferent concepts of dimension. And what is still worse (from a 
point of view), one can prove [3] that all these concepts are essentially distinct in 
a sense that if a and ß are different members of F, then a-ind X ф ß-ind X for some 
topological space X. I cannot help feeling a deep satisfaction at i t . . . 

One can raise many questions related to the notion of y-inductive dimension. 
Some of them have been already settled, but most, even basic ones, are still open. 
Let me quote a few of them. 

The first question I would like to propose is the following: does there exist, for 
any two diíTerent members a and ß of F, a metric space X such that a-ind X ф 
ф jЗ-ind XI 

So far we know [3] that there exists such a finite topological T0-space but, as 
Roy's example shows, one can expect a positive answer to this question. However, 
this conjecture still remains to be verified. 

Another interesting question seems to be this: how much, for given two members 
oc and ß of F, can differ dimensions a-ind X and ß-ind X, where X is a metric space? 
Or, in other words, what is the value of 

dif (a, ß) = sup |a-ind X - ß-ind X\ , 
x 

where supremum is taken over all metric spaces? 
Ғor general topological spaces, as one can show by suitable examples, this question 

is easily answered by saying that if a Ф ß, then dif(a, ß) = oo. And in view of 
Smirnov's example [12] one can expect this to be the case also for normal spaces. 
However, for metric spaces the question is fully open and the lack of examples other 
than that of Roy doesnЧ allow us to raise any conjecture here. 

One may also try to apply the notion of y-inductive dimension to classical 
dimension theory. For instance, one of the most important theorems in dimension 
theory is the sum theorem (cf. [10], p. 17). This, as Lokucievskiľs example [8] 
shows, does not hold even for compact HausdoríT spaces. However, one may ask the 
following type of questions: let X be the union of countably many closed sets, 
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X = U Xj9 such that 0,-ind Xj ;_ n for some a^ є F, where j = 1, 2, . . . Under what 
i = i 

reasonable hypotheses either o n l or on the family {Xj} or on the family {â } does 
there exist y є F such that y-ind Z 2g nl Or, does there exist k = n such that for 
every y є F, y-ind X -й k holds? And so on. 

A reader interested in other problems and results on y-inductive dimension is 
recommended to refer to papers [4] and [5]. Let me turn now to the fulfillment of 
the second part of the promise, i.e. to the generalization of that notion. In doing so, 
I shall first generalize notions of ind and Ind following a pattern first described by 
Lelek [7]. Let 5 be a topologically closed family of spaces, i.e. such that for each F є 5 
the family 5 contains all spaces homeomorphic to F. 

The small inductive invariant ind (X9 $) of a topological space X with respect 
to 5 is an integer defined inductively as follows: 

(i) ind (X9 $)= - 1 if and only if X є & 

(ii) ind (X9 5) й n if and only if each point of X has arbitrarily small open 
neighbourhoods U in X such that ind (U — U9 5) = w — 1. 

Analogously, the great inductive invariant Ind (X9 gŕ) of a topological space X 
with respect to 5 is an integer defined in the following way: 

(i) Ind (X9 g) = - 1 and only if Z є g, 

(ii) Ind (X9 5) -ś n if and only if each closed subset of X has arbitrarily small 
open neighbourhoods U m X such that Ind (U — U9 5) = ^ — 1. 

Ғor instance, if $ is the family consisting of an empty space 0 only, then 
ind (X9 0) = ind X and Ind (X9 0) = Ind X. Taking other families g, we receive 
other invariants (cf. [7]). 

Now to receive the promised generalization of y-inductive dimension we shall 
combine together the definitions of the small inductive invariant and the great 
inductive invariant in a quite analogous way to that of receiving y-ind from ind and 
Ind. Namely, let Г be the same as previously and let y = (yl9 y2, ...) be the sequence 
belonging to F. By a y-inductive invariant y-ind (X9 5) of a topological space X 
with respect to 5 we shall mean an integer such that: 

(i) y-ind (X9 %) = - 1 if and only if X є g, 

(ii) y-ind (X9 5) й n if and only if each element of X\yt has arbitrarily small 
open neighbourhoods U in X such that (y29 y39 ...)-ind (U — U9 %) ^ n — 1. 

If I know little on y-inductive dimension y-ind, I know practically nothing on 
y-inductive invariant y-ind (X9 5) with respect to a family 5 not consisting of an 
empty set 0 alone. All questions are here open and all paths to be followed. 
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