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MAPPINGS OF PROXIMITY STRUCTURES 

C. H. DOWKER 

London 

We consider proximity s t ruc tures without the usual requirement of sym­
metry. Given a function f : X ->Y, there are three mappings f^,f° andfc of the pro­
ximity structures of X to those of Yrelated, respectively, to the notions of continuity, 
openness and closedness. The mappings f° and fc do not in general preserve sym­
metry. 

We also solve a problem of Yu. M. SMIRNOV([1], page 546) by giving an example 
of a symmetric proximity space which does not have a finest symmetric uniform 
structure inducing its proximity structure. The example is the product of two infinite 
spaces, with the product proximity structure. 

A proximity structure in a set X is a relation < in the set of all subsets of X, 
satisfying the following ax ioms: 

1. A < B implies A c B. 
2. A a B < C cz D implies A < D. 
3. At < B for all i el, I finite, implies (J, Ax < B; A < B( for all i el, I finite 

implies A < f)t B{. 
4. A < C implies that there exists B such that A < B < C. 
Taking I void in axiom 3, we see that 0 < A < X for every set A in X. A proxi­

mity structure < t is called finer than < if A < B implies A < i B. A set X has a finest 
proximity structure: the discrete structure in which A < B whenever A c B. It also 
has a least fine proximity structure in which A < B only if A = 0 or B = X. A set X, 
together with a proximity structure < in it, is called a proximity space. 

The proximity structure < ' , such that A < ' B if and only if X \ B < X \ A, 
is called the conjugate of < . The proximity structure < is called symmetric if < ' = 
= < . We shall not assume an axiom of symmetry. 

A proximity structure in X induces a topology in X, a set A being a neighbour­
hood of a point x if (x) < A. A finer proximity structure induces a finer topology. 

Iff : X -» Yis a function and < is a proximity structure in Y, let A <t B, for A 
and B in X, if there is some set C in Ysuch thatf(^l) < C and f_ 1C c B. Then < t is 
a proximity structure in X, called f - 1(<). If < is symmetric, so i s f _ 1 (<) . If a given 
proximity structure < 0 in X is finer than f _ 1 (<) , f i s called a proximally continuous 
function from (K, < 0 ) to (Y, <) . The inverse image of the topology Tinduced by < 
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is the topology induced byf J (<) . Hence a proximally continuous function is con­
tinuous. 

A uniform structure in a set X is a family V = {u} of functions from X to the set 
2X of all subsets of X, satisfying the following ax ioms: 

1. For each x e X and each u e V, x e u(x). 
2. If u e Vand u < v (i. e., u(x) cz v(x) for all x), then v e V. 
3. If ut e Vfor i el, I finite, then f)t u{ e V. 
4. Given u e V there exists v e Vsuch that v2 < u, i. e., if y e v(x), v(y) cz u(x). 

In axiom 3, flMi is the function which assigns to the point x the set n u^x). The 
case of axiom 3 when I is void states that the maximal function 1, defined by l(x) = X 
for all x e X, belongs to V Thus Vis not empty. A uniform structure Wis called finer 
than V if V cz W. There is a finest uniform structure in X consisting of all functions 
satisfying axiom 1, and there is a least fine uniform structure consisting only of the 
function / . 

The function v\ defined by v'(x) = {y : y e X, x e v(y)}, is called the conjugate 
ofv. The family V' = {u} of conjugates of functions u in the uniform structure Vis 
itself a uniform structure, called the conjugate of V The uniform structure Vis called 
symmetric if V' = V. 

A uniform structure V induces a proximity structure < as follows: A < B if 
there exists u e V such that \jxeA u(x) c B. 

Iff: X -> Yis a function and Vis a uniform structure in Y, there is a uniform 
structuref_1Vin X defined as follows: Let u e f _ 1V i f there exists v e Vsuch that for 
each x e X, u{x) ZD f~~lvf(x). If a given uniform structure U in X is finer thanf_1V, 
f is called a uniformly continuous function from (X, U) to (Y, V). If V induces the 
proximity structure < , then f_1V induces f_1(<). Hence a uniformly continuous 
function is proximally continuous. 

Given a functionf : X -> Yand given a proximity structure < in X, we define the 
quotient proximity structure fq(<) to be the finest proximity structure <t in Yfor 
which f : (X, <) —> (Y, <t) is proximally continuous. Similarly a quotient topology 
fq(T) and a quotient uniform structurefq(V) can be defined. If < is induced by a uni­
form structure Vin X,fq(< ) is induced by f'^V). If Tis the topology induced by < in 
X,fq(T) is finer, and in some cases strictly finer, than the topology induced by f^(<). 
If < or V is symmetric, so isf^(<), respectively fq(V). 

Given a function f : X -> Y and given a proximity structure < in X, we define 
the open image f°(<) to be the least fine proximity structure <x in Y such that 
f(^) < j f(B) whenever A < B. The open image of a topology or of a uniform struc­
ture is similarly defined. If Yhas a given proximity structure < 0 , f i s called proximally 
open if < 0 is finer than f°(<). Open functions and uniformly open functions are 
similarly defined. If < induces the topology T,f°(<) inducesf°(T). If < is induced by 
a uniform structure V, the proximity structure induced byf°(V) is finer, and may be 
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strictly finer, than f°(<). Thus a proximally open function is open, and a uniformly 
open function is proximally open. 

If <' is the conjugate of <, f ° (< ' ) is not necessarily the conjugate off°(<). In 
particular, if < is symmetric, f°(<) need not be symmetric. Similarly, the symmetry 
of the uniform structure Vdoes not imply symmetry off°(V). 

Given a function f: X —• }7and given a proximity structure < in K, we define 
the closed image fc(<) to be the least fine proximity structure <{ in Y such that 
A < ! y \ f(B) whenever f~lA < X \ B. The closed image of a topology or of a 
uniform structure is similarly defined. If Y has a given proximity structure < 0 , f is 
called proximally closed if < 0 is finer than f r (<) . Closed functions and uniformly 
closed functions are similarly defined. Every uniformly closed function is proximally 
closed, but it need not be closed.The closed image of a symmetric proximity structure 
or uniform structure need not be symmetric. 

If u : X -> 2X is any function, we say that a set A . c X is u-small if, for each pair 
of points Xj and x2 in A, x2 e u(xt). A uniform space (K, V) is called totally bounded 
if for each u e V there exists a finite decomposition of X into u-small sets. 

If {X^ < a >}e ) e n is any family of proximity spaces, the product proximity structure 
11 <0} is defined to be the least fine proximity structure in nXco such that each projec­
tion nm : IJX^ —> X^ is proximally continuous. The product topology and product 
uniform structure are similarly defined. If <oi induces the topology Tw, then Tl<(a 

induces nTw. If Vw induces <co and if all but one of the uniform spaces (K, Vw) are 
totally bounded, then J7VW induces 17 < o r The hypothesis of total boundedness can not 
be omitted. 

For example, let Z be the space of integers, let U be the uniform structure of finite 
decompositions of Z and let V be the finest uniform structure of Z. Then U and V 
induce the same discrete proximity structure < in Z. Since (Z, 17) is totally bounded, 
the symmetric uniform structures U x [/, U x V and V x U induce the same proxi­
mity structure < x < in Z x Z. But this proximity structure is strictly less fine than 
the discrete proximity structure induced by V x V Since V x V is the only uniform 
structure in Z x Z which is finer than both U x Vand V x 17, therefore there is no 
finest symmetric uniform structure inducing the proximity structure < x < in 
Z x Z. 

КеГегепсе 

[1] Ю. М. Смирнов: О пространствах близости. Мат. сб., 31 (1952), 543—574. 


		webmaster@dml.cz
	2012-09-20T13:20:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




