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ON SOME RESULTS CONCERNING TOPOLOGICAL
SPACES AND THEIR CONTINUOUS MAPPINGS

P. ALEXANDROFF

Moscow

The purpose of this paper is to give a review of some — more or less new — results
and problems on the subject. Special attention ispaid to the theory of metrization and
related questions: in spite of the now classical and definitive metrization theorems of
Nagata-Smirnov and Bing the subject is not exhausted and has shown unexpected
progress in the very last years.

Theorems concerning the invariance of topological properties under continuous
mappings and the representation of topological spaces as images of zero-dimensional
spaces are also treated. The last chapter is devoted to some aspects of dimension theory
of general spaces.

1

There are two general questions which can be roughly formulated as follows:

A. Which spaces can be represented as images of “nice” (e. g. metric or zero-
dimensional, etc.) spaces under “nice” continuous mappings?

B. Which spaces can be mapped onto “nice” spaces by “nice’” mappings?

Only continuous mappings will be considered in that what follows: among them
there are very different kinds of mappings which are ,,nice” from different view-
points: first of all, there are closed and open mappings; next mappings f: X « Y
may be classified by properties of the counter-images of single points, f~! y ye Y.

Thus we call a mapping metrizable if all the f~* y are metrizable spaces.
Among them there are compact metrizable mappings (f ~'y are compacta). Mappings
are bicompact, if all f~! y are bicompacta. Closed bicompact mappings are called
perfect. A mapping with bicompact boundaries of the counter-images f ~'y is called
peripherally bicompact, or simply n-bicompact. Very interesting are the S-mappings
(of Yu. SMIRNOV and A. H. STONE): these are the mappings whose counter-images
f ™'y are spaces with countable bases; and so forth.

On the other hand, given an open covering o of X, one calls a mapping f: X —» Y
an w-mapping if each point y € Y has a neighbourhood Oy with f 10y contained in
some element of w; the notion of a w-mapping is fundamental in the whole newer
development of dimension theory.

It may happen that a mapping of certain type assumes further properties when
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considered for a restricted class of spaces: a classical example is that every continuous
f: X = Ybecomes closed for bicompact X and Hausdorff Y.

Another remarkable case of this kind is discovered by I. A. VAINSTEIN: a closed f:
X — Yis always n-bicompact if X and Y are metric. This result has been strengthened
by A. H. Stone: Given a metric X and a closed f: X — Y; then Y is metrizable if and
only if f is m-bicompact.

Next we give some examples of problems of type B.

It has been proved by myself as long ago as in 1924 that every metrizable locally
separable space is a sum of mutually disjoint open and closed separable subspaces.
Obviously this property is not only necessary but also sufficient for a regular locally
separable space to be metrizable. Thus we can say: A locally separable regular space
is metrizable if and only if it may be mapped on a metric discrete space by an S-mapp-
ing.') Yu. SMIRNOV raised the following question: Which metric spaces are S-
mappable on a zerodimensional space? Smirnov obtained only a partial answer to
this question: namely, he proved that every metric strongly paracompactz) space be-
longs to this category; but there exist non-strongly paracompact spaces which can be
mapped by an S-mapping on zero-dimensional metric spaces. On the other hand,
if a space allows a closed S-mapping on a zero-dimensional space, it is strongly
paracompact; but not all strongly paracompact metric spaces allow such a map.

The following important theorem was essentially proved (although not expli-
citly stated) by C. H. DOWKER [7], 1948 (and reproved by M. Kat&tov and V. Po-
nomarev):

In order that a regular space X be paracompact it is necessary and sufficient that
to each open covering w of X there exists an w-mapping f : X — Y of X onto a metric
space. The final compact (= Lindeldf) spaces are characterized by assuming Y sepa-
rable metric in this theorem.

The following theorems of Z. FRoL{K are fundamental in this field:

I. The (completely regular) space X is paracompact and complete (in Cech’s
sense) if and only if there exists a perfect mapping of X onto a complete metric space.

The second theorem of Z. Frolik belongs to the type A. ,

II. Letf: X — Y be closed, X complete metric. The space Y is metric if and only
if it is complete (in Cech’s sense).

As concerns results of type A, there is the following theorem by V. PONOMAREV
[19]:

All spaces with the first Hausdorff axiom of countability and only these spaces
are open images of metric spaces.

But, as just proved by A. ARCHANGELSKI [5], a collective normal space which
is an image of a metric space under an open bicompact mapping is metrizable.

1) A discrete metric space (and in fact a discrete T-space) is a space all of whose points are
isolated.
2) Strongly paracompact means that every open covering has a star-finite refinement.
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There is an example of A. H. Stone of an open compact f: X — Y, where X is
metric but Y is not metrizable. V. Ponomarev proved that under these conditions a
paracompact Yis always metrizable. V. Ponomarev proved even more: he calls a map-
ping f : X — Y of a metric X a uniform mapping if for each y € Y and each neigh-
bourhood Oy, the distance o(f "'y, X \ f~'0y) is positive. Now if X is metric, Y
paracompact and f: X — Yopen and uniform, then Y is metrizable.

A. Archangelski proved furthermore [5]:

 If X is metrizable, Yis a T;-space, f/* X — Y is closed and uniform, then Y is
metrizable.

A. Archangelski [5] calls a mapping f : X — Yof a metric X completely uniform
if to each y € Y and its neighbourhood Oy, a smaller neighbourhood O,y can be
found in such a way that

of 'Oy, X N fT10y) > 0.
He settles completely the problem by proving the following theorem:
If X is metric, f: X —» Y open and completely uniform, then the T,-space Y is

metrizable.
The natural question as to which spaces are images of metric spaces under open

S-mappings is answered by V. Ponomarev [19], who proved that these spaces and
none other have a pointcountable basis.

I considered the condition of existence of a point-countable basis while working
on metrization of locally separable (and indeed of locally compact) spaces. I have
shown that if this condition is satisfied in a regular locally separable space, then this
space is a union of disjoint open and closed separable subspaces and thus is metri-
zable.

As Yu. SMIRNOV showed that a locally metrizable space is metrizable if and only
if it is paracompact while a separable metric space is even strongly paracompact, it is
easily seen that for the metrizability of a regular locally separable space each of the
following conditions is necessary and sufficient:

1. paracompactness, 2. strong paracompactness, 3. existence of a point countable
basis, 4. existence of a locally countable basis, 5. existence of a star-countable basis,
6. decomposition into disjoint open separable subspaces.

But let us return to spaces with a point countable basis and to their characteri-
zation as open S-images of metric spaces.

V. Ponomarev [19] showed that the existence of a point-countable basis is
preserved under open S-mappings (while it is obviously not preserved under arbitrary
open mappings). The question whether this property is preserved under closed
metrizable (or even compact metrizable) mappings remains open.

A. Archangelski and Z. Frolik have proved that a bicompact space which is a
closed image of a metric space is metrizable, while A. Mis¢enko [16] proved re-
cently that every bicompact space with a point-countable basis is metrizable; on the
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other hand he has constructed a non-metrizable paracompact (normal) space with
a point-countable basis. It remains unknown if in this example the assumption of
paracompactness can be replaced by final compactness.

Before going further in strengthening the first Hausdorff axiom of countability,
let us recall the general metrization theorem by P. URYSOHN and myself [1], proved in
1923 as the first theorem of its kind; today this theorem seems much more natural
and satisfactory than it seemed 38 years ago. We called a family £ = {w,} of open
coverings of given space X complete if it has the following property: for each point
x € X and each element V, € w, containing this point, the set {V,} so obtained is a basis
of the point x in the space X. An alternate formulation of this condition is ob-
viously the following one:

To each x € X and its neighbourhood Ox there exists in X a w, such that the star
of a in w, is contained in Ox.

Oursecond definition is the following: a covering @' is a regular refinement of
the covering w, if for each two elements U}, U} of ’ with U} n U3 =% 0 there exists an
U € o containing U] n Uj. Obviously the condition of a regular refinement is less
restrictive than that of a star-refinement.

The metrization theorem of Urysohn and myself is as follows: A space X is
metrizable if and only if there exists in this space a countable complete family of open
coverings ‘

Wy, Way evey Wyy o

such that each w, ,{ is a regular refinement of w,.
One proves easily that in a paracompact regular space the condition concerning

regular refinements may be omitted (because of the existence in such a space of star-
refinements for any covering). Thus a necessary and sufficient condition for metri-
zability of a regular space consists simply in paracompactness and in the existence
of a countable complete family of coverings. (V. Ponomarev).

Remark 1. As first noted by A. Miséenko [16], there exists a regular non-
paracompact space in which every covering has a regular refinement.

Remark 2. We say that the space X is symmetrizable if a symmetric function
o(x, x") = ¢(x’, x) 2 0 of two points of X can be defined in such a way that g(x, x") =
= 0 is equivalent with x = x" and x, € X belongs to the closure of a set M < X if
and only if inf o(x,, x) = 0. We say further that a symmetrziable space is a Cauchy
space if it allows a symmetric metric in which each convergent sequence of points
X, = X, is a Cauchy sequence (in the sense that ¢(X,,, x,) = 0 when m, n —o0).

A. Lunc [14] has shown that the space of all countable ordinals (with the ob-
vious order topology) is a symmetrizable(!) space but not a symmetrizable Cauchy
space. In a joint paper V. NiEMYTzK1 and myself [2] have proved that a space X is
a symmetrizable Cauchy space if and only if it has a countable complete family of open
coverings.
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Thus a paracompact symmetrizable Cauchy space is metrizable.

After all these remarks we shall define a property of a topological space which is
stronger than the existence of a pointcountable basis. Namely, define a point-regular
basis as an open basis B with the following property:

Any infinite set of elements of B containing a given point x is a basis of this
point.

It is immediate that every point-regular basis is pointcountable. Moreover,
a point-regular basis can also be defined as a basis having the following property:

For each point x and its neighbourhood Ox there is only a finite number of
elements of the basis which contain the point x and have points in common with
X \ Ox.

As each element of a point-regular basis is contained in a maximal element of this
basis, while any covering by such maximal elements is necessarily point-finite, one can
easily conclude weak paracompactness®) of spaces having a point-regular basis.
Furthermore, if w, is the set of all maximal elements of the given point-regular basis B,
then B \ w, is again a (point-regular) basis*) B,, while w, is a point-finite covering
of X.

Similarly, the set of all maximal elements of B, is a point-finite covering w, of X
and B, \ w is a point-regular basis.

In this manner we obtain a sequence

Wy, Wyy enny Wy ..

of point-finite coverings which is easily seen to be complete. Thus if the space X is
paracompact and has a point-regular basis, then X is metrizable, by the Ponomarev
version of the theorem of Urysohn and myself [4].

Thus we obtain the following metrization theorem (proved by myself in [1]):

A necessary and sufficient condition for the metrizability of a Hausdorff space
is paracompactness combined with the existence of a point-regular basis.

As X is weakly paracompact, paracompactness in this theorem may be replaced
by collective normality.

A. Archangelski [6] made a further step in this direction of investigating the
metrization problem, and this step is definitive. He calls a basis B regular if to each
point x and to each neighbourhood Ox, a smaller neighbourhood O,x can be found
such that only a finite number of elements of the basis B has common with both O, x
and X \ Oqx.

In the same way as weak paracompactness of a space X follows from the existence
of a point-regular basis in X, the ordinary paracompactness of X is a consequence of
the existence of a regular basis. As every T;-space with a regular basis is regular, we
have:

3) Weakly paracompact means that every open covering has a point-finite refinement.
4) One must be careful — in an obvious manner — with the single point elements virtually
present in the basis.
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Archangelski’s [6] metrization theorem: In order that a Ty-space be met-
rizable it is necessary and sufficient that this space have a regular basis.

2

Until now we have only considered those aspects of the general problems A and B
which are more or less connected with metrization and countability. Now let us men-
tion some results and problems concerning the representation of topological spaces as
continuous images of zero-dimensional spaces.

I think the first results in this field were some theorems of Hurewicz and myself
(proved around 1925); I proved [3] that compacta (i. e. compact metric spaces) are
identical with those Hausdorff spaces which are continuous images of the Cantor
discontinuum; W. HUREwICZ proved (almost at the same time) his famous character-
ization of compacta of dimension <n as (n + 1)-to-1 images of zero-dimensional
compacta (or of closed subsets of the Cantor set). Both theorems were the objects of
important generalizations until the last years (in particular I have in mind the tre-
mendous generalizations of the results of W. Hurewicz now given by J. NAGATA and
E. SKLYARENKO, concerning infinite dimensional compacta).

I proved that every bicompact space of weight 7 is a continuous image of a zero-
dimensional bicompact space of the same weight, and in fact of a closed subset of the
generalized Cantor discontinuum 2" of the same weight t; the question then arose
whether every bicompact space of weight 7 is a continuous image of the discontinuum
2" itself. The negative solution of this question is given by E. SZPILRAIN-MARCZEW-
skI who also proved some properties of the bicompact spaces now called dyadic,
which are such images. E. Marczewski proved that every family of disjoint open
subsets of a dyadic bicompact space is at most countable. Further important results
are due to N. A. SHANIN [24] and A. ESENIN-VOLPIN. N. A. Shanin proved- that no
dyadic bicompact space is the sum of a well-ordered increasing family of nowhere
dense subsets.”’) A second theorem by Shanin states that if an ordered bicompact
space (with the natural order-topology) is dyadic, then it is necessarily homeomorphic
to a compactum lying on the real line.

A. Esenin-Volpin proved that a dyadic bicompact space with first Hausdorff
axiom of countability is metrizable.

Thus the dyadicity of a bicompact space is a very strong restriction. On the other
hand, L. Ivanovskl and V. KusMINOvV succeeded in proving the very remarkable
theorem that every bicompact topological group (considered as topologlcal space) is

“a dyadic bicompact space. -

In a joint paper appeared in vol. 50 of the Fundamenta Mathematicae, V. Pono-
marev and myself have given a characterization of dyadic bicompact spaces and also

5) This theorem of Shanin represents a generalization of Baire’s theorem on category; for
non-dyadic bicompacts it does not hold in general.
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of irreducible®) dyadic bicompact spaces in terms of coverings. But a characterization
of these important spaces by means of more simple and direct set-theoretical properties
is still an open problem. Actually we do not know whether a dyadic bicompact space
which is of character t at each point (and thus, according to A. Esenin-Volpin, has
weight 7) is the image of 27 under an irreducible mapping.

Now let us pass to general non-compact spaces. To my knowledge the only result
in this area is a theorem of Ponomarev [20] asserting that every normal (and in fact
every completely regular) space X of weight t is the image of a certain set X, < 2"
under an irreducible perfect mapping.

Of course X, is a completely regular space and zero-dimensional in the sense that
ind X, = 0.

The question arises as to when can we suppose dim X, = 0 in Ponomarev’s
theorem?

The answer given by Ponomarev is as follows:

Let us call a Tyspace X, perfectly zero-dimensional if each open covering of X,
has a refinement whose elements are disjoint open (and indeed open-closed) sets;
obviously, this property is equivalent to paracompactness combined with dim X, = 0.
Then the following theorem holds:

Among all regular spaces the paracompact ones are characterized by the property
that they are perfect images of perfectly zero-dimensional spaces.

The following is an open question:

Is every normal X a perfect image of a normal X, with ind X, = 0?

In concluding this part of my report, it should be emphasized that the problems of
types A and B are special cases of the general problem:

Which properties of a space are invariant under multivalued continuous map-
pings?

In this formulation I understand the continuity of a multivalued mapping in the
classical sense of W. HUREwICZ which is as a matter of fact, the sense of Cauchy:
a multivalued f : X — Y (where all fx are closed in x) is continuous, if for each neigh-
bourhood Ofx of the closed set fx there exists a neighbourhood Ox of x such that”)
fOx € Ofx. The inverse mapping f ~! sends each point

yeY into f7ly =é8(xeX, fxay).
A rather detailed theory of multivalued continuous mappings is elaborated by V. Pono-
marev in three corfsecutive papers [21 —23].
I will mention here only the following results of these papers.
) An irreducible dyadic bicompact spacé is the image of 27 under an irreducible continuous

mapping. A mapping f: X - Y, Y = fX, is called irreducible if thereisnoclosed 4 < X, 4 + X
with f4 =Y.

7) The image fM of a set M = X (the “‘large image’’) means the set fM = U fx. If fA is clo-
xeM
sed for all closed sets A, then f is called closed; if fH is open for all open sets H, f is called open.
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A multivalued continued mapping f : X — Y is said to be perfect if it is closed
and if for every x € X and y € Y, the sets fx and f ™'y are bicompact.®)

One of the advantages of the use of multivalued mappings is that the notion of
a perfect mapping (like some other important notions) than becomes symmetric: if f
is perfect, so is its inverse f 1.

V. Ponomarev proved that all the following properties of a completely regular
space are invariant under a perfect multivalued mapping (and thus invariant in both
directions, from X to Y and from Y to X):

bicompactness, local bicompactness, paracompactness,

countable paracompactness, completeness in the sense of E. CECH.

This last invariance is a consequence of one of the extension theorems proved
by V. Ponomarev [2] for multivalued continued mappings.

From his four theorems of this kind I shall mention here three.

Ist extension theorem.’) Every closed Y-bicompact mapping f: X — Y of the
T,-space X onto the T;-space Y has an extension to a closed mapping of of wX onto
wY: if & = {A} e wX then

wf(é) =An§ [fA]wY -

Here wX, wY mean, as always, the Wallman extension of X and Y.

V. Ponomarev [21] calls an extension ¢ : X — wY of a mapping f: X - Y
bilateral, if ™' : oY - wYis an extension of f ™! : Y — X.

2nd extension theorem. In order that a mapping of the T,-space X onto the T;-
space Y have a closed bilateral extension ¢ : wX — Y, it is necessary and sufficient
that f be perfect. Then wf is the desired extension and it is the only one which is mi-
nimal in the sense that for any closed extension ¢ : wX — wY the inclusion w f(&) =
< ¢(¢) holds for all £e wX. For a bilateral extension ¢ : wX — wY we have

p(wX N X)=wYNY and ¢ (@Y N Y)=0X \ X.

For normal X, Y we have wX = X, Y = BY, and the invariance of the Cech
completeness is a consequence of this situation.

The continuity of a multivalued mapping is equivalent to the closedness of its
inverse mapping f~'; if f ! is both closed and open, f is called strongly continuous.

The third extension theorem of Ponomarev is concerned with Y-bicompact
strongly continuous mappings of a normal space X onto a normal Y, and asserts that
such a mapping f allows precisely one strongly continuous extension ff : fX — fY;

8) The bicompactness of all fx & Y is called Y-bicompactness, the bicompactness of all
f~1y € X X-bicompactness of f.

9) All mappings are supposed multivalued continuous; brackets mean closure.
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this extension is moreover minimal (in the above sense) in the class of all closed exten-
sion. If f is open, then ff is also open.'?)

3

1. This last part of my report is devoted to some questions of general dimension
theory. Corresponding to the general aim of this paper I shall deal mainly with pro-
blems concerning general spaces. But it is impossible not to mention the tremendous
progress in the last years of dimension theory of infinite-dimensional spaces which is
mainly due to J. NAGATA, Yu. SMIRNOV and his pupils B. LEvsHENKO and E.
SKLYARENKO.

P. Urysohn was the first to suppose that there are two quite different types of
infinite dimensional spaces and particularly of infinite-dimensional compacta
= compact metric spaces): the weakly infirite-dimensional (now universally called
the countable dimensional) spaces which can be decomposed into a sum of a countable
number of zero-dimensional subspaces, on the other hand those which do not allow
such a decomposition. Urysohn formulated the conjecture that the Hilbert cube is
strongly infinite-dimensional. Hurewicz proved this conjecture by showing that the
Hilbert cube X has the following property:

(A) In X there is a countable number of pairs of closed disjoint sets (4;, B;),
i=1,2,...(i.e. ;A B;= @ ) such that whenever closed C; separate 4; from B, the
intersection () C; is non-void. As no countable-dimension space can have this pro-
perty (A) I called spaces with this property essentially infinite-dimensional; at the
same time I formulated the following definition:

We say that a compactum X has the property (A’) if there exists a sequence of n-
dimensional cubes Q", n = 1,2, 3, ..., 0" a face of Q"*', and of essential mappings
fa 1 X = Q" such that if n%*! denotes the natural projection of the cube Q"+! onto
its face Q", we have

+1
fn = TE: fn+ 1
The definitions bring forward, in a natural manner, these two problems:

1° are the properties (A) and (A") equivalent for every bicompactum?

2° is anyone of these properties equivalent to the property of a compactum of not
having a countable dimension?

B. Levshenko [13] has given a positive answer to the first of these questions; the
second remains open.

As concerns the countable-dimensional compacta I will mention only the fol-
lowing result of Nagata-Sklyarenko: '

In order that a compactum X not have a countable dimension it is necessary and
sufficient that for every mapping f of the Cantor discontinuum C onto X there is at

10) This last result was first proved by Ponomarev under a suplementary hypothesis that f is
X-bicompact, and thus perfect; A. TAiIMANOV [27] showed that this hypothesis may be omitted.

4 Symposium
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Jeast one point x € X with an uncountable counter-image f ~'x = C (which thus has
the power of the continuum). ’

On the other hand, if X has a countable dimension, then there exists a mapping
f: C - X with all counter-images f~'x finite.

It is in my opinion an interesting question to investigate for an X with non-
countable dimension, the set X, of all points x € X with an uncountable counter-
image f~'x. What is the structure of this set? can it be of finite or countable dimen-
sion?

I will not dwell any more on infinite-dimensional spaces as there is a rather
complete report by Yu. Smirnov on the subject.

2. It is well known that any n-dimensional compactum is the limit space of an
n-dimensional projection spectrum (i. e. an inverse spectrum whose elements are
simplicial finite complexes). Freudenthal proved that any n-dimensional compactum is
the limit space of an n-dimensional polyhedral spectrum (i. e. an inverse spectrum
whose elements are polyhedra and whose projections are continuous mappings).

B. PasynNkov [17], [18] and independently S.MARDESIC [15] have proved that there
are n-dimensional bicompacta which are not limit spaces of n-dimensional poly-
hedral spectra (although every bicompactum is the limit space of a polyhedral spect-
rum; but it may be impossible to have in this spectrum projections ,,onto””). More-
over, B. Pasynkov proved that if an n-dimensional (in the sense dim X = n) bi-
compactum X is the limit of an n-dimensional polyhedral spectrum with simplicial
projections, then necessarily ind X = Ind X = dim X = n. Thus the problem of
spectral representation of bicompacta is intimately connected with one of the most
important problems of dimension theory of general spaces, the problem of inter-
relations between the different dimensional characteristics of these spaces (ind X,
Ind X, dim X). In connection with this problem, B. Pasynkov studied different kinds
of spectral approximations; among a number of interesting results (cf. his report to
this Symposium) this led to a proof of the identity

dimX =indX =Ind X

not only for all locally bicompact groups but also for all factor-spaces X = G[H of
such a group over a closed subgroup.

I believe this is a very important result indeed. Further progress in the theory of
approximation of bicompacta is due to S. Mardesié, who proved that every n-dimen-
sional bicompactum is the limit space of an inverse spectrum whose elements are
n-dimensional compact metric space — an unexpected and remarkable result. Mardési¢
has applied this theorem to obtain another proof of E. Sklyarenko’s [22] theorem
stating that for every normal space X there exists a bicompact extension bX of the
same dimension and weight wbX as X, '

dim X = dim bX, wX = wbX.

The question then arises whether there exists, for all n-dimensional bicompacta
(and thus, in virtue of Sklyarenko’s theorem, for all n-dimensional normal spaces X)
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of weight 7, a universal n-dimensional bicompactum B} of the same weight 7 (universal
in the sense that B should topologically contain all the n-dimensional X of weight 7).

Let us return to the problem of interrelations between dim X, ind X, Ind X for
different spaces X. Obviously ind X < Ind X for all T,-spaces.

M. KATETOV and K. MORITA proved the most important theorem that
dimX = Ind X

for all metric X, while it remains still unknown whether ind X = Ind X for metric
spaces. The same identity ind X = Ind X also remains unproved for bicompact
spaces: the only known result is dim X < ind X (which I have proved for bicompacta;
this has been generalized by Yu. Smirnov and K. Morita to all final compact and
even for all strongly paracompact spaces).

It was proved by A. Lunc and O. LOKUCIEWSKI that there exist bicompacta X -
with dim X # ind X, a result which has been strengthened by P. VOPENKA in a way
which appears exhaustive.

N. VEDENISsOV proved that dim X < Ind X for normal X; it remains unknown
whether dim X £ ind X holds for paracompact normal spaces.

In a joint paper by V. Ponomarev and myself, questions of this kind were consi-
dered from the view-point of families of coverings.

As mentioned previously, a family ¥ = {a} of coverings a of a given space X is
called complete if to each point a € X and to each neighbourhood Oa of this point
there exists an o € X such that the star S,a of the point a in the covering « is contained
in Oa. If we replace in this definition the point a and its neighbourhood Oa by an
arbitrary closed set A4 and its neighbourhood OA, we obtain the definition of a well-
complete family of coverings.

Finally, the family X = {a} iscalled confinally complete if each open covering
w of X has a refinementa € X.

Another important definition is the following:

We shall say that the closed covering «'isa strong refinement of o, if &’ is a refine-
ment of « and if each element of « is the union of all elements of «’ contained in it,
A=y 4.

A'ea’
A'CA
We can consider the relation of strong refinement as an ordering relation in
the system X = {a} of closed coverings. In particular, £ = {«} is directed if any two
coverings a; € X, a, € 2 have a common strong refinement « € 2.
Now V. Ponomarev and myself [3] proved the following theorems:

Theorem 1. If in the space X there exists a directed complete (resp. well-
complete) family X of closed covering a, each of order < n + 1, then for the space X
(which in this case is obviously normal) there hold the relations ind X < n (or
Ind X < n respectively), and (obviously) dim X < n.

4*
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In this case for any subspace B < X which is the intersection of some p + 1
elements of a fixed a € X' there exists a directed complete (or well-complete respecti-
vely) family of closed coverings f, each of order < n — p + 1, such that ind B <
< n — p (Ind B < n — p respectively).

In this theorem the coverings « € X can be supposed finite as well as locally finite.

Next we confine ourselves to bicompact normal spaces. In this case “complete”
means confinally complete.

We call a bicompactum X with dim X = n perfectly n-dimensional, if in X there
exists a directed complete family of finite closed coverings. In this case we have by
theorem I

dim X =ind X = Ind X .

Now any n-dimensional bicompactum X (in the sense dim X = n) has complete
systems X of closed (even of closed canonical'')) coverings of order n + 1. Now it
follows from theorem I that in the case of dim X # ind X none of these
families of coverings can be directed. This means that if we direct the given family ¥
(say, of canonical coverings a of order n + 1) by adding new canonical coverings,
then these new coverings necessarily fail to be of order < n + 1. This negative result
seems to be the most interesting consequence of theorem 1.

Theorem II. Every perfectly n-dimensional bicompactum is the image of a zero-
dimensional bicompactum under an (n + 1)-to-1 continuous mapping.

On the other hand, every bicompactum X which is the image of a zero-dimensio-
nal one under an (n + 1)-to-1 mapping has a complete family of (even canonical)
coveritigs of order n + 1 and therefore has dim X < n; thus

"Theorem III. Among all n-dimensional bicompacta, the perfectly n-dimensional
and only these are (n + 1)-to-1 images of zero-dimensional bicompacta.

It follows that a perfect n-dimensional bicompactum is not an image of a zero-
dimensional bicompactum under a (1, k)-mapping with k < n + 1.

It is of course possible to give a suitable generalization of these results to the
paracompact case (for theorem I this generalization is immediate).
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