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LINEARIZATION OF MAPPINGS 

J. DE GROOT 

Amsterdam 

A brief discussion of two theorems in this area. 
Let M be a metrizable space and G a compact topological transformation group 

of homeomorphisms of M onto M. It is clear when such a pair G, M is called (topo-
logically) equivalent to a pair G*, M*. 

Theorem I. To every pair G, M there corresponds an equivalent pair G*, M* 
where M* is embedded in some suitable real Hilbert space H* and the action of G* 
on M* can be extended over all of if* in such a way that G* acts as a (compact) group 
of unitary homeomorphisms of H* onto if*. 

Briefly: the action ofGonM is linearized by a group of unitary transformations 
in Hilbert space. 

Sketch of the proof. M may be thought of as being embedded into a bounded 
subset of some real Hilbert space H. Introduce an orthogonal coordinate system in H, 
and a point xe H will have coordinates (x)a, a running through some index-set A. 
We define for every x e H a map 

t : x = (x\ -> x* = (gx\ , a e A , g e G , 
where gx is the image of x under g in M and (gx)a is thought of as a functional de
pending on the two variables g and a. Observe that x is one-one. We will embed the set 
{x*} = M* into a Hilbert space H*. In order to define if* we proceed as follows. 

The vector space V will consist of all finite linear combinations of points x* over 
the real field, where addition and multiplication with a real scalar are defined in the 
natural way. For two such vectors v and w 

we define an inner product 

= I aÁ9xj\ • w = I bÁ9yj)* 

(v, w) = £ (v . w) dö 

Observe that this makes sense. Thus the vector space V becomes an, in general, still 
incomplete Hilbert space. Its completion will be H*. One can prove that T is a topo
logical map of M onto M*, while the action of 

G* = TGT" 1 on M* 



192 J. DE GROOT 

is defined in a natural way over all of//*. The invariance of integration shows that G* 
acts in this way as a group of unitary transformations. 

Two unsolved problems: 

1° If G is locally compact, can we find a G* of bounded linear operators? 
2° The same question, if G is a compact semigroup of continuous mappings of M 

into itself. 

If P is a topological product of an infinite number, say m copies of one and the 
same topological space T, every permutation of these m copies induces in a natural 
way, an autohomeomorphism of P. 

In the same way every immutation (an immutation is defined as a map of a set — 
in our case of power m — into itself) defines, in the natural way, a continuous map of 
P into itself. If Tis a vector space, such an immutation is a linear map. 

A family of immutations of a given set generates a semigroup of immutations. 
Conversely, if some semigroup is given, we may add a unit element to the semigroup. 
The set of all left (or right) multiplications carried out on the elements of the latter 
semigroup defines a semigroup of immutations (on the set of elements of the semi
group) which is isomorphic (anti-isomorphic) to the latter semigroup. In particular 
a free semigroup F of power m with identity element may be represented isomorphic-
ally by the corresponding free immutation semigroup of left immutations. 

In the sequel let P be a product of m segments. The free semigroup F may be re
presented as a set of immutations of the m segments, inducing a free semigroup of 
continuous maps of P into itself. We might call these maps "linear" (since we can 
extend the segments to real lines). This defines the pair F, P. 

Take a set of free generators (p of F. How does such a (p look like as immutation, 
i.e. as coordinate transformation on the m coordinates xa of P? For every such cp 
there corresponds a splitting of the m coordinate-indices a into m countable sets of 
indices />, i, where fi is an index-set of power m and / = 1, 2, 3, ... ad inf. The 
corresponding coordinate transformation induced by (p is given by 

(*) >>/M = xPfi+l for all pairs /i, / . 

Every completely regular space R of weight ^ m admits a topological embedding 
into P. We might say P is a universal space regarding the family of spaces R. Now let, 
moreover, be given a set S of m arbitrary continuous mappings of R into itself. 
Without loss of generality we may assume that S is a semigroup with identity element. 
This defines the pair S, P. 

Theorem II. Any pair 5, R admits a universal linearization by means of the 
pair F, P. 

Explicitly: it is possible to embed R in such a way into P, that the action of F 
onto P, restricted to the embedded R, coincides with the action of S onto the embed
ded R. So, in particular the action of any s e S on the embedded R can be extended 
over all of P. 
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Every such an extension map is a "linear" map of type (*). 

Remarks . Analogous results hold for sets S of power different from m. The 
action of F on the embedded R is not effective, in general. A corresponding theorem 
holds for autohomeomorphism groups S. In this case F is a free group and i* runs 
through all integers in the equations (*). 

Ind ica t ion of proof. Set up a one to one correspondence 

cp <-> s (s #= e) 

between the free generators of F and the elements (=f= e) of S. This correspondence 
induces a homomorphic map co of F onto S. 

The elements of F will be denoted by \j/ and F will also serve as an index-set. We 
can write 

AcL 
ij/eF 

where Lis an index set of power m and every Ix^ is a segment. A point x e P has coor
dinates XXj, 

X = (XA^)keL (0 = XA,* = 1) • 

For every fixed element y e F we determine a "linear" map y of P into itself by the 
following immutation (xy denotes the image of x under y) 

Xy = (xyxrfjAeL = (XA,yilf)x€L ' 
\]/eF tj/eF 

Furthermore, one may think R to be contained topological^ (this is a preliminary 
embedding) in the subspace of P spanned by the segments lXt (XeL,s ^identity-
index of F). So a point y e R has coordinates 

y = 00 
with 

yx# = 0 if iA*£> 1/^eF. 

The final embedding R* = {y*} of R is determined by a map x of R into P: 

(1) T: y -> y* = (yU)xeL = (y ^)X^X€L, 

where j ; co(i/t) is the image of y under s = (o(\j/)9 so a point of K in its first embedding. 
One can show that x is a homeomorphism, while moreover the action of an ele

ment y e F on JR* coincides with the action of a>(y) on R. Moreover, it appears that 
the requirements of theorem II are fulfilled. 
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