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MEASURE-PHES.SRVI.feia IdA-frS 

A* H. Stone 

Many important spaces come equipped with measures as well as with 

topologies* Thus it is of significance to investigate maps that are 

measure-preserving as well as continuous; and some problems of this 

nature will be considered here. By a "topological measure space" 

(X, CTt M ) t or (X, ja) for short, we mean a set X with a topology 3 

and a countsbly additive, non-negative regular Borel measure V » 

completed with respect to null sets. A map f: (X, tf , p)—> (Y, U9J> ) 

is "measure-preserving" provided that, for all v -measurable subsets B 

of Y , f ^ B ) is p-measurable and n(f-l(B)) = v(B) . 

One striking example of a measure-preserving map is -Peano's well-

known continuous map, say j& , of the unit interval I onto the unit 

square I 2. It is perhaps not well-known that /f is measure-preserving 

when I and I 2 have their usual Lebesgue measures; but this is easily 

seen by noting that, at the n"***1 stage of the construction of / , I s is 

subdivided into 2 n x 2 n equal squares, the inverse of each of which is 

an interval in I of the right length (4"n) . Recently Schoenf eld [3] 

has generalized this observation into a measure-preserving form of the 

Hahn-liazurkiewicz theorem: if X is a Peano space, with a measure p 

such that p(X) = 1 and ju is positive for every non-empty open subset 

of X , then there is a continuous measure-preserving map of I (with 

Lebesgue measure X ) onto X • (Conversely, the conditions on ji here 

are obviously necessary.) 

One of the first major theorems about measure-preserving maps is 

that of Oxtoby and Ulam [2, p. 886] (see also [5])s if m is a measure 

on Euclidean space R n that is non-atomic, positive for all non-empty 

open sets, and cr-finite but mot finite, then there is a measure-pre

serving homeomorphism from (Rn, m) onto (Rn, X n ) , where Xn denotes 

n-dimensional Lebesgue measure. This theorem is deduced from an 

analogous characterization of Lebesgue measure on I n : there is a 

measure-preserving homeomorphism of (ln, m) onto (ln, Xn) if (and 

only if) m is non-atomic, positive for non-empty open sets, vanishes 
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on the boundary of In, and m(in) = l . it would be highly desirable 

to have an extension of this theorem to characterize the product Lebesgue 

measure X ^ on the Hilbert cube I 0 0 ; but this seems to be difficult. 

A natural question here is: What spaces (X, JLI) can be embedded in 

(r~, X^J by measure-preserving homeomorphisms ? Of course, X must be 

separable and metrizable, p must be non-atomic, and l*(X) must be < 1. 

The case ju(X) = 1 would imply the extension of the Oxtoby-Ulam theorem 

just mentioned, so we assume p(X) < 1 . In this form, the question 

was raised in [4]f and answered only in very special cases. The answer 

is still unknown in general, but the following theorem provides a 

partial answer that improves on the results stated in [4]* 

Theorem 1 If X is a finite-dimensional separable metric space, with 

£. non-atomic complete regular Borel measure ju for which ji(X) < 1 , 

then there is a measure-preserving homeomorphism of (X, p) onto a 

sub space of (I00 , \at) . 

Proof Let dim X = n . Take J to be the interval [0, 1-e] c I , 

where e is positive and small enough so (l - e ) 2 n + 2 > n (x). .First 

we establish the theorem with (i^tX^) replaced by (J2n+2
f X2n<+2) • 

Take a closed interval .K interior to J , and consider £ = £2n+1x£i^ 

c j 2 n +2 # There is a homeomorphism f of X onto a subset Y of £ 

(see [1, p. 60]). Define a Borel measure m on J by: 

m(B) = Ju(f-
1(BnY)) + ((l-£) 2 n + 2 - p(X))x£n+2(B - Y) t where X| n + 2 

is outer Lebesgue measure. Then m (completed with respect to null 

sets) satisfies the hypotheses of the Oxtoby-Ulam theorem, so that 

there exists a measure-preserving homeomorphism g of (J2n+ , m) 

onto (J2n+2, X 2 n + 2) •
 K o w B°^ is the measure-preserving embedding of 

(X, p) into (J2n+2, X 2 n+ 2) 9 as required. 

We remark, parenthetically, that if X is compact we can replace 

2n+2 by 2n+l here, by taking Y C K 2 n + 1 c J2n+1 . Since Y is closed 

and n-dimensional it is automatically nowhere dense, so m will still 

be positive on non-empty open sets. 

Kext we observe that the interval (J, X) can be embedded, by a 

measure-preserving homeomorphism, into (I°°# X^ ) • The construction is 

roughly as follows. It is not hard to see that one can construct a 

Cantor set Cx in I*3 such that X^C^) > 1 - e , and that one can run 
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a simple arc Ax through C ^ Near each of the countably many comple

mentary intervals of ^ - C^, we place a small cantor set of positive 

measure, and modify £•-_ to run through it. Iterating, we ena with a 

simple arc A c I°° such that X (A) > 1 - e and each sub-arc of * 

has positive X^ -measure. Take a sub-arc A* of A having X (A*) * 

1 - £ , and take a homeomorphism h of J onto A* . i'or each t e J 

put /(t) = X^hCO, t]) . Then j6 is a continuous and strictly 

increasing function, hence a homeomorphism of J onto J ; and ho/*1 

is a measure-preserving homeomorphism of (J, X) into (I00, XJ , as 

required. 

It follows at once that (J , X£n+2^ i s -U-rt^dable, by a measure-

preserving homeomorphism -p , into the (topological ana ixieasuretheoretic) 

product (I~ , X j 2 n + 2 . But this is just (I00 , XJ . Thus 9 = y^gcf 

gives a measure-preserving homeomorphism of (X, JI) into (I00 , Xw) , as 

required. 

Remark It cannot be asserted (without extra hypotheses — for instance, 

that X is compact, or even analytic) that the images of X in l2n+2, 

or in I°° , are Lebesgue measurable* For a measurable subset of positive 

Lebesgue measure in In (n £ <*> ) must contain a Cantor set of positive 

measure; and this need not be true of (X, JJ). Of course, Lebesgue 

outer measure induces a completed Borel measure on the image of X , 

whether or not it is measurable; and this is the measure that is "pre

served" in Theorem 1. 

In a different direction, we have a measure-pre serving analogue of 

Urysohn1s Lemma s 

Theorem 2 Let X be a topological space, and yt a non-atomic Baire 

measure on X such that ju(X) = 1 . Let P0, P^ be disjoint zero-sets 

in X , both of u-measure 0. Then there exists a continuous measure-

preserving map g:(X, p) *-> (I, X) such that g"1(0) Z> P0 and g-,1(l) 

D Pi . 

Proof Let S> denote the family of Baire subsets of X . We first note 

two well-known (and easily proved) facts, the first of which is a con

sequence of the fact that p is non-atomic. 

(l) If A € $ and JJ (A) = c x > Q > 0 » there exists B € & such that 

B C A and |u(B) = ^ . 
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(2) Given a zero-set P contained in a cozero-set G , there exists 

a continuous function f :X -> I such that P = f-1(0) and 

X - G - f 1 ( l ) . 

We deduce: 

(3) Given a zero-set P contained in a cozero-set G , and e > 0 , 

there exist a cozero-set U and a zero-set U such that 

P c U c 0 c G , p(U) < p(P) + £ , and M ( U - U) « 0 . 

To prove this, apply (2) and consider the function g:I~*I where 

g(t) * fi(fl[Of t]). Then g is a non-decreasing function, hence 

continuous except for at most countably many values of t * Also g is 

continuous on the right, hence continuous at 0 • Thus there exists S > 0 

such that 0 < t < .5 *-> g(t) < JJ(P) + e . * Choose tQ e (0, 5 ] to be a 

point of continuity of g , and take U = f 1[0, t) , U = f"1[0, t]. 

In what follows, we continue the same notation: U denotes a 

cozero-set, and U denotes a zero-set containing U (and hence U ) such 

that JU(U - U) = 0 . 

(4) Given a zero-set P contained in a cozero-set G , where n(G - P) 

= c< > 0 , there exist U , U such that P c u c U c G and 

JU(U - P) (and consequently also ju(G - U) is "between <x/3 and 2*/3* 

Proof: Take £ = oc/12 , and apply (3) to get P c uo c UQ c. G 

with p(U0 - P) < e , and therefore c* - £ < p (G - 0o) < <x • Prom (l) , 

G - U0 contains a Baire set B such that JI(B) = <x/2. Since p (as a 

finite Baire measure) is automatically regular, there exists a zero-set 

Z c B such that JU(B - Z) < £ ; thus cx/2 - e < \i(Z) < cx/2 • 

Applying (3) to Z and G - U 0 , we get U^ and ^ 8Ucil til&t 

Z c Ux c &! c G - U Q and ja^) < £ + p(Z) . Put U - U 0 o U i , 

tf = lJ0 u tfx ; it is easy to verify that the requirements are satisfied. 

Kow, under the hypotheses of Theorem 2, write G(o) - jS , P(0) » P0, 

G(l) = X - Px , P(l) « X . Applying (4) to P(0) and G(l) , we get a 

cozero-set G(l/2) and a zero-set P(l/2) such that 

p(P(l/2) - G(l/2)) » 0 , P(0) C G(l/2) C P(l/2) C G(l) , and both 

p(G(l) - P(l/2)) and p(G(l/2) - P(0)) are between 1/3 and 2/3* 

Just as in the proof of the classical Urysohn Lemma, we iterate 

this procedure , obtaining a system of sets P( $> ) , G(j> ), defined for 

all binary rational numbers f in [0, 1], with the following properties. 
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(in what follows* it is understood that f $ cr denote binary rationale 

in [Of !]•) Then l?(g ) is a Eero-set, G(j> ) is a coaero-set f 

G ( f ) e P ( f ) cG(<r) cF((T) whenever p < cr fand p (F(j> ) - G( f )) 

= 0 • Further, in inserting the sets G((2p+l)/2q41) and 

P((2p-fl)/2Q+1) between F(p/2<1) and G( (p+l)/2q) at the (q+l)st stage, 

we arrange that both p (G((*n)/2<1+1) - -^(p/2^)) and 

n(G((p+l)/2<0 - P((2p+l)/2q+1) are less than (2/3) q + 1 , and both are 

greater than (l/3)q 

Now define f(x) = sup fy j x 0 $(f )] for x c G(l) ~ F(o). A 

straightforward verification shows that f(x) = inf {er\x e G(<r)$ . 

Further, if we define f(x) = 0 for x e F(o) , and f(x) = 1 for 

x £ X - G(l) , then f :X -* I is continuous, ^nd if f < t < cr , then 

f-l(t) C Q(ar) - p(^ ) . it follows that p(f"1(t)) = 0 for all 

t e I f and thus that n(f-l[o, t]) = |j(f"1[Of t)). 

Finally, define /: I ~» I by 0(t) =- p(fHo9 t]) • It follows 

from the construction that / is a strictly increasing continuous 

function, and thence that 0 is a homeomorphism of I onto I . 

Put g = /°f ; it is easy to see that g fulfils all the requirements 

of the theorem. 

Corollary Let (X, tf , p) be & topological measure space such that 

(X, 3 ) is normal, p is non-atomic, and p (X) = 1 . Let F0, F^ 

.*>£ disjoint closed sets in X , both of measure 0 . Then there exists 

fjk continuous measure-preserving map g: (X, p) -* (I, X) such that 

g"X(0) D F0 and gwl(l) 3 Px. 

To deduce the Corollary from the theorem, it is enough to show that 

^o * "̂ 1 * a r e co^^ined in disjoint zero-sets of measure 0 . The 

regularity of p gives, for n = lf 2f..., an open set U n such that 

FQ c U n o x - F^ and p(Un) < l/n . From the classical Urysohn lemmaf 

there is a continuous function separating F0 and X - U n f from which 

we get a zero-set H n such that FQ c H n c U n . Then F* = jj^ Hn 

is a zero-set of measure 0 containing F0 and disjoint from Fi • 

Repetition of the argument gives a null zero-set F^ D F^ and disjoint 

from FQ , as required. 

.Remark In Theorem 2 (and its Corollary) it would be interesting to 

know whether one can further arrange that g(X) is a measurable subset 
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of 1 • The construction used does not in fact ensure this (unless, 

for instance, X is compact or analytic)• 

Obviously one could attach to any theorem about the existence of 

continuous maps the requirement that the maps be measure-preserving, 

and investigate whether the theorem remains true. We have seen that 

this is the case (under some restrictions) for Uryeohn's Lemma and 

Urysohn1 s imbedding theorem. But the "natural** analogue of Tietze* s 

extension theorem is false. Por instance, consider the case (X,ji) ~ (l,\), 

A - [0, 1/2] , and let f :A -> I be defined by f(x) = 1/2 - x (for 

0 <£ x <l/2 )• Then f is a continuous measure-preserving map of A 

onto [0, 1/2]; but it has no extension to a continuous measure-pre

serving map f*:X->I . For the continuity of f * at x ~ 1/2 would 

give e > 0 such that f*[l/2, 1/2 + e] c [o, 1/2), and then 

f^^O, 1/2) o [0, 1/2 + e] and thus has measure > 1/2 . It would 

be interesting to have a satisfactory measure-preserving analogue here. 

Acknowledgement I am grateful to P. Maharam for helpful discussion, 

and for suggesting Theorem 2 • 
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