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Generalized Shape Theory 

by 

Aristide Deleanu and Peter Hilton 

1. Introduction 

Since Borsuk [1] first introduced the concept of shape in 

his study of the homotopy theory of compacta many authors (see, 

for example,[5,6,7,10,11,13,14,15,17]) have contributed to the 

development of shape theory. However the theory has remained 

almost exclusively confined to a topological context, never 

very far removed from the setting in which it was originally 

cast by Borsuk; and, further, and arising from this restriction 

in the scope of the theory, the concept has, in the work cited, 

related to some category of topological spaces st and a full 

subcategory 5̂ of St. However, Holsztynski [16] observed, 

soon after Borsuk1s invention of the concept, that shape could 

be formulated as an abstract limit, and was thus of more general 

applicability. 

It is the principal purpose of this paper to free shape theory 

from its restricted scope. Thus we replace the full embedding 

of a topological category <$ in a topological category .t by 

an arbitrary functor K : <p -*• st from the arbitrary category <p 

to the arbitrary category sr. In so doing we are very much in

spired by the point of view adopted by LeVan in his thesis [11]. 

We then find that many of the categorical aspects of shape theory 

(we do not speak of the topological aspects) remain valid in this 

very general setting. Others require some restriction on the 

functor K, but a restriction far milder than that K should 
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be a full embedding. 

We refer to the contribution of Sibe Mardes'ic to these procee

dings for the foundations of shape theory. If K : sp -* it is 

the embedding of the homotopy category of compact polyhedra 

(or compact ANRfs) in the homotopy category of compact Haus-

dorff spaces, then, basing himself on the Mardesid-Segal inter

pretation of Borsuk shape [15], via approximating ANR-systems, 

LeVan [11] showed the following. First, of course if f : X -* Y 
1 

is a map in £, then f induces, for all objects P of sp, 
p 

a function f : £(Y,P) -* £(X,P) , simply by composition. More-
P 

over, the functions f enjoy the naturality condition that, if 

u : P -* Q is a map in ty, then the diagram 

fp 
(1.1) £(Y",P) • $(X,P) 

iU* f9 1U* 
$(Y,Q) > Jt(X,Q) 

commutes: here u^ is also induced by composition. Then LeVan*s 

fundamental result in [11] is that a shape morphism from X to 

Y is nothing but a family of functions fp, P e | sp| , such that 

(1.1) commutes for all u : P -* Q in ?. It is this point of view 

which we now adopt. Thus our generalization consists of replacing 

the special functor K by an arbitrary functor K between 

arbitrary categories <p and 'it and defining the shape cate

gory by the obvious generalization of LeVanfs characterization. 

Explicitly, given a functor K from a category sp to a cate

gory t, we define %, the shape category of K, to be the cate

gory whose objects are those of it, with (reexpressing (1.1)) . 

1 
Notice that a map is here a homotopy class of continuous 
functions. 
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(1.2) *(X,Y) = Nat(3.(Y,K-) , . t (X,K-) ) 

Moreover, it is plain from the discussion above that every 

morphism of £ induces a morphism of %, so that there is a 

canonical functor T : X -* £ which is the identity on objects. 

Precisely, we regard the pair (S,T) as the shape of K. 

Plainly, this generalization substantially broadens the 

scope of shape theory. However, it also has another purpose, 

namely, to identify those parts of the existing theory which 

are "trivial" - and to prove them by appropriately "trivial" 

arguments - and thus to enable one to focus, in any particular 

concretization, on the deep aspects of the theory. We will 

exemplify this latter aspect in the next section. Then in 

Section 3 we will apply shape theory in new contexts, thus 

exhibiting connections between different mathematical theories 

which are perhaps not immediately evident. We emphasize that the 

role of our categorical formulations is as stated above, and not 

to prove known or unknown difficult theorems. By means of oar 

generalization we establish connections and know, as a result, 

What questions to ask in various mathematical contexts; to the 

"non-trivial" aspects of the answers we do not claim that our 

approach contributes. 

Details of some of our specific results are to be found in 

[2,3]. 
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2. Universal properties of shape theory 

The approach taken in [14] shows that, in the original context 

of shape theory, we have the result 

?(X,P) = S(X,P) ; 

that is, the shape morphisms from a compact space X to 

a compact ANR P are just the original maps from X to P 

in -t. It turns out that this property requires a mild re

striction on the functor K, which leads to a concept which 

proves relevant in many contexts. 

Definition 2.1 The functor K : ^ -+ z is rich [2] if, given 

objects P,Q of sp and a morphism f : KP -* KQ in £, 

there exists a path 
Vl V 2 V2k-1 V2k 

P = vo • V ± * — V 2 — ... -V 2 k - 1^._V 2 k = Q in *, 

such that each Kv2. is invertible and 

-1 -1 
f = (Kv2k) oKv2k_1o..o(Kv2) oKv1. 

This definition is equivalent to the condition that, if we 

_1 
form the category of fractions <p[l ] with respect to the 

- -1 
morphisms inverted by K, and if K : <p[l ] •+ * is induced 

by K, then K is full. An example of a rich functor which 

is not full is the direct limit functor from sequences of 

groups to groups. 

Theorem 2.1 If K : $ - X is rich then T : <t(X,KP) -* *(X,KP) 

is bijective for all X in \%\t P in |̂ p|-

We would wish passage to the shape category to be idem-

potent. That is, if K1 = TK : sp -* % we would wish (£,1) 

to be the shape of K. . We find 



60 

Theorem 2.2 if K : q& -• $ is rich then shape is idempotent 

Indeed, as observed explicitly by A. Frei, the idempotence 

of shape follows from the conclusion of Theorem 2.1. 

As a further example of a universal property of shape, con

sider the well-known result that, in the original restricted 

context of shape theory, Cech cohomology is shape-invariant. 

In our formulation, we say that a functor G : £ -* <£ is 

shape-invar iant if it factors as GT with G : % -* <£. Plainly 

if G is shape-invariant then GX is equivalent to GY when

ever X,Y have the same shape. Now Dold pointed out, in the 

appendix to [4], that Cech cohomology on the category of com

pact spaces is the right Kan extension [12] of ordinary 

(simplicial) cohomology on the category of compact polyhedra. 

v . 

Thus the shape-invariance of Cech cohomology is a special case 

of the following universal fact. 

Theorem 2.3 Let F : <p -* a: be a functor and let F : $: -* <Z 

be the right Kan extension of F along K. Then F is shape-

invariant. 

In fact, there is a canonical factorization 

F = FT, F : £ •+ <T, 

and one easily proves 

Theorem 2.4 If K : y -+ £ is rich, then F is the right Kan 

extension of F along K. and the right Kan extension of F 

along T. 

Our final example of the universal aspect of shape theory is 

concerned with Grothendieck1 s notion of a pro-category. Let <T 

be a category and let F i 1 ~* <Z, G:J-»<s: be functors on 
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(small) cofiltering categories I,J to £, then F,G are 

objects of the category Pro-C, and 

(2.1) Pro-C(F,G) = lim lim <£(Fi,Gj) 

jej iel 

Now let X-tK be the comma category of sp-objects under X, 

X € | £| ; and let D » XiK -*> «p be the underlying functor given 

-X. 

by 

Dv(P,f) = P, where f j X - KP 
X 

D u = u, where u : (P,f) -* (Q,g) in X^K, that is, 

u : P -* Q and Ku o f = g 

Then, as observed independently by K. Morita, in the original 

restricted context, 

(2.2) Pro-<p(Dx,DY) =*(X,Y) 

However, one may show [3] that (2.2) continues to hold, virtually 

in complete generality. First we may take (2.1) as the defini

tion of the pro-category even where the index categories (do

mains of F,G) are no longer cofiltering. This frees us of the 

necessity, in (2.2) , of assuming - or, in any particular case 

such as the original context, proving - that the comma cate

gories are cofiltering; and then (2.2) is universally true. Thus 

shape may, in general, be subsumed in the theory of (generalized) 

pro-categories. 

3. Shape, localization and completion 

Suppose now that K : q$ -* £ has a left adjoint L : £ -* q&. 

If r) : 1 -> KL is the unit of the adjunction, we may define a 
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function r : £(X,Y) - *(X,KLY) by the rule 

(3.1) r(T) = TLY(ny) 

Let rf cons i s t of the composition of r and the adjunction-r 

b i j e c t i o n $(X,KLY) = ty(LX,LY) . One may then prove 

Theorem 3 .1 rf : S(X,Y) -* <p(LX,LY) i s b i i e c t i v e and respects 

i d e n t i t i e s and composition. Thus % i s isomorphic to the 

K l e i s l i category of 3: with respect to the t r i p l e generated 

by the adjunction L iK. 

This theorem implies that , when K admits a l e f t adjoint L, 

then we may regard a shape morphism from X to Y as an ordi 

nary (£-) morphism from X to KLY. Moreover given a shape 

morphism from X to Y, i . e . , f : X -* KLY, and a shape morphism 

from Y to Z, i . e . , g : Y -+ KLZ, we compose them, to produce 

a morphism h : X —> KLZ by the rule 

h = Kg1of, 

where gf corresponds to g under the adjunct ion-bi ject ion 

£(Y,KLZ) = <p(LY,LZ) . 

As an example of t h i s theorem, consider the fo l lowing. Let 

P be a family of prime numbers, l e t i be the category Sfl 

of n i lpotent groups and l e t q> be the f u l l subcategory Sfl 

cons i s t ing of P- local n i lpotent groups. Then i t i s known (see , 

e . g . [8,9]) that the f u l l embedding K : S t - * SK has a l e f t 

adjoint L. I t i s customary to wri te Gp for LG (or KLG) , 

G € | Sfl\ , so that 

S(G,H) = HomfCHp) . 

The l o c a l i z i n g map e : H -* H i s the unit of the adjunction so 

that a homomorphism vp : H -* IK in Sfl determines a unique 
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^ p : Hp -* Kp such t h a t \\> e = ty. Then we compose <p e £(G,H) , 

vj; e S(H,K) , t h a t i s , <p : G -* H , i|/ : H -> K , t o produce 

^ p 9 : G - Kp. 

The n o t i o n of r i c h n e s s aga in e n t e r s t h e s t o r y a t t h i s p o i n t . 

For one may prove 

P r o p o s i t i o n 3 . 2 Le t K : qj -• $ admit t h e l e f t a d j o i n t 

L : £ -* sp. Then t h e f o l l o w i n g s t a t e m e n t s are e q u i v a l e n t : 

( i ) The t r i p l e generated by t h e a d j u n c t i o n i s idempotent* 

( i i ) K i s r i c h ; 

( i i i ) L i s r i c h . 

It follows that, if K is rich, then, for all Y in |£|, 

KLY is the Adams completion of Y with respect to the morphisms 

of £ inverted by L, thus 

St-^H-.Y) = £(-,KLY) 

Combining this with Theorem 3.1 we have 

Theorem 3.3 If K : qs -* $ is a rich functor admitting a left 

S
T ] , where IT 
L. ' L 

~ -1 
adjoint L, then % = £[ 2 ] , where I is the family of 

morphisms inverted by L. 

Now it is easy to see that the family of morphisms of £ 

inverted by L coincides with the family of morphisms of 5: 

inverted by T : £ -» %. It is thus reasonable to propose the 

following question. 

Question Suppose K : <$ -+ $ is rich. When is % the category 

of fractions £[ ^ ], where zT is the family of 

morphisms inverted by T? 
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It is interesting to note that, when the answer is affirmative, 

and when the Adams completion Y of Y in |<c| exists, 

then *(X,Y) = £(X,Y ) . Thus we are motivated to look for 

examples (when K does not admit a left adjoint) when the 

shape morphisms from X to Y are ordinary morphisms from 

X to some appropriate "modification" of Y. 
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