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FOURTH WIKEER SCHOOL (1976) 

SOME THEOREMS ON MEASURABLE AND CONTINUOUS SELECTIONS AND 

SOME APPLICATIONS 

* ." 
Q. MAGERL 

Let X, X be sets (4 0 ) , OCB^U)f &c £(XK Call 

$ : X—-> I a correspondence, i f f $ (x) i s a nonempty sub

set of X, V x* Call a map f: X—>X (correspondence $ : 

: X—>X) a - &-measurable, i f f f - 1 (B) € OL ($"X(B) • 

-- 4x \ § ( x ) n B * 0 5 € C4, ) V B < s ^ • f :X—^X i s a se 

lection of $ , i f f f (x) e $ (x) V x. 

Definition. 1 topological space, tf : ^i(X)—:• J2 (X) 

a map such that tf(X) = X. Then E(X,X, tf )«--=-> 3 2£Y dense, 

V coverings 4 A a | * c Z $ of X(A3t, € Ct ) 3 f : X — > X 

Gt-'CJ^measurable itf « open sets) such that f(x)ctf-fz|x 6 

6 A Z ] V x € X . 

Examples are: 

(X, OL ) measurable space, X Polish, € • id, them E(X,Xt6' )• 

X paracompact, CI « V , X locally convex space, &(?) » 

* conv (T) (TeX) then E(X,X, 6T). 

From this one gets a simultaneous proof of Theorems of 

OJRATOVSO/RXIiL-NARDZEVSKI on measurable selections and MI

CHAEL on continuous selections, namely* . 

Suppose tt * ^ i t e , c o i m U b l « -stable, I complete 
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metric i(V) a fundamental sequence of entourages far T 

such that S(Vn(y))cvn(y) V * Vy f V
? n s ? n - 1 » Vft 

symmetric, V (y) open. Suppose E(X,Y, G') is true. Let $ : 

: X — > Y be an Cl — V -measurable correspondence such that 

V x V n C(Vn(^(x))>sVn(o5(x)). Then 3 f: X - * Y 

Gt-^-measurable, such that f(x) e. $ (x) V x. 

As a consequence we get: 

Theorem (KUMTXJWSKI/l^LI^NARBZEWSKt^ . 

(Xf£& ) measurable space, T Polish, §) : X—•*• T OL-*&-mea

surable (or OL**Jr -measurable, ^ * closed sets) with clos

ed values, then <|> has an CL~ Str(T)-measurable selection 

(J&-(T> « Borel subsets of T). 

Corollary. X, T topological spaces, $ x X — ^ T, such 

that 0($) * -C (x,y) ( y € $ (x){ is the Hausdorff continu

ous image of a Polish space, p, a Borel measure on X, then 

$ has a SJWX)*- J£r(T)-measurable selection (ifr(X)* = 

-= Caratheodory completion of c&(X) )j iff X is locally com

pact and ft a Radon measure, them one can replace £&*(X)* 

by IPfl , the jo,-measurable sets. 

Applications: Implicit function theorems (FILIPPOV's 

Lemma) and BANG-BANG-principles in control theory, integra

tion of correspondences. Extensions of measures and preima

ges of measures. 

Theorem (TERSHOV, 1970, HJBIH, 1974, IANDERS/ROGGE, 

1974). 

(1) Suppose X Souslin space, &̂- S. Sfr (X) countably genera

ted. Then every measure on \&r has an extension to £&(X). 
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(2) X, T Souslin spaces, f: X — > T onto, Borel map, {* 

Borel measure on Y, then 3 Borel measure ->> on X, such 

that f(-$ ) » (4 . 

Proposition (proTed for compact metric spaces and con

tinuous f by EISELE, 1975)* 

X Luzin, T Souslin, (to Borel measure on T
t
 f: X—> T on

to, Borel, if the pre image of ft, under f is unique, then 

(U (4 y I card f
-1
(y)§ 2 } ) » 0. 

The converse holds for compact spaces and continuous 

maps. 

Continuous selections 

Theorem (MICHAEL, 1956) (follows from the'abstract Le

mma). 

X paracompact, T Fr^chet, $ : X — > T lower eemicontinuous 

(i.e. *&-*&-measurable) correspondence with closed conrex 

Talues, then $ has a continuous selection. 

Corollary. X paracompact, X £ locally conrex space E, 

compact convex metrizable, $ : X—>• T lower semicontinuous 

correspondence with closed conrex Talues. Then <|> has a 

continuous selection. 

Remark. Uetrizability is essential (T. WEIZSX*CKER, 

1975). 

Applications 

Paracompact spaces are characterized by the above se

lection property. If X, T are as above, every continuous 

function: f: A—->T (A£X closed) has a continuous extension 

to X. 
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ATeraging operator in the sense of KBLIEY 

X compact metric, A £ C(X) a subalgebra, R the equi-

Talence relation on X induced by A (x^y <===-> V a c JL : 

: a(x) -» a(y) )• Suppose the projection TT : X — ^ /fi is open 

and X/R is Hausdorff, then 3 T: C(X) —** A f S T 1 « 1, T>0 f 

T 2 » T such that 

V tC C(X) V a c wft : T(f «a) » Tf .Ta (aTeragiag 

equation)* 

Using selections BWUEmmL/lISmVSTBklJSS/PHElPS (1965) 

show: 

Theorem. 

X coapact metric, Y compact. T: C(X)—> C(Y) linear. IITII^ 

£ 1. Then T is extreme iff 3 <$ : T — * X continuous, Xe C(T)f 

X1 « 1, such that Vftf C(X) Tf » 3. . (f a 9 ). 

Characterization of a class of compact convex sets. 

Kclocally conrex space £ compact, conrex, call K regu

lar, iff there exists eg : K—• K~(K) w*-continuous, such 

that gp(x) is a maximal representing measure for X€ K# 

Theorem, 

dim K£3 f extr K closed *=> K regular (K regular *---> extr K 

closed, always)* 

dim K * 00 , extr K closed =4-S> K regular. 

3 K regular, dim K » 00 f K not a Bauer simplex (these are 

triTiaUr regular). 

K is regular iff a generalized Dirichlet problem is solTable. 

namely 3 B9C(K) closed subspace with Choquet boundary extr K 
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such that VfeC(extr K) 3 Tf €B such that Tf \BXte K « f> 

a affine «£T(a)| e r t r .̂) * a («£> T linear, posit ire, iso

metric), 

Metrizable CE-compact conrex sets are regular (K is CE-com-

pact iff the barycenter map r: MJ(K ) — > K is open, LIMA., 

O'BRIEN) 

E Banach space, Gcg, PQ(x) «-{yeG| \\ x - yl * 

* II x - Gil 3 (metric projection)* If PQ is a correspondence 

(i.e. P Q ( X ) ^ 0 V x) the existence of continuous selections 

for this correspondence characterizes PQ for certain G (2A-

ZAR/MORRIS/WULBERT, NUENBERGER) and in a certain sense the 

so called Ldndenstrauss spaces (products of L (/u.)-a paces). 
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