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Some remarks on Caratheodory construction of measures 
in metric spaces  

U. Peiste, Greifswald 

If we have a metric space X - (X,j) and A<X, then by 
Halmos fUp.53 

Hp(A):= sup lnt{§^tk±)/ k±€/XX)A Qkf k A fU±)*€} 
is called the p-dimensional Hausdorff measure of A, where 
pt-VfOl -#(X) is the set of all.subsets of X and cf(B) 
denotes the diameter of Bex. General considerations on 
such a definition are given in the book of Pederer £lj 169-17V 
I will start With these Considerations. 

Let J*bea family of subsets of X and 5:J*—* ̂ ( " ^ ( W ) a 

function onT. A sequence (-^V^ is called an allowed 
C-covering of A with respect toy,iff 

1. ?,«*• for a l l UN 
2. g P±pA 
3. JX?±)££ 

If we define 
ie(A) = inf /2T5(-?!>/ (p i>ieu i s allowed .f-covering of 

A with respect toTf 
so we obtain 

a) if(A)* i^A) for £ * e' 
b) i£(AvB) =. ̂ (A) + -^B) whenever j(A,B)> 2£ > 0 

The validity of at is obviously. 
To b): Let ( p j ) i w and (Fj) i i H oe allowed £ -coverings of 
A,B respectively, then P̂ j, Ff, Pgt PJ» ••• is an allowed 
f-covering of At/B. Hence it holds 

(*) i£(AvB)-£i£(A) 4 i£(B) 
On the other hand let be f (A,B)> 2£ , then every allowed 
£-covering i^)±%^ o f AvB consists of tow disjoint 
allowed t-coverings (F.£)i€N and (-?J)iiK of AfB respectively, 
that means 

(**) i^(AuB)^ i£(A) + ic(B) whenever f (A,B)>2* 
(x) and (*») is the proof for b7. 
a) implies 

U(k) =- lim i-(A) = sup i,(A) for all AcX 
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•̂:/?(X) 5>R4is an outer measure (i.e. 0£?^(A)**», 

V(0) = 0 f ̂ (A) * f(B)_for AcB , y (0A±) *>£*U±) ) 
c) if :f?(X) — > R^is a metric outer measure, 

i.e. ^(At/B) =ty(A) + y(B) whenever f (A,B) > 0 

The proof of c) is a conclusion of b) , namely ^(A,B)>0 

implies the existence of^>0 such that y(A,B).>4, . Then 
we get i^UoB) - i^A) + i^(B) for all£<ff,and that 

means if (Ai/B) -- tf(A) + tf(B) by definition ofv» 

Let us denote by tA^ the •"-field of ̂ -measurable sets (A<-X 

is called ̂ -measurable, iff ^(E) = ̂ (EnA) + t̂ (E/iA') 

for all EcX). For every metric outer measure fiift(Z) > R^ 

holds the following 

Lemma;(Federer £1J p . 7 5 , Halmos fej p.48) 
feet <f> :£(X) > ^ b e an outer measure on X, thenvip?2(X) i f f 
^ i s a metric outer measure, where T&(X7 denotes the A f i e l d 
of B o r e l s e t s of X. 
By t h i s lemma i t holds *^:>*(X). ^ : ^ ^R^is c a l l e d the 
Caratheodory measure on X with respect to ?" and ^ if R .̂. 

Examples for Caratheodory measures: 
1) £ ( F ) / = c f ( F ) for a l l F*F 

a) r-{x1 
I f (X{-= 1 , t h e n ? ¥ 0 . In the case |X/>1 i t holds ^ (A) = cp 
for a l l AcX 

b) *F=. I?/ FeX*lF| = 1 { , then 
for \A\±\\ 
for JA(> x. 

c j l s { x / x - O v x = j , n€.N J , f ( a , b ) =) a -b l , J= f F / F « X A . | F | * 2 £ 

then «y,<A). / ° f o r A = '°? 
*• *° otherwise 

d) (X,f) = (R ,< ) , J"=-/F/ F=-ra,bfAa,btfRf , then T/ i s the 
Lebesgue measure on R. 

2) £ ( F ) »cTP(F) f o r a l l P«F and p*-V#f 
a) Jr«>fe(X), then t{> corresponds to the p-dim. Haus-

dorff measure Hp. 

b) J = f F/ F is a closed ball in xf, in this case y 

is called the p-dim. spherical measure over X, 

The 1-dim. Hausdorff measure, the 1-dim. spherical measure 

and the set of between points 

Let us start with the definition of betneen point* 

* - > - { : 
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xeX is called between a,b.*X, a*x, b-joc, iff 

5>(a,b) = f (a,x) + ?(x,b) . 
Let B(a,b) be the set if all between points of a,beX and 

B*(a,b) » B(a,b)o £a,bj , then it holds for the reals 

f (a,b) = cT(B*(a,b)) = % (B*(a,b)) = H^B (a,b)) = S1(B <a,b)), 

where a,bcR, f denotes the euclidian metric on the reals, 
X the 1-dim. Lebesgue measure and S the 1-dim. spherical 

measure. In my lecture in WarnemUnde (in autumn 1977) 
MA special property of 1-dimensional Hausdorff measure". 

1 asked for the validity of the equation 

f (a,b) = ̂ (B (a,b)) = H1(B (a,b)) in an arbitrary 

metric space X. The mailn result was the following 

1 Theorem. 

Let (X,f ) be a complete and convex metric space (convex in 

he sense of Menger) and a,b X, hen the following conditions a e 

quivalent: 

1 /(afb) - «<*(B*(a,b)) - H
1(B ( ,b)) 

is pos i le to connec a d wi u i hort t 

re. 

3 B (a b) is n arc, i.e ho eo orphic to 0 13 

. nere is a unique metric segm nt (a b) g c nne ting a and b. 

5 If p,q*B*( ,b) with p*q, then peBr(a q) o < B*(q.b) 

Remarks^ 

1) An arc connecing a,beX is a homeomorphism f:0),II£n^ X 

such that f(0)=a and f(1)=b. 

A shortest arc connecting a,b€X is an arc f: £0,1] Jn̂ 0̂  X 

connecting a,b such that 1(f) 61(g) for all arcs 
g:£0,1^into X connecting a,b, where 1(f) denotes the length 

of the arc f. 

2) (a,b)sis called a metric segm nt connecting a,b iff 

1. (a,b)s<= X and a,b e(a,b)g 
2. (a,b)s is congruent to an interval C^t77cRf i.e. 

there is an intervall Cx,y^ and a metrical 

isomorphism f:fx,yj—»(a,b)s, such that 

f(x)=a and f(y)=b. 

Now let (X,J if) be a n-dimensional normed vector space and 

Kr(x) :»/y/yeXA |x-yl*rj 
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the r-ball with the centre x*X, then Kp(x) is a convex 

and symmetrical set. A point y«K^(x) is called an extreme 

point of Kp(x), iff there is not a finite line g*Kr(x), 

containing y in the relative interior of g. For example 

let us consider R having the following two norms 

1) I xff.= (x* + x|)* , wnere x = (x . . , x 2 ) 
In t h i s case every point y € P r K p ( x ) i s an extreme p o i n t . -

2) fx/.-= sup^/x^ ,/X2|{ 

Then PrKr(x) contains exactly four extreme points. 

We obtain the following theorem as a conclusion of the theorem 

above. 

2. Theorem: 

Let (X,| |)-be a n-dimensional normed vector space, then 

the following two conditions are equivalent: 

1. 9 U,yW(B*(x,y))-- H1(B*(xfy)) for each x,y* X 
2. Every point y belonging to Fr.&r(.x} is an extreme point 

of Kr(x) for each x«X and r>0. 

Proof: 1-̂ 2 

We suppose yoeFrK-|(D) and yQ is not extreme point of K-j(O), 

hence there is a finite line Ca,bJcK-j(0), such that yQ is 

the centre of Ta,b!l ,i.e. yQ = £ (a + b). The definition 

c := a - yQ implies the following equations 
l a б = = « y 0 + eв - 1 
ftbí = fty0 - c И - 1 

І 2 У 0 , - * Ы 2 y 0 - -o " c * =ІУ 0 - c j - 1 . 

On the other hand i t h o l d s : í 2 У o l - 2 , У o ' 

C 
A 

2 . Hence the 

arcs fO,2y
Q
7 and Co9a]u [at2jQ1 are two shortest arcs 

connecting 0 and 2y . That is a contradiction to theorem 1 

condition 2. (If y
Q
CfrK

r
(x) and y

Q
 is not extreme point, 

so we get a contradiction in the same way) 

2->1 

- On the supposition that 1. does not hold there are two points 

x,y£ X and tow shortest arcs f:tO,ll • X, g:£0,l} *X 

connecting x and y, such that f * g and l(f )=l(g)=- f (x,y). 
It is possible to find a,beX ,such that 

a€g(T0,1J)A aif(C0,l7) 1̂ 

b4g(C0,1J)^ b£f(£0,1J) 

0^r:=l(Cx,a3g)-.l(fx,bJf)<f(x,y), 

where KCx,aJ ) denotes the length of g from x to a and 
JĚЃ' 
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Kf3-,b]f) denotes the length off from x to b'. We ask 

for the distance f (x,yQ) and ?(y,yQ), where yQ= |(a+b). 

f (xfy0)Hx-y0l<f(lx-a|+lx-bl)-t ( ? (x,a)+ y (x,b))= £ (r+r>? 
9iY*YQ)*lY-ytf6H f (y,a)+ f(y,b))=4( f (x,y)-r+ ?(xfy)-r)= 
= f(x,y)-r 

In the case f(x,y0)<r we obtain for the length of the 
a r c fc-yj^foo-yj connecting x and y 

K fx,yji,/y0,yj )=1( [x,*^ )+l([y0,y7)» f (x.y0)+ p(yQiy) 

<T r+f(x,y)-r= f (x,y), i.e. 

K[x,y<JuCy0,y7)^f (x,y). 
That is impossible, hence f(x,yQ) = r r That means yQ belongs 

to PrK^(x) and so we get a contradiction to 2.(because y 

is not extreme point). 

Now we consider some relations between the Hausdorff measure 

and the spherical measure on a metric space SL « The following 
properties are well known (see Pederer Hi) 

1. HP(A) * SP(A) for all AcX and p cR^ftf 
2. If there is a real c£1 for every subset AcX, such 

that A is contained in a closed ball having the 

diameter smaller or equal c»^(A), then Sp(A)4cp HP(A). 

(c must be independent of A) 

c = 2 fulfils the condition above. We obtain such 

a real number c in the n-dim. Euclidian space Rn by 

JungS theorem;( Pederer 2.10.41) 

If ACR n and O<</(A)*0O , then A is contained in a unique 

closed ball with minimal diameter, which does not exceed 

( 2n/n+1 )*.<ftA) . 

For example if we consider a equilateral triangle A in fi , 
then the smallest closed ball containing A has the dia
meter 2r, where r = j*»(fCA) 

3. If A<-X is congruent to a closed interval Cx»yJ » 

then S1(A) = fx - yj. 
Now it is easy to prove the following theorem. 

3. Theoremg 
For every complete and convex metric space 3L holds: 

H1(B*(a,b))=-^(a,b)<«>S1(B^(a,b))=f(a,b) 

for arbitrary atb 6X. 

Proof: „«-->* 

By theorem 1 H1(B*(a,b))= f (a,b) implies: B*(a,b) is 
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congruent to a closed interval fx,yj such that f(a,b) = lx-v/. 
1 * 

Wow we use property 3. and obtain S (B (a,b))=|x-y|= ?(a,b) 

By property 1. we have H1(B*(a,b)) £ S1(B*(a,b))= ?(a,b). 

On the othe- hand it holds f (a,b)£H1(B*(a,b)) in every 
complete and convex metric space. 

Remarks: 

1*7 This theorem implies the validity of theorem 1 for the 

1-dim. spherical measure* 

2) By theorem 3 it holds H1(B*(a,b))= f (a,b) implies 
II (£ (a,b))=S (B*(a,b)) for every complete and convex metric 

space. But in general it does not hold H (A)=S (A) for AcX 

and (X,f) complete and convex metric space• For example: 
2 

Let (X,9) be the Euclidian plain R . We define 

A : = C\ A. , wnere 

set of all points belonging 

to the equilateral 

triangle 

set of all points belonging 

A9 = A///////\ *° t h e s m a l l e r three 
eqilateral triangle 

Then it nolds: H1(A) = 1 and S 1(A)=^ 
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