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SEVENTH WINTER SCHOOL (1979) 

MODEL THEORETIC APPROACH TO TOPOLOGICAL .FUNCTORS, II. 

by 

Jiff Rosicktf 

This paper is a sequel of t6]. Most of results here presented 

will appear in the forthcoming author's paper £7] • 

Under a concrete category (A-U) we will mean a category A 

equipped with a faithful functor U: A — * Set satisfying the following 

two conditions: 

(1) If AftA , X is a set and f: U A — » X a bijection, then there is 

B e A and an isomorphism g: A—» B such that Ug = f 

(2) If AeA and f: A —-> A is an isomorphism such that Uf is the 

identity, then f is the identity. 

Under a functor F; (A >U)—» (o) ,V) between concrete categories we 

will mean a functor F: A — * & such that V.F = U. 

A type is given by a class of function symbols and a class of re

lation symbols. Their arities are arbitrary cardinals. The infinitary 

first-order language L^,^ (r) of type T includes a proper class V of 

variables and besides the usual logical symbols it admits infinitary 

conjunctions, disjunctions and quantifiers. A class of sentences of 

L^oo(^) is called a theory of type T • We denote by (Ayt^r^ or 

(Am,U-n) the concrete category of all T -structures or T-models reep. 

These categories need not be legitimate, i.e. they need not form a 

class. A theory having a representative set of n-ary atomic formulas 

for each cardinal n will be called normal.If T is normal, then (AT,Um) 

is a legitimate category and even it is strongly fibre-small in the 

sense of til . 

If (A,U) is a concrete category and n a cardinal, then Un will 

denote the functor Set(n,U-). Subfunctors of Un will be called n-ary 

relation symbols interpretable in (A tU) and natural transformations 
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U
n
— > U n-ary function зymbolз interpгetable in (Л ,U). It is motiva-

ted by the fact that any гelation or function symbol of type T deter-

mines a subfunctor of U
n
 or a natuгal tгansfoгmation U

n
—> U гesp. 

Let ? u be the collection of all гelation and function зymbols inter-

pretable in (Л,U). We emphasize that ç -j neeđ not be a type because it 

need not be a class. 

Let Í^ - 5y be a type. Theгe is a functoг C^: (Л ,U)—» (Л*. ,U-J 

such that if A e Л , then the ^-stгuctuгe G^A) has the undeгlying 

set UA, the n- гy relation on UA corresponding to R t Rel (<?- ) equals 

to R(A) nd the n- ry function f: ( U A )
n
— * UA coггesponding to 

f fc Fnt
n
(->- ) is the component fд of the natuг l transformation f. Let 

T^ be the theoгy of type £> consisting of all sentences which hold in 

ll ^-structuгeз G^(A) for A ь Л . Clearly we get the functor 

G^: (Л,U)—> U ,U
T
). 

T^. lrð* 

We m y гestгict ouгselves in the foгmation of T^ to some speci-

fied kind of sentences. This yields a general methođ of getting sui-

t ble completions oг hulls of (Л ,U). E.g. (with size conditions aзide), 

if ->- consists of ll function symbols fгom Ç y nd T î T^ of all 

atomic sentences, then T is the Linton's equәtion l theory of U and 

G: (Л ,U) »(Л
T
,U

T
) is the equational completion of (Л,U) (see [5]). 

If A * Л , then R
A
(X) = {Uf / f: A — > X } defines a subfunctoг R

A 

of U
U A
. Let Гy î Jy be the type consisting of Rд where A carries oveг 

mutually non-isomorphic objects A e Л such that UA is a caгdinal. Then 

G
T
 is a full embedding nd it is important that whenever (Л,U) is 

stгongly fibгe-sm ll, then T^ is normәl nd (Л,U) isomorphic to 

l Л ф ,Urn ) • 

Ғuгther, if T consist of all universal Horn sentences without 

qu lity (their specific tion follows) from T^ , then (Л
T
,U

T
) is the 

Mяc Neille completion of (Л,U) (in the sense of Herrlich JjJ ). It 
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proves the conjecture from L'6] • 

Theorem: A concrete category (A,U) is (absolutely) topological iff 

it is isomorphic to the category of models of a relational normal uni

versal Horn theory T without equality of some type T . 

Relational means that T contains relation symbols only and uni

versal Horn theory without equality consists of sentences bearing this 

name, i.e. arising from formulas A R 4(x<)— t R(x), where R. & R£l (r 
n, i*I 1 1: 1 ni 

R fe Reln(r), x± $ V and x fc V , by universal quantification of all 

their variables. 

Similarly, using r-j and a suitable kind of sentences one can 

treat (epi-monosource)-topological categories (in the sense of (.4]) 

or semi-topological categories (in the sense of 1.8] ) • In either case 

we get a completion playing the role of Mac Neilles one in the event 

of topological categories. 

A relational theory T of type r will be called reflexive if for 

any relation symbol R of T T 1= ( Vx)R(x,x,.. .x,...) holds where x 6 V. 

It is transitive if for any cardinal n and any R e Reln(-T) 
Tl> (Vx)[.(A R(x, , ,x, P-...X. .,...) A A R(x-. .,xP i,...x. ,,...)) 

ien 9 * '" jen ,t* '" '" 

— > R(X-L i3x2 2 , #" xi i»##*^ holds where x = (xi .) t V
n * n. Motiva

ting is the case of a binary relation symbol R. . 

Proposition: Let T be a relational, normal, reflexive and transitive 

universal Horn theory without equality. Then (AT,UT) is a cartesian 

closed topological category. 

The author conjectures that this proposition can be converted. 

Namely, one is tempted to seek for a type *. s r such that (A^U^) 

is (in general non-legitimate) cartesian closed topological hull of 

(A,U) and its legitimacy corresponds to strict fibre-smalness of 

(A,U) in the sense of Adamek and Koubek 12] (i.e. model theoretically 
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recover the i r theorem). 
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