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SEVENTH VVINTER SCH00L (19')) 

A NOTЄ ON MFЛДJГ*HLITY OF TRAOECTC^IЄS OF A 

STOCHASTIC PROCESS 

П* ^ahrodnik 

In this not , vo pr cзnt an зltornativэ oэthod of ctudying th 

measurability pro^. rtieo of trajoctorieз of i ctochaotic pro~ 

ces « More precisel>, w will conзider th following situation: 

Giv n any vector or sĉ .iяr measur 

Љx <ß(x<0'i:>)--»s 

on a family Í Ö Í X ^ 0 ' 1 ^ ) of all Bair subseta of X^0'1^, wh re 

X is some locally corapact roetrizable spac X ,conoid r the 

question: On which trajectories liveз M/ ? 

Our raethod is based on the identification of each Bair function 

f Є X ^ ' ^ (or, rath r, th corresponding a
#
 . equivalence 

clas ) with the probability C\, on <0,l>xX , det rroined 

uniquely by the requiгements: 

i) <Лf iз carried by a gгaph of f 

ІІ) tҺв prOJЄCtІOП f{<Лf) Of (Àf on < 0 , 1 > i just 

the L besgu roeasure . 

Thus, by ident i fy ing f with o\f , the topology of convergon-

c in roeasur on functions can be induced by the weakAtopology 
v 

on th space І 7 ( < 0 , 1 > * X ) of a l l Radon p r o b a b i l i t i e з on 
. v v 

< 0 # 1 > * X (wheг X denot s a one point coropactificatioп of 

X ) . 

Now we generalize the notion of a trajectory. 

D not by 

X -» (г* Є Ў , T ^ Q i > ( ^ )
 в
 Lebesgue measure} "genera-

lized trajectories" 
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? ^ a { fr E T, <k i3 carried by a graph of some meas *> # 9 r 

Baire function f € X ^ ' ' } "measurable trajec

tories" 

J" « { (A € T9 ck is carried by a graph of some 

a.e, continuous function f E X ^ ' ' } "a.e# 

continuous trajectories" . 

Now, we "carry on" the measure no : <6(X^ • ̂  ) —* E in some 

very natural way to the space ST « 

Then we will investigate the support of the resulting measure* 

We will show, at the end of this note, that each measure on 

51 «,-.~~ can be viewed as a measure on X ^ ' ' . meas 

Our results will then be comparable to the classical ones (see 

e.g. [l , Th.Ill,3,l]] ). Actually, they generalize them slight

ly. 

Definition 

Denote by PjA(<* )
 B <<(I*A) 

(PIA(<X ) says, "how often <X dwells in A during I ) . 

Suppose that each map 

{ t r . . t n ^ ( X ^ _ t n ( A 1 x . . . x A n ) } :<0.1> — E 

is Lusin measurable, whenever A. are open in X • 

Put /*(Vi \An)m
xJ x P* V-.tn<V-*V-
• d t . 1 . . # d t r 
•

Иfc
i-

,,Jł;n • .. -> 
where J** „ : X ^ ' / —>X L u denotes the canonical t 1 #..r n 

projection. 

Theorem 1. AL extends uniquely to a vector measure 
p : 6{r)-+E . 

Example, It is not true in general, that ££ lives on ^ m e a 8 * 

For an arbitrary Gaire probability on X f put 
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-l & •M3 + «. (Ai*"«xAr.) • " v^(A.) and extend this 
/ i*## n 1 

according to the Kolmogorov theorem. 

The resulting probability on X ^ ' ^ gives rise to a measu

re fjL . which is, as can be easily shown, supported by a sing

le element of 3J , namely by 7\®V , where A denotes the 

Lebesgue measure I 

Notation. Denote by 

Irf -- { ( t , s ) E < 0 , l > | t - s | < <$} 

x" - {(t1--tn)G<o,i> , I v ^ H ^ } 
As • ( ry } x 

Theorem 2 , /& has the support in ^ m e a 8 ^ ^ f o r each £ > 0 

and A open the fol lowing holds: 

S\0 => Af{{t.B).\\ p C ^ V j A l ^ ( A ) ) ^ L } - » 0 . 

Example. The latter condition holds e.g. in the case, when 

||^(Tg1<A)AJ^1(A)|| s _ ^ t » 0 holds for almost all t € < 0 , l > . 

This corresponds to the a.e. stochastic continuity of the pro

cess. 

Theorem 3, AJL has the support in ^ c o nt
 <=?' for each & > O 

and A open the following holds: 

CPXO-^AJ {(v..tn),||r^(A)\j;^^tn(Ax...KA)||>& 

holds for some i } —> 0 uniformly with respect 

to n£N # 

Note. For Markov processes, this gives rather weak results 

(a.e. continuity instead of the nonexistence of the disconti

nuities of 2. kind). 

In order to prove an analogy of Th. 3 for trajectories without 
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discontinuities of 2* kind, we should use some more subtle 

Markovian arguments. 

Finally, let us show that if fu, has the support in ^mQao * 

then it can be viewed as a measure on X ^ ' ^ # Choose a par

tition of <0,1> consisting of all intervals 

- 5 - <^'7r> • ia0-1 *-x' 
For each t € < 0 , l > choose i ( n ) such that t G < -=r * ^TT ) • 

on o" 

C a l l t E < 0 , l > a Lebesgue point of (X- i f there ex is ts 

y E X such that for each A open containing y , 
l im (2nP- A U ) ) » 1 . 
n-*co i ( n ) A 

Then i t can be shown, that there ex is ts a n u l l set N C < 0 , 1 > 

such that the fol lowing i s t rue : 

For each t E < 0 , l > \ N , t i s the Lebesgue point of pH almost 

a l l t r a jec to r ies and i f we f i x some xQ€ X and put 

j t ' ( t ) =- y whenever t i s a Lebesgue point of o\ ̂  , 

* ( * ) B Xo otherwise 

then the map 

{ t t f ~ v * J f } : ^ n i e a s ~ * , x i s Baire measurable and 

the image of AJU coincides with /uy on ^ ( X ^ 0 ' 1 ^ N ) # 
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