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A short proof of Parovifienko's theorem 

. A.Blassczyk and A.Szymariski 

We shall show a short proof of a theorem of Parovicenko that 

each compact space of weight at most K-j is a continuous image of 

the space CJ* (= B« -CJ) of all non-trivial ultrafliters on the 

set CJ • Under CH we shall give a new characterization of CJ* . 

We shall use the following properties of CJ* : 

(1) GJ* is a zero-dimensional compact space without isolated 

" points, 

(2) every two open disjoint F^'s in cj* have disjoint closures, 

l3) every non-empty Gj in GJ* has non-empty interior* 

for therproof see e.g. Comfort and Negrepontis L1]. 

Lemma. If f is a continuous map of cJ* onto a compact metric space 

X and £ and F are closed sets covering X, then there exists a closed-

-open set UCcj* such that f(U) = E and f(cJ* - U) = F. 

Proof. If E A F /- 0 , choose a countable dense subset D of Er*F. 

Since the sets f~\d; are non-empty G^'s , for each d e D there exist 

non-empty closed-open sets U. and V d contained in f" vdj. The sets 

f"\x - F)t/ UlU d : dfc u} and r1(X - E)^UlVd : de Dl are disjoint 

open F^'s in CJ* • Hence, there exists a closed-open set Uccj which 

contains the first of this sets and is disjoint with the second one. 

It is easy to chack that the set U is the desired one. 

Theorem 1 (Parovicenko £33)- Compact spaces of weight at most K-j 

are continuous images of C J * . 

Proof. £et A be a compact space of weight at most )<;• Since the 

Tychonoff cube I is a continuous image of the Cantor cube D , 
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v/p can assume X to be a closed sub space of D . 7ie shal l consider 
*1 

D as the l imit of the inverse system 

D« Di . . . . D t J ^ l l f ^ , Pfi D*1 , 

where D ={0,1] , \fAA = D * X D , uP = ]±m {D* , p**1 ,*<P] for limit * 

and p*41 are projections, i.e. pc^\x; = x H for«i<Kr Since A C D ' 1 , 

X = lim Ubi , <&' »*<*, , where X* =- p ^ x ) , cj"V1 = fiTM-ti-n i * < K-, • 

For each *<. }̂  we shall define a continuous map XA from cov onto Xd 

in such a way that ^w = q£ o f^or each oK^. It suffices to do this 

for non-limit c*'s. Assume, we have defined f«* for some oi<K • Since 

3^CD and©uf(j, X^ is a compact metric space. By the Le-ma , ve get 

a closed-open set Uccj* such that :£* (U) = cf* V-^+i *(-*** lOl)) and 

«*(CJ*- u) = q^(X^+1^(X**{llj). We define j^+1 by setting ^+1ix; = 

= ^(x),U) for x * U and )^+1vx; » (-WA(X;,1) for xeco*- u. Clearly, 

fdi-vt is a continuous map from cJ* onto X^-M such that 4 = q£o ^ + i . 

The limit map induced by all f^'s is the desired one. 

It appears that the property formulated in the Lemma characterize, 

the space co* . Namely, we get 

Theorem 2 (CH). If P is a compact space of weight X «j f "then P 

is homeomorphic to co* ifijt satisfies the rollowing condition: 

(4) for each continuous map r from P onto a compact metric spac< 

X and each closed sets E,FCX covering X there exists a 

closed-open set U c P such that f(U) -= E and f(P - U) = F. 

Corollary (CH). A compact space or weight S'j is horn eons orpnic 

to CJ iff it satisfies the following condition: 

(5) if X and Y are compact metric spaces and f:P— o n t o »X and 

g-Y—otlt,° »X are continuous maps, tnen there exists a con­

tinuous map h:P *Y such that f = goh. 

Negrepontis [2] has obtained a similar characterization, lie has 

shown that, a compact space P of weight K { is nomeomorphic to 

iff it satisfies the condition (5) and every compact metric space is 
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a continuous image of trie space P. 
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