USA 8

G. W. Johnson

The use of mixed norms: Two examples

In: Zdeněk Frolík (ed.): Abstracta. 8th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1980. pp. 104--107.

Persistent URL: http://dml.cz/dmlcz/701187

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://project.dml.cz

The Use of Mixed Norms: Two Examples

by
G.V. Johnson

In a paper on "the Feynman integral" G.W. Johnson and D.L. Skong [JS1] found a certain "mixed norm" useful. Once oriented in this direction they have found mixed norms useful in several places in their work on the Feynman integral and related problems [JS2-JS6]. In a paper on thin sets in harmonic analysis, specifically, on "p-Sidon sets", G.W. Johnson and G.S. Woodward [JW] proved a certain mixed-norm inequality which was crucial for the results of that paper. In the two examples which will be discussed, mixed norms were not involved in the statement of the problem but they were involved in the solution.

My experience with the use of mixed norms has led me to the strong conviction that the mixed-norm point of view could be used to advantage in many more situations if more mathematicians thought in these terms. In some cases it seems to enable one to solvo problems that could not otherwise be solved. G.W. Johnson and L.V. Petersen $[P$ and $J P]$ have attempled to give the beginnings of a general framework for considering mixed norm results. W.A.J. Luxcmburg $[L]$ has independently doveloped much the same theory; indeed a more satisfactory form of the key theorem will appear in $[L]$.
$1^{\text {st }}$ Example: Let $C_{0}[0, t]$ denote the real-valued continuous: functions K on $[0, t]$ such that $X(0)=0$. Given a function $F: C_{0}[0, t] \rightarrow \mathbb{C}$ (the complex numbers) one can define $J(F)$, the analytic operator-valued Feynman integral of $F[C S]$.

If it exists, $J(F)$ is a bounded lincar operator on $L_{2}(\mathbb{R})$.
Let $0<t_{1}<\ldots<t_{n} \leq t \quad(n \geq 3)$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$. Let $F(X)=f\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ for X in $c_{0}[0, t]$. Johnson and Skoug sought some L_{p} condition on f insuring the exise tence of $J(F)$ but instead found
 $J(F)$ fails to exist.

On the other hand, they proved.
Theorem: $[J S 1]$ If $\|f\|_{2 \| \ldots} \ldots 2 \prec \infty$, then $J(F)$ exists where $\|f\|_{2}\|\ldots\|_{2}=\left\{\int_{\mathbb{R}}\left[\int_{\mathbb{R}} \ldots(n-2)-\int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|f\left(u_{1}, \ldots, u_{n}\right)\right|^{2} d u_{1}\right)^{1 / 2}\right.\right.$.

$$
\left.\left.. d u_{2} \ldots d u_{n-1}\right]^{2} d u_{n}\right\}^{1 / 2}
$$

$2^{\text {nd }}$ Example: Let $1 \leq p<2$. A subset E of the integers is said to be p-Sidon ($E \in S_{p}$) if there exists a constant C such that for every finite subset F of E and any subset $\left\{c_{n}: n \in F\right\}$ of complex numbers indexed by F we have

$$
\left(\sum_{n \in F}\left|c_{n}\right|^{p}\right)^{1 / p} \leq c\left\|\sum_{n \in F} c_{n} e^{-i n t}\right\|_{\infty}
$$

(See [ER, LR, JW].) If $1 \leq p_{1}<p_{2}<2$, clearly $S_{p_{1}} \subset S_{p_{2}}$.
In the deepest theorem in the paper [ER] it is shown that Theorem: [ER] If $1 \leq p_{1}<4 / 3 \leq p_{2}<2$, then $S_{p_{1}} \varsubsetneqq S_{p_{2}}$.

A key element in the argument was a mixed norm inequality of Littlewood [Li]:
$\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty}\left|a_{i j}\right|^{2}\right)^{1 / 2}+\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty}\left|a_{i j}\right|^{2}\right)^{1 / 2} \geq\left(\sum_{i, j}\left|a_{i j}\right|^{4 / 3}\right)^{3 / 4}$.
[JV] extendod the result of [ER]. One of the two substantial difficulties was finding and proving the following exten-
sion of Littlewood's inequality.
$\sum_{k=1}^{n} \sum_{i_{k}}^{n}\left(\sum_{\left(i_{k}\right)}\left|a_{i_{1}} \ldots \ldots i_{n}\right|^{2, \ldots} \geq\left(\sum_{i_{1} \ldots, i_{n}}\left|a_{i_{1}} \ldots \ldots i_{n}\right|^{\frac{2 n}{n+1}}\right)^{\frac{n+1}{2 n}}\right.$.
$\left[\left(i_{k}\right)\right.$ indicates summation over all the indices except the $k^{\text {th }}$.] Theorem: $[J W]$ If $1 \leq p_{1}<4 / 3 \leq p_{2}<6 / 4 \leq \ldots \leq p_{n-1}<\frac{2 n}{n+1} \leq p_{n}<\ldots$ then $\quad s_{p_{1}} \varsubsetneqq s_{p_{2}} \varsubsetneqq \ldots \not \subset s_{p_{n-1}} \varsubsetneqq s_{p_{n}} \varsubsetneqq \ldots$.

Recently R. Blei $[B]$ has shown that $S_{p_{1}} \varsubsetneqq S_{p_{2}}$ whenever $1 \leq p_{1}<p_{2}<2$. His argunient involves a further extension and refinement of the old mixed norm inequality of Littlewood.

Bibliography

[B] R. Blei: Fractional Cartesian product of sets, preprint [CS]R.H. Cameron and D.A. Storvick: An operator-valued function space integral and a related integral equation, J.Math. and Mech. 18 (1968), 517-552
[ER] R.E. Edwards and K.A. Ross: P-Sidon sets, J. Func.Anal. 15 (1974). 404-427
[JS1]G.W. Johnson and D.L. Skoug: Feynman integrals of non--factorable finite-dimensional functionals. Pacific J. of Math. 45 (1973), 257-267
[JS2] : Cameron and Storvick's function space integral for certain Banach spaces of functionals, J.London Math.Soc. 9 (1974), 103-117
[JS3] : Cameron and Storvick's function space integral for a Banach space of functionals generated by finite--dimensional functionals, Annali di Mathematica Pura Ed Applicata 104 (1975), 67-33
[JS4] : The Camoron-Storvick function spacc integral:
[JS5] : The Cameron-Storvick function space integral: An $L\left(L_{p}, L_{p^{\prime}}\right)$ theory, Nagoya Math.J. 60 (1976), 93-137
[JS6] :An L_{p} analytic Fourier-Fcynman transform, Michigan J. of Math. (1979)
[JP] G.W: Johnson and L.V. Petersen: On product Banach function spaces
[J:1] G.W. Johnson and G.S. Woodward: On p-Sidon sets, Indiana Math. J. 24 (1974), 161-167
[Li] J.E. Littlewood: On bounded bilinear forms in an infinite number of variable, Quarterly J. of Math. 1 (1930). 164-174
[LR] Lopez and K.A. Ross: Sidon Sets (1975), Marcel Deicer
[L] W.A.J. Luxemburg: manuscript in preparation
[P] L.V. Peterson: Thesis, U. of Nebraska, 1976

