USA 8

Jiř̌í Navrátil
The Kantorovič-Rubinstein distance

In: Zdeněk Frolík (ed.): Abstracta. 8th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1980. pp. 117-120.

Persistent URL: http://dml.cz/dmlcz/701191

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //ml .cz

lIte wantcrovič-Rubinctein distance
J. Navrótil, Erotic

If ($\mathrm{X}, \mathrm{\rho}$) 15 a previdometric apace then the kseudometric ρ maturely induces some cisterce between probability measures. There ere the fonicwneg natural possibilities how to define such a distance :
$\int_{1}(\mu, \nu)=\operatorname{su:}\left\{\mu(f)-\nu\left(i^{2}\right) \mid \operatorname{Lip}\left(i^{\prime}\right) \leq 1, \approx \operatorname{is}\right.$ bourne: $\}$,

 $r_{1} \sum(x \leq)$,

 The La ct. ty, retriこふ are usually called treker*orovič-fubirstein disuarces,

Under certain conditions ali metrics given above see equal. That' = the resin wry it is convenient to work with the Kentorovič-Futinstein distance.

Kantorovzi has crown in [i] that $\rho_{1}=j_{2}$ if X is a compact metric space. in [2] ard [3] N̈antorovic and Rubinstein proved (essentially) that. $\rho_{1}=\rho_{2}$ if X is a comractmetric space. We shall show that $\rho_{1}=j_{2}=j_{3}$ if X is an arbitrary separable pseudometric space.

We shall use the following theorem or a non-negative extentsion of a linear functional.

Theorem 1. Let E be an ordered vector space, let I be a nonnegative linear functional on a subspace F of E. Let

$$
(\forall y \in E)(\exists z \in \bar{E}) \quad y \leq z
$$

(ie. F is a majorizine subspace of E).
Then there is a nonnegative linear extension of I to E.
. or t! row se $[4$. 3
vow $n u m$ m
Theorem 2. $t\left(, \int b a \operatorname{abl} p \in u \quad\right.$ trice $s_{r} a c e$, lot μ, ν be two probability measures on a (5-algebra \sum on X containing all Eorel sets. Let $\rho_{1}, \rho_{2}, \rho_{3}$ be the distances defined above.

Then $\rho_{1}=\rho_{2}=\rho_{3}$.
Proof: (1) Let η_{l} be a measure on $\sum \otimes \sum$ such that $\pi_{1} \eta-\pi_{2} \eta=$ $=\mu-\nu$. Then it holds
$\mu(f)-\nu(f)=\int f \cdot d \pi_{1} \eta-\int f \cdot d \pi_{2} \eta=\int f(x) d \eta(x, y)-\int f(y) d \eta(x, y) \leq \int \rho d \eta=$ $=\eta(\rho)$ for each bounded function f with Lip $(f) \leq 1$.
Thus we have $\rho_{1} \leq \rho_{2}$. Obviously $\rho_{2} \leq \rho_{3}$.
If $\rho_{1}=\infty$, then $\rho_{1}=\rho_{2}=\rho_{3}=\infty$. Thus let us consider the case $\rho_{1}<\infty$. (2) Lemma. Let φ, ψ be bounded measurable functions, a $\in \mathbb{i}$ ard $\varphi(x)+\psi(y)+2 \rho(x, y) \geq 0 \quad$ for all $x, y \in X$.
Then it holds $\mu(\varphi)+\nu(\psi)+a \rho_{1} \geq 0$.
Proof of the lemma:
a) For $a \leq 0$ we have
$\mu(\varphi)+\nu(\psi)=\int \varphi(x) d \eta(x, y)+\int \psi(y) d \eta(x, y) \geq(-a) \int \rho(x, y) d \eta(x, y) \geq$
$\geq-a \rho_{3} \geq-a \rho_{1}$, where $\eta=\mu \otimes \nu$ (the last inequality is valid by virtue of (1)).
b) Let $a>0$. Fut $h(x)=\inf \{\psi(y)+a \rho(x, y) \mid y \in X\}$.

Then substituting $y=x$ we get $h(x) \leq \psi(x)$ and by the assumption $h(x) \geq-\varphi(x)$, hence h is a bounded function.
For a fixed $y \in X$

$$
\psi(y)+a \rho(x, y)
$$

is a Lipschitz function with the constant a, thus $\operatorname{Lip}(h) \leq a$ as well. Hence we have

$$
a \rho_{1} \geq \mu(h)-\nu(h) \geq-{ }^{\prime} \mu(\psi)-\nu\left(\psi^{\prime}\right)
$$

(3) By means of the lemma one can easily show that the formula

$$
\tilde{\eta}(f)=\mu(\varphi)+\nu(\psi)+\varepsilon \rho_{1}
$$

gives a sound definition of a non-nsestive linear functional
for all $f(x, y)=\varphi(x)+\ddot{\psi}(y)+a \rho(x, y)$, where φ, ψ are bounded measurable functions and $a \in \mathbb{R}$.

By the theorem 1 and by the lemma there is a nonnegative linear extension of $\tilde{\eta}$ to all functions majorized (in the absolute value) by $a \rho(x, y)+b$ (where a, b are positive constants). We shall denote the extension by $\tilde{\eta}$ as well.
(4) For an arbitrary $\varepsilon>0$ there is a sequence of pairwise disjoint sets $A_{n} \in \sum$ such that diam $A_{n}<\varepsilon$ and $\bigcup_{n=1}^{\infty} A_{n}=X$, for (X, ρ) is a separable space.
Fut

$$
c_{i j}= \begin{cases}0 & \text { for } \mu\left(A_{i}\right) \cdot \nu\left(A_{j}\right)=0 \\ \frac{\tilde{\eta}\left(A_{i} \times A_{j}\right)}{\mu\left(A_{i}\right) \nu\left(A_{j}\right)} & \text { otherwise, }\end{cases}
$$

and

$$
\eta(\bar{D})=\sum_{i, j=1}^{\infty} c_{i j} \mu \otimes v\left(B \cap\left(A_{i} \times A_{j}\right)\right)
$$

Then η is a non-negative ξ-additive measure on $\sum(\mathbb{\Sigma}$. Furthermore we have

$$
\begin{aligned}
\eta(A \times X) & =\sum_{\mu\left(A_{i}\right) \nu\left(A_{j}\right) \neq 0} \frac{\tilde{\eta}\left(A_{i} \times A_{j}\right)}{\mu\left(A_{i}\right) \nu\left(A_{j}\right)} \cdot \mu \otimes \nu\left(\left(A_{\cap} A_{i}\right) \times A_{j}\right)= \\
& =\sum_{\mu\left(A_{i}\right) \neq 0} \frac{\tilde{\eta}\left(A_{i} \times A_{j}\right)}{\mu\left(A_{i}\right)} \cdot \mu\left(A \cap A_{i}\right)
\end{aligned}
$$

for all $A \in \sum$ (if $\nu\left(i_{i j}\right)=0$ then $\tilde{\eta}\left(A_{i} \times A_{j}\right) \leq \tilde{\eta}\left(x \times A_{j}\right)=\nu\left(A_{j}\right)=$ $=0$, thus $\left.i_{i}\left(A_{i} \times A_{j}\right)=0\right)$.
(5) Denote $B_{n}=\bigcup_{k=1}^{n} A_{k}$. Then it holds

$$
\begin{aligned}
& 0 \leq \tilde{\eta}\left(A_{i} \times X\right)-\sum_{j=1}^{n} \tilde{\eta}\left(A_{i} \times A_{j}\right) \leq \tilde{\eta}\left(A_{i} \times\left(X-B_{n}\right)\right) \leq \tilde{\eta}\left(X \times\left(X-S_{n}\right)\right)= \\
& =\nu\left(X-B_{n}\right)
\end{aligned}
$$

but $\left(X-B_{n}\right) \nmid \varnothing$, hence

$$
\sum_{j=1}^{\infty} \tilde{\eta}\left(A_{i} \times A_{j}\right)=\tilde{\eta}\left(A_{i} \times x\right)=\mu\left(A_{i}\right)
$$

Thus we have

$$
\eta(A \times X)=\sum^{\infty} \mu\left(A \cap A_{i}\right)=\mu(A) \quad \text { for all } A \in \sum\left(\text { if } \mu\left(A_{i}\right)=0\right.
$$

then obviously $\left.\tilde{\eta}\left(A_{i} \times A_{j}\right)=0\right)$,
analogously $\eta(x \times A)=\nu(A)$ for all $A \in \sum$, ie. $\pi_{1} \eta=\mu ; \pi_{2} \eta=\nu$. (6) Put $\bar{\rho}=\sup \rho \mid A_{i} \times A_{j}$ on $A_{i} \times A_{j}$ and analogously

$$
f=\inf \rho \mid A_{i} \times A_{j} \text { on } A_{i} \times A_{j} .
$$

Then it holds

$$
\eta(\rho) \leq \eta(\bar{\rho}) \leq \eta(\rho)+2 \varepsilon \leq \tilde{\eta}(\rho)+2 \varepsilon=\rho_{1}+2 \varepsilon
$$

for

$$
\begin{aligned}
& \eta\left(f \cdot c_{B_{n}} \times B_{m}\right) \rightarrow \eta(\rho) \quad \text { and } \\
& \eta\left(f \cdot c_{B_{m} \times B_{n}}\right)=\sum_{i, j=1}^{n} c_{i j} \times \mu \otimes \nu\left(A_{i} \times A_{j}\right) \cdot \inf \rho \mid A_{i} \times A_{j}= \\
& \quad=\sum_{i, j=1}^{n} \tilde{\eta}\left(A_{i} \times A_{j}\right) \cdot \inf \rho \mid A_{i} \times A_{j}=\sum_{i, j=1}^{n} \tilde{\eta}\left(\rho \cdot c_{A_{i}} \times A_{j}\right)= \\
& =\tilde{\eta}\left(f \cdot c_{B_{n}} \times B_{n}\right) \leq \tilde{\eta}(\rho) .
\end{aligned}
$$

Thus we have $\rho_{3} \leqslant \rho_{1}$.
Remark. The main result (and its proof) remains valid in case that ρ satisfies only the following conditions

$$
\rho(x, x)=0, \quad 0 \leq \rho(x, y)<\infty, \quad \rho(x, y) \leq \rho(x, z)+\rho(z, y)
$$

for all $x, y, z \in X$ if we replace Lip $(f) \leqslant a$ by $f^{\prime}(x)-f(y) \leq a \rho(x, y)$ (x is supposed to be separable in the topology defined by the basis $\{y \in X \mid \rho(x, y)<\varepsilon, \quad \rho(y, x)<\varepsilon\}, x \in X, \varepsilon>0$.

References
[1] L.V.Kantorovič: Dokl. Akad. Nauk iss 37(1942), No 7-a, 227-230
[2] L.V.Kantorovič, G.J. Rubinstein: Dokl. Akad. Nauk SSSR 115 (1557), No 6, 1058-1061
[3] L.v.Kantorovic̈, G.S. Rubinstein: Vestnik Leningrad. Univ., Ser. mat. 1958, No 7, ed.2, 52-59
[4] E.Z.Nulikh, Introduction to the theory of partially ordered vector spaces, Groningen 1967

