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TWO QUESTIONS CONCERNING VECTOR-VALUED 

HOLOMORPHIC FUNCTIONS 

Klaus Floret 

Let ft c C be an open and connected subset and E a complex Haus-

dorff locally convex space which is locally complete, i.e.: every 

bounded set is contained in a bounded Banach-disc. H(ftfE) denotes 

the set of all holomorphic (= weakly holomorphic) functions ft + E . 

For a Banach-disc B and its Minkowski-gauge-functional nu write 

[B] := (span Bfnu) for the Banach-space which is spanned up by B . 

(P1) GLOBAL FACTORIZATION: Characterize those pairs (ftfE) such 

that for every f e H(ftfE) there is a bounded Banach-disc B in I 

such that f : ft -* [B] c> E holomorphic ally. 

(P2) INTERPOLATION: Given a sequence (z ) in ft which is discrete 

in ft and a sequence (x ) in E . Under which circumstances does ^ n 
f e H(ftfE) exist with f(zn) = xn for all n - N ? 

It is well-known that every f e H(ftfE) factors locally through a 

compact Banach-disc. So it is easy to see 

(1) If E' has the countable neighbourhood property (i.e. for 

every sequence (U ) of neighbourhood of zero there are X > 0 such 

that O X U is a neighbourhood of zero) then H(ftfE) admits n n n 
global factorization for all ft . The Banach-disc for the factori­

zation can be chosen even to be compact. 

This is true e.g. for Frechet-spaces E . As a consequence 

(2) If f G H(ftfE) factors globally it factors globally through a 

Banach-space [Bj where B is a compact Banach-disc. 
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If E = H({0}) , the nuclear (LS)-space of germs of holomorphic 

functions in {0} c C , then the holomorphic function f : C \ {0} -> 

+ H({0}) defined by 

f (z) = — 
z-

в 

(the "moving-pole function") admits no global factorization. 

(3) If A c íl is a set of uniqueness for holomorphic functions in 

H(fì) and Fc E is a closed subspace, then every f £ H(fì,E) with 

f(A) c F satisfies f(fì) c F . 

This follows from a simple Hahn-Banach-argument. In particular, there 

is for every f c H(ft,E) a compact set K c E (namely f(K(z ,e)) ) 

such that f(ft) c span K . A Baire-argument (in tt ) , together with 

(3), implies 

CO 

(4) If E = ^J E where E are closed subspaces of E , then there 
n=1 n n 

is for every f e. H(ft,E) an n e IN such that f (Q) C E 
o 

This answers the interpolation question to the negative in the case 

of strict inductive limits E , e.g. there is no entire function f 

with values in f := ind C such that f(n) = e (the n-th unit 

vector) for all n t IN . The same trick as for scalar-valued func­

tions gives 

(5) If ----=• : £ (ft,E) •> C (fi,E) is surjective, then there is al­

ways an interpolating function f (as in (P2)). 

For Frechet-spaces E the ----=• -operator is always surjective: since 

C (ft) G^E = cf (ft,E) and the scalar -z-= -operator on C°°(ft) is 

onto this is a consequence of the fact that the iT-tensorproduct of 

surjective operators between Frechet-spaces is surjective. However, 

in general, -r-=r is not onto, e.g. not on C°°(C,H (K (0,1)) ) ; but it 
a Z 

is onto on C°°(C,H ({0}) ) (see [3], p. 23). In the class of (DF) 

-spaces E (more general: of those spaces with a countable basis of 

bounded sets) D. Vogt [3] characterized the surjectivity of -r=r on 

*C (C,E) in terms of the existence of a somehow dominating bounded 

set in E . 

R. M. Aron, J. Globevnik, and M. Schottenloher [1] investigated the 
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bounded interpolation problem on fì := K(0,1) : which are the se-

quences (z ) in K(0,1) such that for every bounded sequence (x ) 

in E there is a bounded f є H(K(0,1),E) which interpolates. 

Their result is: the sequences (z ) are the same for all Banach-

spaces E (different from zero), i.e. the same as in the scalar case. 
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