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CANONICAL ORDERING THEOREMS , A FIRST ATTEMPT 

J. Nesetril, H.J. Prbmel, V. Rbdl, B. Voigt 

§ 1 Introduction 

In this paper we investigate canonization theorems for total orders, these form 

the counterpart to 'canonical partition theorems' (see e.g. [4]) generalizing 

the notion of ordering theorems (see e.g. [3 ]). 

It proves to be convenient to use the language of categories in order to define 

the general concept. 

Let (E be a category. For the applications (E will always satisfy certain addi-

tonal properties, namely (E is rigid, sceletal and every morphism is a monomor-
A 

phism. For objects A and B the binomial coefficient (E(B) denotes the set of 

morphisms (subobjects) f : B -+ A. 

A A 
Notation: ORD (EQ denotes the set of total orders on (E(£) . 

D 

Definition: A set Q c ORD (E(c) is a canonizing (by abuse of language also 
D 

'canonical') set ot total orders for (E(c) iff n is a minimal set (with respect 

to inclusion) satisfying: 

(ORD) there exists an object A in (E such that for every total order 

< e ORD (E(£) there exists a B-subobject f € (E(g) such that < f € n , where 

g < f h iff f • g < f • h . 

§ 2 Results 

(2.1) Affine points in finite affine spaces 

Let F be a finite field. Let Affp be a category which has as objects the 
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affine spaces F > where k is a nonnegative integer. For k < n let the 

morphisms f G Affp([!) correspond bijectively to k-dimensional affine subspaces 

of Fn . 

Particularly Affr(o)
 can be identified with Fn viewed as column vectors 

(xn,...,x 1 ) T . Analogously Affr(
n) can be identified with the set of n x 2 

matrices such that there exists an index i < n satisfying y = 0 for all 

v < i , y. = 1 and x . = 0 . As usual A describes the line {(xn,...,xM , ) + J i i x u n-i' 
x* (V""Vi)T| xen -
For a total order < G ORD(F) we denote by <* G 0RD(Fm) the lexicographic order 

on F111 coming from < , i.e. (XQ» • • •'x
m_i) 1* (y0""'ym-l^ iff there exists 

an index i < m such that x = y for all v < i and x. < y. . 

Theorem 1 The set n = {<* G ORD (F111) |< G ORD (F)} is a canonical set of to­

tal orders for Affr(0) . 

Proof: We verify the property (ORD) . According to the Graham-Leeb-Rothschild 

partition theorem [ 1 ] for finite affine spaces we can assume that 

«5 G ORD Affr(Q) is given in such a way that each two affine lines of F™ are 

ordered of the same type. This gives an order < G ORD (F). But then <* =•£ , 

because if x = (Xg,...,x ,) and y = (yQ,...»ym i) are two different-ele­

ments of F"1 , then let A G Affr(
m) describe the affine line containing x a 

y . Say that x = (xQ,... - x ^ ) 1 + A • (yQ,... . y . ^ ^ ) 1 and y = (xQ,... 9xmA) + 

y* (y0" • *'ym-l^ ' where A and y are elements of F . Hence x - 6 y iff 

X < y which shows that ̂  is the lexicographic order coming from < . 

The minimality of n is obvious, in fact Q is uniquely determined. 

(2.2) Points in Boolean algebras 

Let B be a category which has objects the Boolean algebras B(k) , where k 

is a nonnegative integer. For k < n let the morphisms f G B(£) correspond 

bijectively to B(k) - subalgebras of B(n) . B(k) consists of all 0-1 sequences 

of length k ordered by the product order taken over (2,<) , viz. 0 < 1 . 

nd 
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A B(k) - subalgebra of B(n) can be represented by a 0-1 sequence 

x = (*Q,.•.»xn_i) » yielding the minimum of the subalgebra, and by k mutually 

disjoint and nonempty sets L,...,I. which are subsets of n = {0,...,n-l} 

such that x = 0 for eyery v € I, U...U Ik . The representation is rigid if we 

require additionally that min I- < min I2 <...< min. I. . The 0-1 sequence 

y1 = ( y o - - " y n - i )
T > where yj = xv

 for v C Ix U...U Ik , y
1 = l for v € I. 

and y1 = 0 else yields the i.th atom of the B(k) - subalgebras. 

Recall that a B(k) - subalgebra of B(n) may be interpreted particularly as a 

k-dimensional affine subspace of (GF(2)) , but generally not vice versa. How­

ever, essentially the same result as stated in theorem 1 for GF(2) is valid for 

Theorem 2 The set n = {<*,<**} c ORD ( B ( Q ) ) , where <* is the lexicographic 

order coming from 0 < 1 and <** is the lexicographic order coming from 1< 0 , 

is a canonical set of total orders for B(«) . 

Proof: We verify the property (ORD) . According to the Graham-Rothschild par­

tition theorem [ 2 ] for finite Boolean algebras we can assume that < e ORD ( B ( Q ) ) 

is given in such a way that each two B(l) - sublattices and also each two B(2)-

sublattices are ordered of the same type. We can also assume that m > 3 . 

The common order type on B(l) -sublattices yields an ordering on {0,1} . Say 

that 0 < 1 , the case 1 < 0 can be handled analogously. 

We claim that (0,1) < (1,0) for eyery B(2) - sublattice. Assume to the contrary 

that (1,0) < (0,1) for eyery B(2) - sublattice. Consider any B(3) - sublattice. 

According to the assumption it follows that (1,0,1) < (0,1,0) < (0,0,1) . Thus 

by transitivity (1,0,1) < (0,0,1) , contradicting that each B(l) - sublattice is 

of type '0 < 1'. 

Finally let x = (xQ,...>x ,) and y = (yQ,...,y -) be any two 0-1 sequences. 

Say x = y for all v < i , x. = 0 and y. = 1 . As each B(l) - sublattice is 

of type 0 < 1 it follows that x < (xQ,...,x. ,,0,1,...,1) and 

(yQ»* • • ,yi-i )>1»°>--- >0) £ y • But then x < y from the above considerations, 



196 J. Nesetril, H.J. Promel, V. RSdl, B. Voigt 

showing that < = <* . 

Again the minimality of n is obvious, in fact Q is uniquely determined. D 

(2.3) Points in parameter-sets over three-element alphabets 

Parameter-sets have been introduced by Graham and Rothschild [2 ] as a tool for 

proving partition theorems. In a sense they may be viewed as a generalization of 

Boolean algebras to larger alphabets than just {0,1} . Let A be a finite alpha­

bet, for our purposes if suffices to let A = {0,1,2} . 

Let [A] be a category which has as objects A , i.e. A-sequences 

(x0,...»x, i) of length k , where k is a nonnegative integer. For k < n let 

the morphisms f € [A](£) correspond bijectively to k-parameter subsets of An , 

where a k-parameter subset of An is given by an A-sequence x = (xQ,...>xn_j) 

and by k mutually disjoint and nonempty sets I,,...,I, which are subsets of 

n = {0,...,n-l} such that x = 0 for every v € K U...U I. . The k-parameter 

subset then consists of all A-sequences y = (y0-... »yn.i)
 e A" w^ n y - x 

for all v C I- U...U I. and y = y for all v,y € I. for some i = l,...,k . 
1 K v y I 

For A = 2 = {0,1} the categories [A] and B are isomorphic. 

For A = 3 = {0,1,2} a k-parameter subset in An can be interpreted as a 

k-dimensional affine subspace of (GF(3))n , but generally not vice versa. Sur­

prisingly the result here is.somewhat different from the previous ones: 

Theorem 3 Let < € ORD (A) , say aQ < a, < a^ . Consider the three orders 

<* , <** and <*** on Am which are defined in the following way: 

(1) <* is the lexicographic order. 

(2) ( * 0 . - " ' V i ) T < * M y 0 ym.x)
J i f f 

a) there exists an i < m such that x € {a 0 ,a - } i f f y e {a 0 , a , } for 

every v < i , x.. € { a Q ^ } and y. = a« or 

b) x = a^ i f f y = a« fo r eyery v < m and there exists an i < m 

such that x = y fo r every v < i and x. < y . . 

<3> <xo Vi)T<*** (V---'Vi)T i f f 
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a) there exists an i < m such that x - aft i f f y - an for every 
i v 0 v 0 

v < i , x. = a Q and y.. e {a^a^} or 

b) x = a Q iff y = a Q for every v < m and there exists an i < m 

such that x = y for every v < i and x. < y. . 
V ^V 1 1 

Then n = {<*,<**,<***| < e ORD (A)} is the uniquely determined set of canonical 

orders for [A](Q) . 

We have good hope that analogous characterizations can be found also for larger 

alphabets. Proofs and details will appear somewhere else. 
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