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ON TWO PROBLEMS OF MICE 

A.Pultr and J.Ulehla 

Abstract; This paper deals with two problems concerning the be­

haviour of mice /finite automata/ in environments. First of them was 

formulated by M.S.Paterson CFCT Computing Problem Book! . The ques­

tion was whether one can design a pair of mice, each of them 

equipped with two pebbles, such that if they are dropped in the 

Diane in different tiroes and in different places they will eventual­

ly find each other. We answer the question in the affirmative. We 

will give here a short informal description of the solution. Longer 

and more rigorous treatment will appear in [pultr/Ulehlal . 

The second problem has become known as the "Mouse in the First 

Octant Problem". It was formulated by L.Budach [FCT Computing Prob­

lem Book 3 . /Cf. also tKarpinski/van Erode BoasJ ./• The problem asks 

to describe behaviours of very simple mice in a non-homogeneous en­

vironment. The environment is a cone which arises from the first oc­

tant of square Taper by glueing the diagonal and the x-axis to­

gether. /One has to stretch the x-axis first to match the lattice 

points on both sides./ There arises a kind of singularity along the 

glueing and it seems to be the reason why the behaviour is "hard" 

predicable. We add few remarks to the discussion of the problem. 

Acknoledgeroentt We are very indebted to M.Karpinski for making 

us acquinted with the problems and for very valuable discussions. 

Patterson's Problem 

Mice with two pebbles; A mouse can be described as a bicolored 

directed graph with /possibly/ labeled arrows. The vertices of a 

graph correspond to inner states of a mouse. /See Fig.l./ A mouse 

starts its life in some point of the planar lattice of points with 

integer coordinates /the point a in our example/, it starts in the 

initial state - 0 , and with two pebbles in its pocket. It looks 

whether there is a pebble lying on the same point and it follows the 

instruction along the dotted arrow if there is a pebble and along 
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Fig.l. An example of a roroe with 

two pebbles and its trajectory. 

N aç-zŽГt 

the full arrow if there is not a pebble. In our example the mouse 

deposits /D/ a pebble on the point a , moves a step east /E/ and 

enters the state 1 . In each next step it again looks whether there 

is a pebble or not and according to the information it /possibly/ 

handles the pebbles, and /possibly/ moves, and enters a new state. 

In our example the mouse continues: It moves south /S/ and enters 

the state 2 , it deposits its second pebble in the point c and 

moves north /N/ and west /W/. Then it is again in the point a , now 

In the state 4 , and it finds a pebble there. So it follows a 

dotted arrow, that is, it picks /P/ a pebble, moves east and enters 

the state 5 . A mouse continues moving unless there hapens to be no 

correct /dotted or full/ arrow prescribing next step. In this case a 

mouse halts. 

Paterson s problem: The problem asks whether there is a pair of 

mice such that 

if they are started arbitrarily and independently in time and space 

they will eventually roeet each other. 

Why just 2,2 pebbles? It seems to be general /among mousy the­

orists/ knoledge that one can fool any pair of mice one having less 

then 2 pebbles and the other less then 3 pebbles. That is, one can 

put thero in different places in the plane in such a way that they 

will never meet. /There is no need to use different tiroes as well./ 

On the other side if a roouse has 3 pebbles it can simulate Turing . 

machine, and hence find its friend sitting idly where it was dropped. 

/Note that because of the time difference the active member of the 
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team has not only to search the plane but it has to visit each point 
again and again./ 

Partner's pebbles: Now we have a crowd of two roice and four 

pebbles moving around the plane. So a mouse can meets its own 

pebbles, the other mouse and the other mouse's pebbles. A mouse can 

by no roeans react to the roeating with the other one. /Only we as 

outside observers will recognize that they met and solved the task./ 

But we can adoot at least two conventions concerning the partner's 

pebbles. Either a mouse react to a partners's pebble in the same way 

as to its own t>ebble /dotted arrow/ or it ignores it /full arrow/. 

The former case is more natural, the latter one is more easily solv­

able. 

Ignorance of the partner's pebbles: In the case roice ignore the 

partner's pebbles the question whether a pair of mice will always 

meet can be translated into a question about their trajectories, A. 

trajectory of a mouse is a sequence /finite or infinite/ of its suc­

cessive positions in the plane when it was started in the point 

(0,0) . Thus the trajectory of the mouse on the figure 1 starts: 

f(0) - (0,0) 

f(l) - (1,0) 
f (2) - (1,-1) 

f (3) - (1,0)... . 

Now the problem can be reformulated to the question whether the 

following holds: 

IV 3 f>g V t f > V v f > v g 
tftg - 0 ^> 3t ( f(tf+t) * Vf - g(tg4t) + Vg ) ) , 

where f,g ranges over roousy trajectories 

t ,t ,t ranges over N /nonnegative integers/ 

vf,v ,v ranges over Z /pairs of integers/ . 

11/ can be rewritten to 

/2/ 3f,g Vtf,t ,v ( tft * 0 «? 3t ( f(tf+t) - g(tg*t)-s v ) ) . 

If g is roousy trajectory -g is roousy trajectory as well. Thus 

/2/ is equivalent to 

/s/ 3f,g Vt-,t ,v ( t-t » 0 -> 3t ( f(t *t) • g(t+t) =» v ) ) 
f g f g f g 

and /s/ again can be rewritten to 
HI 3f,g Vtf,tg (tft » 0 => Cf(tf+.) + g(tg+.)3(N)- Z2 ) . 

That is to say, that f + g covers the plane even under time 

delays. 
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Solution: Here we present a pair of mice A,B such that the 

sum of corresponding trajectories f,g covers the plane under time 

delays. /See Fig.2./ 

Fig.2. 

f + g: The figure 3 shows few examples of suros of f,g to con­

vince the reader that for any tiroe delay /with tft - 0 /, after 

soroe initial mess lasting a tiroe which is a quadratic function of 

the tiroe delay, a trajectory reaches the right lover corner /for 

tf - 0 / or left lover corner /for t~ s 0 / and then it stars to 

cMk^e 'clockwise spiral. 

Fig..3. Suros of f,g under several tiroe delays. 

Open problem: We use this left space 

to formulate a problem concerning the 

space itself: 

Does there exists a pair of mousy 

trajectories such that they cover the 

plane even under delays which fall into 

this left space, that is if we do not 

require one of the t.,t to be 0 . H f g 
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Further improvements: By modification of the above pair of roice 

we can construct a pair of mice such that they will always eventual­

ly meet even if /some or all/ following conditions hold: 

a/ They react to the partner's pebbles as to their own. 

b/ They are not equipped with compasses, that is their moves 

are prescribed by: forward, backward, left and right /referring to 

the previous mcve/. 

c/ They do not know which paw is left, that is we can switch an 

orientation of one of thero. 

Mouse in the First Octant Problem 

Definitions: In this part difficulty of the problem is created 

by non-horoogeneous environment. The mice world here will be the 

first octant of the plannar lattice of points with integer coordi­

nates: 

FO = llx,y) ; 0 * y < x> . 

Movjse in this Dart will be very simple. It is only a nonempty 

sequence over N,E 

M - voVl...vn-1 . 

Where 

N « (0,1) E = (1,0) . 

The numbers 0,1,...,n-1 are called inner states. For a notational 

convinience we put for arbitrary integer i 
vi g vi rood n • 

A roouse creates its trajectory ro in FO as follows: 

/l/ ro(0) - (1,0) 

/2/ ro(i*l) = ro(i) + v1 

unless m(i*l) defined by «/2/ does not lie in FO . In this case it 

has to lie on the diagonal, m(i*l) =- (x,x) for some x , and we 

put 

AV m(i*l) == (x,0) . 
Further we say in this case that a roouse hitted the diagonal in the 
time i+1 , in the state (i+1) rood n , in the point x . 

See figure 4 for the initial part of the trajectory of the 

roouse ENENN . The roouse hits the diagonal for the first tiroe in 

time 5 , in state 0 =• 5 mod 5 and in the point 3 . 

Formulation of the problem: Now the problem asks to deside for 

a-given roouse and a distinguished state in it whetherthe roouse will 

ever hit the diagonal in the distinguishe state, or to show that the 

problem is in general undecidable. 
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Fig.4
#
 The trajectory 

of the mouse ENENN . 
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Notation, observations and a convention: Let us denote a 

vector a roouse walks from time i till time j unless it hits the 

diagonal: For integers i,j , i ̂  j 

v(i,j)=2I v . 
k*i * 

We have iromediatly 

v(i,i+n) = v(j,j<-n) 

for any i and j . let us further denote 

(b,a) = v(0,n) , 

the projections 

v = (v
x
,v

v
) 

and the depth froro diagonal 

D(v) == v
x
 - v

v
 . 

Thus a roouse hits the diagonal in tiroe t if 

D(ro(t-l) + v
t - 1

) - 0 . 

We can now eliminate the case 

a *J b . 

As was already mentioned CKarpinski/van Erode Boas] in this case a 

roouse can hit the diagonal only during the first period of its life. 

Indeed, if we take time t , t >-n , we have 

D(m(t-l)-tv
t
.

1
) = D(n(t-n)+ (b,a)) 



ON TWO PROBLEMS OF MICE 255 

unless a roouse hitted the diagonal in some of the tiroes t-n4l, 

t-n-*2,... ,t-l . But as falling down can only increase the depth we 

have 

D(ro(t-l)+ v t - 1) £ D(ro(t-n) * (b,a)) . 

Now since D is linear and ro(t-n) lies in the FO /hence 

D(ro(t-n)) > 0 / and D(b,a) =» b-a ̂  0 /if a 4 b /, we obtain 

D ( ro(t-n) -V (b,a)) > 0 . 

Hence cur rocuse will not hit the diagonal in any tiroe t , t ̂ -n . 

So we can easily decide any roouse with a ̂  b ; therefore we 

restrict our attention to the mice with 

a > b 

in the following. Finally let us put 

c -= a-b . 

A step nearer: Because of the importance of hitting the diag­

onal we should watch a depth of a roouse froro the diagonal: If a 

roouse is In the tiroe i in depth d it is not important to watch 

its behaviour in deeper positions but it is important to know the 

tiroe - N(i) , when it emerge in the depth d-1 - a step nearer to 

the diagonal. More formally we put for an integer i 

N(i) - roin { 1 > i ; D(v(i,j)) - -1 } . 

Figure 5 shows a part of the mapping N for the roouse NENNENNNE . 

Fig.5. The roouse NENNENNNE , the graph of the 

function N(i) rood n and a part of the 

grat)h of the function N . 

Î 
*> © © © 
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Corectne^ss and basic properties of N : 
A.Proposition: /l/ N is total 

/2/ i < N(i) ̂  i + n 
/5/ i £ J < N(i) => N(J) ̂  N U ) 
/4/ N(i+n^ = N O ) * n . 

Proof: We have 
D(v(i,i)) = 0 

D U U , J + - 0 - D(v(i,j)) 4 D C V ^ ~ D(v(i,j)) t l 

D(v(i,*+n)) = D(b,a) = b-a < 0 
wh:ch give /!/ and /2/ . Tf we take i ̂  i < NCi) we have 

- 1 - D(v(i,N(i)) - D(v(i,j)j + D(v(j,N(i))) . 
We also have 

D(v(i,j)) > 0 . 
Hence 

D(v(j,N(i))) < 0 
and we will get /?/ in the same way as /2/. The fourth line follows 
iroroediatly frcm equalities 

vi = v U n ' * 
Now we can study a sequence 

Po* °' vl^ N ( ° ^ p

2 =
 NNCo),...> P } ^ NA(0),... . 

£ 
Let us further denote/an integer uniquely determined by 

pf-l < n ^ Df ' 
Then we have: 

B.Proposit ion: p f - n e {Po>pl>•••>pf-l} • 

Proof: If it is not so, we have a unique k among 0,1,...,f-1 
with 

pf-l < pk + n < pf < pk+l + n 

and 
N^f-l) - pf a n d N ( V n ) ~ pk4-l * n 

which contradict proposition A. % 
So p -n equals to, say, o and the preceding two lemmas 

leads that the sequence pQjP-^Pg,... can be written: 

< ... < Pr 1 < n ^ p-4-n < p 0 < ł>i < ••• < V - < p g < p g + - < - < p f - i g 
<• Pa+i + n < • • • < P-f-4 + n < 2n ̂  p- 4 2n ... 

Now we can count down the length of cycle Pg>Pg l»«««>Pf_l because 

-c - D(b,a)- D ( v ( P g , p g + n ) = D(v(pg,pg+1)) + D ( v ( p g + 1 , p g + s ) ) + 

+ ...+• D(v(pf_s,pf_1))» -1+ -1+ ... + -1 . 
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Thus we can name 

Pg ~ q0> pg+l ~ q.l>*--> *>f-l - Qc-1 • 
a0,ql,#*#qc-l a r e ca^---ed essential states. /Cf. fKarpinski/van 

Erode Boasi ./ 

Note also that if a distinguished state is not an essenial one 

we can easily decide whether a mouse will ever hit the diagonal in 

it. Indeed, it will either appear among p .p_,...,T> - during the 
0 1 ' g-1 

first period of mouse life or the mouse will never hit the diagonal 

in it, because it is not nearer to the diagonal than immediately 

preceding essential state. Thus we can assume in the following that 

our distinguished state will be among essential states. 
Esential states: 

CProposition: If a mouse is sitting in a point x,y in an 
essential state q. it will next hit the diagonal in the state 

qj ~ q(i+x-y) mod c 
in the rjolnt 

x » x + ((x-y) over c ) * b 4 vx(q ,q ) , 

where we extend v for q* < q. by 

v(qi,q3) » v(q1,q^n) . 

/These formulae are small generalizations of very similar ones 

in ("Karrjinski/van Erode Boas'] ./ 

Proof: The depth of x,y is x - y . A mouse has to decrease 

its depth by x - y to reach the diagonal. Each transition to a new 

essential state decreases the depth of the mouse by 1 . Thus 

Q J - N^-y>( q i >= a ( 1 + x _ y ) J S 2 l c . 

Performing x - y transitions between its essential states the mouse 

will run through 

(x-yj over c 

full periods, each adding b to the x-coordinate of the roouse. Then 

there remains 

(x-y) rood c 

transitions from the state q̂  to the state q* adding the final 

v*(Vqp 
to the x-coordinate. % 

Thus a roouse is essentially described by giving a non-empty sequence 

of vectors 
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v(Q0^
ql) 'v(ql>Q2)»• • • 'vK>-2'qc-l^v(qc-l'qo) 

from (̂x,x • l)} . It is not described totally in this way because 

we do not know in which point a mouse will appear in a state qQ 

for the first time. On the other side we see easily that this ques­

tion depends only upon v ,v ^-.f-.jV . ,v^,v. ,... ,v . We 
qc-l qc-l+1 n" 1 ° V q0 

describe the possible first appearences of qQ by the following two 

lemmas. 

D.Lemma: If v(qc^1,qQ) - (r,r+l) and m(q0) =- (x,y) then 

x — r , 

unless r = 0 in which case x -= 1 . 

Proof: Tf r - 0 then a - -= c-1 and q,. = 0 . Thus m(a ) = 
c-1 0 * 0 

- (1,0) . 

7f r > 0 then v„ - E . Hence 

vx(0,n0) = vX(oc_lfo0) - v^q^.Ojjír - 1 

and finally 

x ̂  r + (r-l) - T . % 

E. Lemma: For arbitrary non-negative integers UQ-.U-,, ... >u n 

and for any x,y such that 

u > 0 = o 0 ^ y < x < u _ 
c-1 c-1 

u c - 1^ 0 => (x,y) = 1,0 

there exists a mouse with 

v(q-i,qivl) =• C^^u^l) for i -= 0,l,...,c-2 

v(qc-i>V = 'Vl'Vl+l) 

m(qo) - C**^ • 
Proof: If x s 1 , »e will put r0 -=- 0 . If x > 1 and y - 0, 

we will put 
7Q= v1*... * v ^ g = E /(x-l) tiroes/ 

vx-l~ v x = — - v 2 x - 2 " N / x tlroes/ 

rQ - 2x-l . 

Л 

If x > 1 and y > 0 then we will put 
Л-.4 

v^-=v.,--r. . .»v ..Z..E / ( x - y ) t imes/ 
x—y—x 

- N /(x-y+1) tiroes/ 

vSx-2y+l a V 2 x - S y t 2 s ••• = v 2x-y-l = E A*--.* t l r a e s 7 

v x - y в v x - y + l - • • • Ä v 2 x - 2 y 
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v
2x-y ~

 v
2x-y*l - ••• ~

v
2x-l 

ГQ =- 2x . 

/y tiroes/ 

Adding no roore information here we can see that 

»lr
0
) - Cx,y) . ^ ^ 

/r's are candidates for q's./ In the first case it is obvious. In 

the second one mouse starts moving x - 1 steps east reaching the 

t>oint (x,o) then Jt moves x steps north, hits the diagonal in 

tiime 2x - 1 and falls down to be again in the point (x,0) in 

tiroe 2x - 1 . In the third case it starts as in the second one 

/with x changed to x-y 1 / and reaches the point (x-y+1,0) after 

2x-2y+l steps. Then it continues by y - 1 steps to the Dolnt 

(x,Oj and it adds finally y steps north to reach (x,y) in tiroe 

2x . 

We continue by putting 

r i = ri-i + 2 u i - i + 1 

for i=-l,2,...,c-l ; and 

... =v V = V 
г
i V

1 
_ - E /u. tiroes/ 

Г.4U.-1 І ' 

З i ^ + U ^ J 
. = V r

1 +
S>u,

 = N
 /(V

1
)
 tlmes

/ J
І 

for i = 0,1,...,c -2 . Now there remains to define moves between 

r - and n-1 . We t>ut 
c-1 

v r * v r *1 * *' • * v r +u -x = E / fac-l"^1) t l r o e s / rc-l r c - l f l rc-l+uc-l x c L 

г c-l + u c-l- x + 1 г c-l + u c-l- x + 2 " v n-l* N / uc-l 4 x" p 0 ' tiro./ 

It remains to prove that 

N(r
1
) = r

i < f l
 for i-0,l...,c-2 

which is evident, and 
N ( r

c - 1
)
 *

 r
0 +

 n
 • 

To prove the last equation we start with the case x = 1 

have 

u c-1 

and 

and 

J
c-1 

x , 1 _ u ^ 

"
 r
0 *

 u
c - l

+ 1 

Then we 

.J-
H í rc-1 ) " rc-l + Suc-1 + 1 = n = r0 + n 

If further x > 1 and y » 0 we have 

uc-l + * " r0 - uc-l ~ x + 1 

and N(rc-1^ ̂  r0 + n * 
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If finally x > 1 and y > 1 we have 

uc-l * x " rO s Vr x 

and again N^rc-1^ * r0 * n # 

£ number theoretical problems: We say that a mapping] 

if : Z2 5> Z2 

is a mousy mapping if there exists a non-empty sequence u ,u 

...,u -j of non-negative integers and 

(if(x,q))x =• x 4 (x over c) *• b + r(q,(x + q) mod c) , 

((*(x,q))y = (x • q ) rood c 

where c-1 

i*0 * 

and for 0 .^ i,j <c 
J - l 

r(j,j) =, 51 uk if i <; 1 
k*i K 

i-1 
r(i,j) = b - 27 u, if i > j . 

k=J 
Problem 1: For a given mousy mapping u> and a given integer 

s , 0 --? s < c , decide 

3 k > 0 ((fkd,o)Jy= s 
Problem 2: For a given roousy mapping u> and a given integer 

s , 0 ̂  s < c , and a given positive integer x decide 

3k > 0 ((fk(x,0))y ~ s . 

It easily follows from the preceding discussion that the Prob­

lem 1 can be translated into the Mouse In the First Octant Problem 

and the Mouse in the First Octant Problem can be translated into the 

Problem 2. We have tried to describe the position of the Mouse in 

the First Octant Problem between the Problem 1 and the Problem 2 by 

studying where a mouse can appear in an essential state / qQ / for 

the first time. It has been claimed TKarpinski/van Erode BoasU the 

Problem 1 is equivalent to the Mouse in the First Octant Problem. We 

do not see any evidence of it. 

Now we prove that two special cases of the Problem 2 are solv­

able ̂ . 

The case c divides b : let (f be a roousy mapping with c 

divides b . Let us put 

(x^cij) s Cp1(x0,q()) , 

where x ,q are arbitrary. Then the sequence 
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U Q rood c , q Q ) , b ^ rood c ^ ) , . . . 

is ultimately periodic. Hence also 

Q0>Qi»Q2f-

is ultimately Periodic. Moreover the length of the period is shorter 

than or equal to c2 and the first full period has to appear among 

first c ' items of the sequence. This holds becouse of the follow­

ing easy proposition: 

F.Proposition: If c divides b then 

( Cf (x,q)) X rood c =(x rood c •* r(q, (x rood c + q ) rood c)) *oj c 

(<p(x,q))v -* (x rood c + q) rood c . 

Proof: 

((/Cx,q))y « (x + q) rood c - (x rood c * q) rood c . 

And similarly 

(v(x,o))x -» (x + (x over c) # b + ... )rood c = 
l£-^c (x rood c * ... ) rood c . % 

Thus we have a function 

Aft : C X c —5> c X c 
where c - {o,l,...,c - 1 } 
such that for any i 

(xj+i £-2£ c>Qj+i) * f^i -22-4 c>Qj^ • 

So we can deside this case. 

The case c ~ 2 : We can moreover suppose c does not divide 

otherwise we can use the preceding paragraph . Let if and (x.t,q.t) 

be the same as in the preceding paragraph. We have only twc- essen­

tial states here and we will rjfove that both appear infinitely often 

among q's. We will use two lemmas which hold even if c £ 2 . 

G.Lemma: If c devides x, then 

xi+l s a * xi/ b 

Qi+1 - Qi 

where a =• b + c . 

Proof: (y(x
j>n;1))

v = (xj + q1) rood c -= 

- (xi rood c + a4 ) rood c - q.- rood c -= q.. . 

(<{>(xi>Qi)) * xi + (xi ° v e r c )# b 4 rCqj^j) = 

» x, t x^/c * b - (c * x.. 4 b * x . j ) /c -» a * Xj/c . % 

H.Lemma: If c does not divide Xj then 

qi*l * qi • 
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Proof: 
(̂ (Xjjq-j)) y * (X.J ̂  qj) rood c * (xj rood c + q ^ rood c + q± .% 

Now we restrict our attention to c -= 2 . In this case we watch the 
maximal pover of 2 which devides x. , say 

p. » max ^k ; 2 divides x, J . 

Now the preceding two lemmas guarantees that if we take arbitrary i 

then 

qi*p 1 +l * qi • 

Thus both essential states will appear infinitely many tiroes among 
q's. 
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