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A UNIVERSAL FUNCTION FOR CONTINUOUS FUNCTIONS

L.Bukovsky and E,Butkovidovd ')

In the desoriptive set theory the codings of continuous
functions play important role. Namely, the proof of so oa.l.lpd
Coding lemma (see (2] or [3], p. 426) uses a special kind of such
a coding satisfying the Kleemne recursion theorem. The classioal
construction of those codings is based on the theory of recursive
functions., In this note we shall try to show that such codings
possesse many typical recursive theoretic properties independently
of their construction,

Let N denote the Baire space “w , If F is a funotion de-
fined on a set AG X x eee xX and X gX, we denote by F, the
function with the domain

ﬁ(F“) ={[x2,...,xn']e xzx...xxn;[d,xz,...,xn—_\E:A}
defined by
F«(xz....,xn) = F(ov.,x‘,....xn) .

Let X be a Polish space, U being a function defined on a
subset A of N/ x X with values in A ., U is said to be a univer-
sal funotion for ocontimious funotions on X iff the following
holds true:

(1) the domain A =F(U) 1s a (Sg-subset of S xX and U
is ocontinmuous on A ;

(2) for every contimuous funoction f from a GS -subset of X
into N there exists a_code ogtJf such that f = U,.

Let us remark that the conditions (1) and (2) are stronger
than (1) and (ii) of the theorem 7A.1 in (3], p. 382. However, we
need this strengthening in our investigations.

A system {Ux; X Polish apaoe& is called a universal system
for contimuous funotions iff Ux is a universal funotion for oon-
tinmuous functions on X for every Polish space X ,

*) A part of this note has been presented by the first author on the
conference on Deskriptive Mengenlehre in Oberwolfach in Jamuary 1983,
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One can easily check that the Kleene’s system as described in
(3], pp. 381-382 is a universal system, Moreover, this system pos-
sesses the s~property:
(3) there exist ocontimuous functions
sx’Yx Jf x X—*JV‘
such that for each oLeJ/', xe&X the following holds true

UX%Y = X
( .3 )x st,Y(o"x)

The superscripts X,Y will be usually omitted.
Analogously to the proof of the Rice theorem in the recursion
theory (see [ﬂ or [1], p. 102), we can prove
Theorem 1. Let iUx; X Polish space | be a universal system satis-
fying the s-property. Let f be a contimuous funoction from aQs-
-subset A of X into N . Then the set C of codes of £
C = {ae N 3 Ui =f }
contains a perfect subset,
PROOF, Let D be a Gg~-subset of A such that N-D 1e not a
Gs-set. We set
F(x,y) = f(y) for xeD, yel;
undefined otherwise,
Then F 4is a contimuous function with a Gs-doma:l_n DxAc N <X,
Hence there exists a code (b eNof F:
F = Uﬁ‘,'/k X .
By the definition of the funotion F we have
xeD = F. = £ .
By the s-property we have
(uhX) o X .
] x 3(@’9‘)

Thus

xeD = Uf(@'x)

=f = s(P,x)eC ’
ice,
D = s3'(c) = sg (s(D)) .
Since s is contimous, °§(D) is an analytioc subset of C .,
Moreover, sinoe D is not a F;-set, s, (D) 4is uncountable. There-
fore aP(D) S C ocontains a perfect subset,
q.0.d.

Similarly we can prove
Theorem 2, Let iUx; X Polish spaoe} be a universal system satis-
fying the s-property. Then there exists a contimuous funotion ox
from N'x N into N such that
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Uxx = Ux ° UJ(
0" (otqr005) %y %2
for any 0(1,«2 e./f.
PROOF, We denote
Ployrogex) = 0ot (e 2))
Then F is continuous with a GS -domain, Hence, there exists a
code o&c./f such that

F o= glkx
It suffices to set

X MH, X

(<) = .u .

qe.0.d.
In the theory of recursive funotions it is shown that all
universal functions are isomorphic in a certain sense. A similar
result holds true in our ocase.
Theorem 3. Let {Ux X Polish space} , §_vx X Polish space] be
universal systems, 7{ { satisfying the s-property. Then there
exists a system 2 s X Polish spaoe} of continmuous funotions such

that
R S
for each ot&-//‘, X Polish space,
PROOF. Since Vx is a continmuous funotion with a Qs ~domain,
there exists a code (Le‘/f such that

e X,
The funotion fx _ .Jf;x
[

has the required property.
q.e.d.

Ir E is a pointclass in the sense of Y, Moschovakis [3], we
can introduce the notion of a universal funoction and & universal
system for E -measurable funoctions replacing the words "contimuous"
and "C;" by *[!-measurable® and "/\QB". However, the definition of
the s-property remains as before.

One can easily formulate and prove similar results for univer-
sal systems for P -measurable funotions for a reasonable point-
class F (e.g. for a Z -po:l.ntolu.) However, we were not succes-
full :l.n proving the existence of a universal system with the pro-
perty (1) in the gemnoral oase. Aotually, if the function v 1s
defined as in [3'], P. 382, then you can immediately see that the
graph of Ux is & Gg -set (in the general case it is a./\ r'-eot).
However, we need some kind of topological invariance to .hov that
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the domain of UX is a Gg -set (a /\‘“'[;I -set), In the continuous
case it is a trivial consequence of the invariance of Gg -sets
under homeomorphisms,

Using the ideas of the proof of the good parametrization lemma
from [3], Pp. 183-185, we can easily construct a system {Ux, X Po=-
1lish spaoe} of functions satisfying the property (2) for Z‘% -sets
and the s-property. A suitable modification of the theorem 1 holds
true for such a system, because the property (1) is not used in the
proof of this theorem, As an example of possible generalizations,
we shall formulate exaoctly this result,

Theorem 4, Let §ew1 be an ordinal, {Ux, X Polish apace& being a
system of Z.° -measurable function such that:

(4) UX is defined on a subset of NxX with values in N;

(5) if £ is a g}-meaaurable funotion from a ]I;“-subset
of X into Jf, then there exists a code cce A’ such that f = Uf‘ .

Then for any Z;o} -measurable function defined on a H&,‘-aot,
the set C = E&EM; f= Ux,L} contains a perfect subset,
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SUBSETS OF (AN WITHOUT AN INFIMUM IN RUDIN-FROLfK ORDER

Eva Butkovid&ova

X,
Abstract. We prove the existence of a set of 2% ultrafilters
incomparable in Rudin-Frolik order of AN-N which is bounded from
below and no its subset with more than one point has an infimum,

§ 0, Introduction., In [2] we have constructed a Simon point in
AN-N, i.e. a nonminimal ultrafilter in Rudin-Frol{ik order of
BAN-N (shortly written RF) without an immediate predecessor. By
a modification of this construction we shall prove

THEOREM, There exists a set QS AN -N of mutually incomparable
ultrafilters :anRF such that

1) laj= 24",

2) Q is bounded from below, i.e. there is an ultrafilter P
such that p<q for each Ct €Q,

3) for any subset A< Q,|A|>1 the infimum inf A does not
exist,

We use the technique of independent linked families deve-
loped by K.Kunen, his concept of the OK-point and some ideas from
his proof of the existence of 22" distinct OK-points [&].

The author is grateful to Lev Bukovsky for his useful dis-
cussions.

§ 1. Preliminaries. We use the standard notation and terminology
to be found e.g. in [1],[4#],[5].

Recall that the type of an ultrafilter p is the set T(p)=
'—'fl}e(bN ; there exists a homeomorphism 4 of AN onto (BN such
that hf'F)=q,, i.,e. P'x_(l},

If pepPN, X={xm ;mw €} is a countable discrete set of
ultrafilters in AN then

2X,p) =(AeN;(n Aex,}€pl
Conversely, if g€ X then there exists a unique ultrafilter
Q(x,q) such that Z(X,Q.(X.ci))=c; .
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Irf g =Z(X,p) for some countable discrete set X S 3N, then
p €0 in Rudin-Frolik order of ultrafilters in AN . Let us remark
that for p < g, T (p) = TPHT(G) =T(q) we have also p's ¢’ , i.e.
the Rudin-Frolik order of AN is also an order of types of ultra-
filters,

If pe Xn(Y-Y), X,Y being countable discrete sets, then
QX,p) < QY p).

An ultrafilter P has an immediate predecessor 9 in RF iff
there exists a countable discrete set X of minimal ultrafilters
in RF such that p = Z(X,c}).

If ¥ is a filter then .‘F*is the dual ideal. If G is a cen-
tered system of sets then (G ) denotes a filter generated by this
system, F refers to the Fréchet filter.

Definition 1.1, A set of filters {%,, .. i, e} is stratified iff

(1) the set (%,
there exists a set {A,,.SN;mew} satisfying A, ..€%. ,. and
Aoy N Ay =0 for mvs L.

(2) the filter Y’W‘m is in the closure of the set
(Frise i €€} for each m, mew, i.e, for each A €% _ the set

m i”Ew} is discrete for each ~veco, i,e.

Mo

%01 A€¥%,,, .} is infinite.

Definition 1.2. Let (%, , jme€w)be a stratified set of fil-
ters and C be its subset, We define

c() =c¢

Cwr=U C(H) , if £ is limit,
NG

C+N=Crvi?,,, ; 3B €¥7,,, such that
{¢M44‘l 1 B e gm‘_“_‘} < C("))’

and C =4(<Jw,, C(«L) .

Definition 1.3. Let {Zv'm,'w,'muew} be a stratified set of fil-
ters. We shall say that this set satisfies the property (P) for
the partition {D.; v€w} of co iff

(1) 2. or co-D; belongs into ¥%,,, for each mw, w € cO

(2) if C=(%, ... (34}:0.:)(D4 €%, Wand %, ¢ C  then
there exist sets U , «<2 °, U €%, , such that for each & eco
and each «,< L <...<&ey U, N u‘zn.. -NU, ND; is finite,

The property (P) is derived from the Kunen's definition of
OK-point [4].
Definition 1.4. A set of ultrafilters {g, ., i””€w} is called
well stratified iff

(1) 1t is stratified

(2) it has the property (P) for each partition of w
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Definition 1.5. A set of ultrafilters {7""’”"" { v eco) is called
well stratified set with uniform predecessor p iff

(1) {c],m,m i wi v €w) is a well stratified set

(2) QX gyt Gy )P fOT OVEry myommwecr; X, = (‘im.mi’""ew}'
Definition 1,6. due to K.Kunen [4]. Let ¥ be a filter on N ,
F2F) Aq SN for each 1 €].

a) Let 1< w<cw., An indexed family {An; 1€J} is precisely
m=linked with respect to (w.r.t.) ¥ 4iff for all
~elI1™ N A, ¢ 7%, but for all +~ e [J1™", N A

e L e

is finite,.

b) An indexed family (Asmi 1€J  mwec} is a linked sys-
tem w,r,t, § iff for each mw cco, {A"Lﬂvi 1€J} is precisely

mv-linked w.r.t, ¥ and for each ~ and 7 , Ao",..l. < A»LMM .

c) An indexed family (AJ, , 7e¢J, fel, mecw}
is a J by T independent linked family (ILF) w.r.t. ¥ iff for
each §e1, {A%M i 1ed v €w} is a linked system w.r.t. % and
n N A%wf) ¢ ¥* whenever « € [11°%

few e nr;

and for each § euw, 4$W§<QJ and ¢ € [3171,

K.Kunen [4] has proved that there exists a 2 by 2% inde-
pendent linked family w.r.t. Fréchet filter.

§ 2, Auxiliary results. In this part we prove some important

lemmas,

Lemma 2,1, Let p be a minimal ultrafilter in RF and

W =L Qumm i ?imm e c>} be a well stratified set of ultrafilters
with a uniform predecessor p . Let D be a countable discrete set
of ultrafilters. If g, , ¢ DA W then G, ,¢D.

Proof. Let us consider a countable discrete set D = {d. ; veco}
such that D nW =(P (without loss of generality), Let
{D; , ve€e} be a partition of e such that D € d. .

Denote C = {(}mlm EW; (Foew)Dg € a'm,lm)}.
Evidently, if ¢, , ¢ € then gL.¢ D according to the
property (P).

Clearly, C(0) nD =¢ » We proceed by induction, Let
L) "D =@ and suppose C(L+1NND + P , i,e. there exists
Gu,e € C(L+1) such that G4, €DNCL) NXgyy -
Then G, € DNC&INXyy U DN(CIAK,,, ~ CL)N Xg ) U
UC)nXe, N(D -D).
Evidently DnC(LNXg,y U CUWNK,,, N(D-D) =@¢.
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Assume that

T € DN (CULINXgyyg —CL) N Xg,yg) .
Then we have ‘Q(Dn‘jk.{ ) & 2 (X 4o, Qe . However, p is
of the same type as ) (X .., , Gae). This is a contradiction
with the assumption that p is a minimal ultrafilter,
q.e.d.
Lemma 2,2, Let W = { C}ﬂw""'i ~n,mveco) be a stratified set of
ultrafilters and C ¢ W.

If que €C -C(M) then g, CH-C.

Proof, We proceed by induction, It is evident that if
G &, € C(2) - C¢4) then a_h,eeCU) -C .

Suppose that for each < «, qs5,¢ € C(®) - C(1)
implies Gse € CU) - C . Let Gue € C(«L) ',H.CC(M )
i,e, 9ae € C(x-4)n X4,, « By the induction assumption we
obtain Gaene € CW) -C for each G arre € CL-1) = C(4).
Then also 9e,e e C(n -C.

q.e.d.
Lemma 2.3, Lot p g .%m € ON-N, Xo={xh jweed}, 4=12
be discrete sets of ultrafilters such that D.(X,,q,) = p and
QX , eh) = o m . Then Q(X“%) = Z(Y,p) where

Y = {'}’m [ mw € col.
Lemma 2,4, Let W ={ci/;';,‘,,,., J W,mew}l ~ el be well stra-

tified sets of ultrafilters with a uniform predecessor p, P
being a minimal ultrafilter in RF, Then

a) for each 7 <9¢ W, 1‘ # p there exists an immediate
predecessor of N

b) if 4 < gc € Wy < €I then there exists rr>1' such that
v <qy for each 4 € I .

Proof., a) Assume that 141 and J % P o By Lemma 2,1 there exists
a countable discrete set Y c W, such that g = b3 (Y'i')‘ According
to the property (P) the ultrafilter g belongs to Y . since
j* Py 9 does not belong into Y(1) .

By Lemma 2,2 we have q € Y(1) - Y =-Y(1), this means that
g € YU A(Y -Y) - Y1) . Hence Q(Ym.c;uj
and .Q_(YH),cL) ¢ N.

Using Lemma 2,3 there is a countable discrete set
3={fm j {m * P1 e} such that 3’ = 2(J, Qv 1, q)).
J is the set of minimal ultrafilters therefore 2 (Y (1), CL)
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is an immediate predecessor of # .
b) Let / be a predecessor of 9 4 € 1, Then there exists

Yo & W such that g, = S(Y4',J').
If gu, = v €Ye,<el, {A% | ~eco) is a partition of

such that A, € 4%, we define Y/= U (g u,iei AnE€game & Gue=4il.
Clearly, q.€ Y; n(Yf -Y¥), i.e. J=2Yg0¢ _Q.(Y._*,qr/;)»
Using Lemma 2.3 we see that

Qg ® 2(3ig)y T={fmi jm2PY.

Therefore, 5 = 2 ( J,4) is a common predecessor of © and
d G+

A is greater than a' .
q.e.d.

§ 3. Proof of THEOREM. The assertion of THEOREM follows immedia-
tely from the following

Theorem 3.1. For any minimal ultrafilter p there exists a well
stratified set of ultrafilters with uniform predecessor p -

We prove this theorem directly by a construction of a well
stratified set. Because, the transfinite induction is quite simi-
lar to that in the construction of Simon point [2], we give a
sketch of the proof, only. More precisely, we describe the first
step of the induction. The rest is the same as in the above men-
tioned construction.

We need the following simple lemma.

Lemma 3.2. Let p be an ultrafilter and {A, ;mwew} be a par-
tition of cw . Let x,, be any ultrafilter extending the filter
Z = (FU (ALY, € w and let be any ultrafilter ex-
tending the filter § = (FuU (A i A epl).

If q € X , where X = {x, |~ ew} , then .Q(X,C;)= P
i.e. Z(X,p) = q' .

The construction. The main difference between this construction
and the construction of a Simon point ([2] - Prop. 2.1), is to
guarantee that 2 (X,,,, 4 m,mm )% p- This can be obtained by
Lemma 3.2 and the first step of the induction.

Let {A%b"-&ew, "l,gez“’} be ILF w.r.t. F and
{c¢ ;4 €w) pe a partition of » into infinite sets. For each [
the system {Af,l,, i 1¢2%) is almost disjoint.

4

Set Byam = Amm, — Y A1'4

§<m

Suppose B

Wy v

Set B isn = Ba,e N(ATH, “ ML AGT) AEE ameCy

is defined for each .m < co.
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For each mweco the system {.B,,,,,,m, "mvéw} is pairwise disjoint,
Let p; be an ultrafilter of the same type as p and C; € [,
Let 7.0 be a filter generated by

v
Fu{Bm‘M}u{‘UeABli{-, A€ P} for each v, . € co
and I, = 2% - o.

The set { A%, ; §e€I,, 1¢2% &) is ILF w.r.t. Fo, .
for all #v, s € cO.

q.e.d.

One can easily check that by the Kunen’s method used in the
proof of Theorem O.1 in [4] we obtain 2*™° distinct stratified
sets with the uniform predecessor p .

{W,:-, L € Z”w} are "distinct" well stratified sets
whenever for each W, , W, , < #3 there exists a set A such that
A e Ci:v,,..‘, for each ~,»mweco and o -A € C;';’,,,‘m for each
M, € QO

By [2]all ultrafilters from the set W, are Simon points
and by Lemma 2.4 a) no predecessor of 7,,':’,‘,,,,, can be a Simon point.
Therefore, there exists a set @ of 2%"° incomparable Simon
points with the common predecessor p and without the greatest
common predecessor (by Lemma 2.4 b)). By the same argument no sub-
set of Q@ has an infimum,
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