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APPLICATIONS OF COMBINATORICS TO STATICS — A SURVEY 

András RECSKI 

Some more or less disconnected results on the applications 

of graphs and matroids to statics are summarized. The survey 

includes Maxwell's reciprocal figures for the Cremona diagrams, 

Maxwell's characterization of rigid planar frameworks in terms 

of the projection of polyhedra, the algorithmic characteriza

tion of generic rigidity in the plane by Laman, Lovasz and Ye-

mini, and the diagonal bracing of one-story buildings by Bolker 

and Crapo. 

Although matroid theory is perhaps the most useful and 

promising tool in applications to qualitative problems in sta

tics, here we use the terminology of graph theory only. (Of 

course, some of the proofs and/or algorithms, which are not 

presented here, depends heavily on matroids, but the survey can 

be read also by people with background in graph theory only.) 

I Cremona-Maxwell diagrams 

Consider the somewhat artificial "bridge" 

shown on Fig. 1. If it is loaded by the weight 

W at the point (T) , two forces of -W/2 each 

must arise at points (§) , (?) , due to the sym

metry. In order to have equilibrum at point (3) flq.4 

the vertical force -W/2 must be balanced by the 

forces F13 and F23 as shown on Fig. 2. Fig. 3 

is almost the same with reference to point (?) . Hence we see already 

that the rods 2 3 and 2 4 are under compression while the rods 13 and 

14 are under tension. Accordingly, a tension F<\ 2 arises in the rod 

12, as can be constructed on Fig. 4, for the equilibrum at point (2) 

We have thus determined all the stresses in the rods and our calcu

lation can be checked as on Fig. 5, by checking if the forces at

tacking point (l) are in equilibrum. 
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Of course, if one prefers drawing "polygons of forces" instead 

of "stars of forces", the same equilibria would be obtained by 

6-7-8-9 instead 

of Figs. 2-3-4-5 

respectively. 

Observe, final

ly, that all 

the forces F 1 2, 

...,F34 are 

drawn two times 

(once in each 

direction). 

Hence, one can save "some work" by drawing all these "force-polygons" 

ŕ^to. /O into a single, more complex picture, see Fig. 10. Here 

everything arises only once (and the directions of the 

forces, arising in the rods, disappear). This single 

drawing, containing all the information about the 

stresses, is called the Cremona-diagram (of the frame

work, with respect to this particular loading). Prior 

to the more recent analysis by computers, stresses in 

frameworks were usually calculated by this graphical method. 

Considering the framework as a graph G and its Cremona-diagram 

as another graph H one im-

. w— , mediately sees that stars 

Ji ^T\ ^ V <r> of G correspond to circuits 

of H. Hence it is not too 

surprising that a sort of 

"duality of planar graphs" 

can be introduced here. 

The usual method of con

structing the dual of the 

drawing of a planar graph 

should be modified, however. Instead of having an "outer region" (to 

become a single vertex in the dual graph) here we need as many outer 

regions as the number of attacking forces. Fig. 11 explains the con

struction method, using what is usually called "Bow's notation". Ob

serve, furthermore, the other difference: While in the "usual" con

structions the corresponding pairs of edges are drawn perpendicular 

to each other, here they are parallel. 

From the point of view of the history of combinatorics one 
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should realize that all these considerations are some 120 years old* 

they were several decades prior both to the mathematical development 

of dual graphs and to their applications in electric engineering. 

We close 

this section by 

mentioning two 

further fea

tures of the 

Cremona-

-diagrams. 

First, it might 

happen that 

certain rods in 

a frameworks do 

not have any 

stress in case 

of a particular 

loading. Then 

two points co

incide in the 

corresponding 

diagram. (E.g. 

rod 3 has no 

stress in the 

left-most 

example on 

Fig. 12.) 

This some

what more com

plicated 

example of Fig. 

12 (where an 

asymmetric 

framework is 

loaded in 

three different ways, producing three different Cremona-diagrams) 

illustrates one more interesting phenomenon. The angles, formed by 

the lines of the Cremona-diagram inform us whether particular rods 

are under compression or under tension. For example, rod 7 is under 

tension and rod 9 is under compression in case of the first and se-

x^Г"" ^ Ѓ -x^Г"" 

*Ъ ъ^^^ 

o ł У 
>. чД 

'vV 
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cond loadings while just vice versa in case of the third loading. 

This difference is reflected by the Cremona-diagrams where the cor

responding edges form a V shape or a A shape respectively. 

II Rigidity of planar frameworks and projections of polyhedra 

The last remark in the previous section was already of qualita

tive character. In the rest of the paper all the results concentrate 

to a single qualitative question; whether a given framework is rigid 

or not. Even without giving a formal definition it is intuitively 

clear that the planar framework of Fig. 13 is rigid whileithat of 

fo/3 fq./h ?<$•& 
Fig. 14 is not. By definition, the framework of Fig. 15 will also be 

considered nonrigid, since the "infinitesimal motion" in the direc

tion of the arrow is still possible. (This can be made precise by 

recollecting that a small deformation e of a rigid body requires a 

force proportional to e while in case of Fig. 15 the required force 

is proportional to e2 only.) 

Keeping this in mind only the last framework of Fig. 16 is ri

gid ( though the second has 

infinitesimal motions only, 

see Fig. 17 as well). The 

difference between the last 

framework and any of the two 

former ones is that the first 

two arise as projections of 3-dimensional convex polyhedra while 

the third one does not. Similarly, only the last framework of Fig. 

18 is rigid (the first two are projections again), also emphasizing 

that notions of projective geometry are very suitable for rigidity 

considerations. 
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fiў./г 

These are examples of a general rule of Maxwell concerning such 

minimal (see below) planar frameworks which - as graphs - are iso

morphic to the skeleton of convex polyhedra. Such a framework is ri

gid if and only if it does not arise as the projection of a 3-dimen-

sional polyhedron. Minimality here means that the number j of joints 

and the number r of rods 

of the framework are re

lated by r=2j-3. (All the 

planar frameworks with 

r<2j-3 are trivially non-

rigid *f rigid frameworks 

with r>2j-3 always have 

"unnecessary" rods as 

well. See also Section III 

below. 

As an application of 

Maxwell's rule determine whether 

the planar frameworks of Fig. 19 

are rigid. Of course, if they 

arise as projections of a poly

hedron P then P should be a 

truncated pyramide, see Fig. 20. 

But A, B, C and D are coplanar 

if and only if A, E and F are 

collinear. Hence one can readily 

see that only the second of the 

two frameworks is rigid. 

Ill Generic rigidity in the plane 

In this section (apart from the last paragraph) all the frame

works are in the plane. Observe, however, that their graphs may be 

nonplanar. 
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* -

Figs. 16, 18 and 19 presented 2 or 3 "similar" frameworks each 

(similarity means isomorphism in the sense of graph theory); some of 

them were rigid, some others not, depending on metric properties. 

Once again, it is intuitively clear (and can easily be made precise, 

see e.g. [Asimow-Roth, Crapo, Recski, Whiteley]) that if a pair Fn, 

F2 of frameworks have isomorphic graphs and only F.j is rigid then 

there must exist an algebraic relation among the length of the rods 

which is satisfied by F2 but not by F<| . On the other hand, frame

works with graphs like on Fig. 21 are nonrigid, irrespective of the 

length of the individual rods. (In case of the first and the third 

graphs this is obvious 

since the relation 

r£2j-3 of the previous 

section is violated.) 

Such graphs are called 

generic nonrigid while the graphs on Figs. 13, 15-19 are generic ri

gid, they can correspond to rigid frameworks if the lengths of the 

rods are suitably chosen. An alternative definition could be that a 

graph is generic rigid if, considering it as such a framework where 

the lengths of its edges are algebraically independent over the 

field of the reals, is rigid. 

Which graphs are generic rigid in the plane? The relation 

ri>2j-3 is obviously necessary but not sufficient (see the second 

graph on Fig. 21). Restricting ourselves to graphs with r=2j-3, si

tuations like this can be excluded by requiring r'<2j'-3 for every 

subgraph (with j' points and r' edges) of the graph as well. If this 

stronger condition is met, this implies already generic rigidity 

[Laman]. 

Since Laman's condition requires to check every subgraph, a di

rect algorithm to determine generic rigidity would be of exponential 

complexity as a function of the size 0(j+r) of the input. 

Laman's condition was observed [Lovasz and Yemini] to be equi

valent to the following statement: A graph G with j vertices and 

r=2j-3 edges is generic rigid in the plane if and only if, doubling 

any edge e of G, the resulting graph Ge (with 2j-2 edges) can be de

composed into the union of two trees. This is almost identical to a 

problem of [Nash-Williams]. Hence a polynomial algorithm (the mat-

roid partition algorithm of [Edmonds]) can be applied. 

Another result of Lovasz and Yemini states that every 6-connect-
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ed graph is generic rigid in the plane. 

We close this section with two re

marks on the 3-dimensional case. First, 

if a framework with j joints and r rods 

is minimally rigid then r=3j-6. The 

further condition r'<3j'-6 for every 

subgraph with j' points and r' edges is 

also necessary but still not sufficient, 

see the counter-example [Asimow-Roth] on 

Fig. 22. A good characterization or possibly a polynomial algorithm 

for 3-dimensional generic rigidity seems to be the most interesting 

open problem in this field. Finally, Lovasz conjectures that 10-con-

nectedness implies 3-dimensional generic rigidity. 

Ц.2Z 

IV Diagonal bracing of one-story buildings 
fІQ. ZZ 

The observations in this sec

tion are due to [Bolker and Crapo] 

but we present them without using 

matroid theory. 

While - at least in the planar 

case - the genericity assumption 

helped to solve the problem of ri

gidity, one should also consider 

frameworks with rods of algebrai

cally related lengths. (The examp

les in Section II were also of this 

character.) The application of pre-fabricated elements, panels etc. 

in today's architecture even increases the need of such studies 

where certain distances are not algebraically independent, rather 

they are, say, equal. For example, both towers of Fig. 23 would con

tain a large number of identical building-blocks and only a careful 

analysis [Tarnai] shows that the second solution would be non-rigid. 

Here we survey the rigidity results of some very simple struc

tures, the so called one-story buildings. The reader will see, for 

example, that among the two "buildings" of Fig, 24 only one is rigid. 

Consider the much simpler case of the square grids at first. 

Fig. 25 shows that such a planar framework can have a lot of defor-
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FíO.lk 

means that the actual deformation of row a and 

ГП^L 
Thus, associating a bipartite graph 

(X,Y,E) with point set XUY and edge 

set E to the grid so that points of 

X and Y correspond to columns and 

rows, respectively, and edges to the 

diagonal braces (see Fig. 26), one 

can conclude that the grid is rigid 

'fiç.2S 

fiÿ.2& 

mations. If we 

applydiagonal bra

ces on the squares, 

the deformations 

can be prevented. 

If certain squares 

have such diagonal 

braces, some others 

not, how can one 

decide whether the 

complete framework 

is rigid? 

As it is in

tuitively shown on 

Fig. 25, deforma

tions of the square 

grid can be obtain

ed by combining 

elementary deforma

tions of whole 

"rows" or "columns". 

If these rows and 

columns are denoted 

by letters and by 

numbers respective

ly (Fig. 26) then 

a diagonal brace, 

say at position al, 

that of column 1 must 

be identical in size 

(hence the square at 

their intersection 

would only be rotated 

rather than deformed). 
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if and only if the bipartite graph is connected. 

In the example of Fig, 26 the graph is discon

nected and the diagonal braces really cannot 

prevent a deformation like that of Fig. 27. 

While the connectivity of this associated 

bipartite graph completely characterizes the 

rigidity of the square grid, the solution of the real (3-dimensional) 

one-story building is more compli

cated. Some braces in vertical 

"walls" are obviously necessary 

(even bracing all the horizontal 

squares cannot prevent transla

tions or rotations of the whole 

upper horizontal plane). Fig. 28 

illustrates the effect of braces 

x,y; they prevent any motion of 

the planes S and S , respectively, 

/ iИ7 f w / 
V ; V 

/ 
/ 

/ 

SЛ 

Ғ<gr.28 

k 

3 
\ 

2 \ 

V 

a 
a. 6 

along themselves. Hence simulta

neously applying x and y the point 

P is completely fixed "to the 

space". If all the four outer vertical walls contain a diagonal brace 

each, as on Fig. 24, then 

the problem reduces to the 

bracing such a square grid 

where all of its corners 

are fixed "to the plane". 

(Fixing its corners pre

vents mechanical motions 

but infinitesimal deforma

tions are still possible, 

see Figs. 30, 31 or 33.) 

f I T ^ T 2 3 4 ^9-29 
What is the reason 

that the braces of the first example of Fig. 29 prevent the deforma

tions while those of the second example do not? The associated bi

partite graphs are 2-component forests in both cases, but the number 

of vertices in the bipartition classes (colour-classes) of the indi

vidual components are different in the first case and equal in the 

second. This turns out to be the crucial question. If the numbers 

and the letters (as vertices of the bipartite graph) can be paired 

d 
d ä 
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so that the corresponding points are in the 

same component (like a2, b3, c4, dl in the se

cond example of Fig. 29) then the system of 

equations expressing that the deformation of, 

say column a is identical to that of row 2, 

that of column b to that of row 3 etc, implies 

the equation that the sum of the row-deforma

tions is identical to that of the column-de

formations. Both of these sums are zero (this fcq. 30 

is the mathematical meaning of fixing the corners) but in this case 

only one of jthese two extra constraints is really independent of the 

previous ones. Hence this system has 

a nontrivial solution in the second 

example of Fig. 29, see Fig. 30. Si

milarly, Fig. 31 shows that the first 

building of Fig. 24 is non-rigid. 

hg. 3/ 

These observations can very 

easily be generalized to one-story 

buildings of arbitrary rectangular 

(not necessarily square) shape. If 

four diagonal braces are applied on 

the "outer" vertical walls then the 

necessary and sufficient condition for the rigidity of a system of 

horizontal 

braces is that 

the associated 

bipartite graph 

contains such 

a 2-component 

forest where 

the ratios of 

the cardinali

ties of the 

colour-classes 

in the compo

nents are different from the ratio in the whole graph. E.g. this 

ratio is 2:3 in the whole graph in both examples of Fig. 32. In the 

first example the ratios are 2:3 for the components as well, while 

they are 1:1 and 1:2 in the two components of the second example. 

Accordingly, the first system has an infinitesimal deform.(Fig.33). 

fiq.ll 
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