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A GENERALIZATION OF AN EKELAND-LEBOURG THEOREM AND THE DIFFERENTI

ABILITY OF DISTANCE FUNCTIONS 

L.ZajiSek 

Ekeland and Lebourg £V] (see also £3j) proved that in a Banach 

space X which admits a Frechet smooth bump function under some 

conditions a function which is defined as pointwise infimum of a 

family of Frechet smooth functions is Frechet differentiate at 

any point of a residual subset of X . This theorem can be applied 

to all continuous concave functions and also to many nonconcave 

functions. 

Our main observation is that any such "infimum function" has 

an "almost superdifferential" at any point and that the proof of 

the Ekeland-Lebourg theorem (and also of a slightly more general 

theor\em) can be based on this property only. Using an idea from 

£7j we improve the Ekeland-Lebourg theorem in the case of X 

with a separable dual space showing that the set of nonejifferenti-

ability is even Gf-porous. Using the Gregorys idea of the separable 

reduction (see £5j fp.14l) we prove that the Ekeland-Lebourg theo

rem holds in an arbitrary Asplund space. Note, however, that it is 

not known wheather there exists an Asplund space which does not 

admit a Frechet smooth bump function. An analogical result on 

the Gateaux differentiability of functions which are defined as 

pointwise infima is formulated. As corollaries some theorems on 

differentiability of distance functions are obtained. 

The Ekeland-Lebourg theorem mentioned above is essentialy 

the following theorem. 

Theorem EL. Let X be a real Banach space which admits a 

Frechet differentiable bump function and let G c X be an open 

set. Let / f ^ »o<6A} be a system of functions on G for which 

the following conditions hold: 

(i) There exists K > 0 such that all f^ are K-Lipschitz. 

(ii) Any f^ is Frechet differentiable on G and the functio

ns x -> *£(*) t <<6 A , are equicontinuous on G . 
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(iii) F(x) : = inf f^(x) > - oo for x £ G . 

Then F is Frechet differentiate at any point of a residual sub

set of G . 

Our result which improves and generalizes the preceeding the

orem is the following. 
Theorem 1 • Let X be a Banach space, G c X an open set and 

ECG a subset of G . Let £ f«* j^^^jbe a system of functions 

on G such that the following conditions hold. 

(i) There exists K > 0 such that any f^ is K-Lipschitz„ 

(ii) Any f^ is Frechet differentiable at any point of 

G-E and for any x e G-E the limit 

lim (^(x+hv) - f^x) ) h"1 

h->o 

is uniform with respect to (©( ,v) £ A x {v; ||v|| = 1} . 

(iii) F(x) : = inf f^x) > - oo for x £, G . 

Then (a) If X is separable and E is <{-porous (resp. 

a first category set) then F is Frechet differentiable on G 

at all points except those which belong to a (̂ -porous set (resp. 

a first category set) . 

(b) If X is an Asplund space and E = 0 then F is 

Frechet differentiable at any point of a residual subset of G „ 

Proof. It follows immediately from the following Lemma 1, 

Theorem 2 and Theorem 3. 

Note 1 . (i) The conditin (ii) of Theorem EL clearly impli

es the condition (ii) of Theorem 1 for E = 0 . 

(ii) I do not know wheather the assertion (b) of 

Theorem 1 holds if E is an arbitrary first category set. 

At first we give a brief discussion of the DolSenkos [JX1 con

cept of G'-porous sets and then we define the notion of an almost 

superdifferential which is basic for our work. 

Let X be a metric space. The open ball with the center 

x e. X and the radius r > 0 is denoted by B (x,r) . Let 

M c X , x e. X, R :> 0 be given. Then we denote the supremum of the 

set of all r > 0 for which there exists z€:X such that 

B(z,r) c. B(xtR) - M by 3n(x,R,M) . The number 

lim sup y(x,R,M) R~ is called the porosity of M at x . 
R->0 + 

If the porosity of M at x is positive we say that M is porous 

at x . A set is said to be porous if it is porous at all its poin

ts. A set is termed ^f-porous if it can be written as a union of 

countably many porous sets. It is easy to see that any porous set 



A GENERALIZATION OF AN EKELAND-LEBOURG... 405 

is nowhere dense and therefore any <>-porous set is a first catego
ry set. Clearly any 6*-porous subset of R is of Lebesgue mea
sure zero. Using this fact, one easily notes (cf. the proof of 
Lemma 3.4. from C8-])that, whenever X is a Banach space, p £ X , 
p # 0 and K C R is a nowhere dense set of positive Lebesgue 
measure, then p" (K) gives an example of a first category set 
in X which is not £ -porous . 

Definition 1 . Let X be a Banach space and let F be a re-
junction defined in X . We sa 

differential of F at x £ X if 

.)t 

al function defined in X . We say that g£X is an almost super-

lim sup (F(x+h) - F(x) - g(h)) ||h || ~1 ^ 0 . 
h ->0 v 

Note 2r (i) If g £ X is a superdifferential of a concave 
function F at x , then g is an almost superdifferential of F 
at x . 

(ii) If g is the Frechet derivative of F at x , 
then g is an almost superdifferential of F at x . 

(iii) If we define the notion of an almost subdifferen-
tial by the natural way, then it is easy to see that F is Frechet 
differentiable at x iff it has at x an almost subdifferential 
and an almost superdifferential. 

(iv) g is an almost subdifferential of F at x 
iff it is the £-support of F at x (see £43) for any £ > 0 . 

Lemma 1 . Let X,G,E, {f «* ,o(^A] , F be as in Theorem 1. 
Then F has an almost superdifferential at any x £ G-E. 

Proof. Let x £ G-E be fixed. Denote by "J* the filter 
on X with the filter basis 

{ {^(x) ; f^(x) < F(x) +£} ; £>0J 
Since any function ^ is K-Lipschitz , we have \\ f£(x)||^ K f 

and since / g £ X ; llgff^KJ- is w* -compact , there 
exists g £ X* , ff g II -6 K which is a point of accumulation 
of T in w* - topology. We shall show that g is an almost 
superdifferential of F at x . Let ex) > o be given. By the 
condition (ii) of Theorem 1 we can choose <3">C such that 
for any oi £ A and || v If = 1 
(1) Kf^x+hv) - fD((x))h-

1 - (v, ̂ (x^KuJ/2 for 
any o<|ni<<r . 

Let v £. X , Ifvff « 1 • be fixed. Since g is a point of 
accumulation of "J* in w* -topology , we can for any 'y > 0 
choose <* € A such that 
(2) ^ ( x ) < F(x) + f and |(v , ̂ ( x ) - g)| < tU/2 . 
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Let h ?* 0 , JhJ< <J" be given. By ( l ) we have 

i * (x+hv) ^ f ^ ( x ) + ( f ^ ( x ) , hv) + fhlLO/2 

and using (2) we obtain 

F(x+hv) £ f0 ((x+hv) 6 F(x) + ^ + (hv ,g ) + /h /uJ /2 + /h /u i /2 . 

Since 7 > 0 i s an a r b i t r a r y number, we bavp 

(F (x+hv) - F(x) - (hv ,g)) | h ] " 1 ^ to 

which shows that g is an almost superdifferential of F at x. 

The following theorem was independently proved by D.Preiss 

(an oral communication). 

Theorem 2. Let X be a Banach space with a separable dual spa

ce and let G Q X be an open set. Let f be a Lipschitz functi

on on G . Then the set A of the all points x £ G at which 

f has an almost superdifferential and at which f is not Fre-

chet differentiable is 6* -porous. 

Proof. Let f be K-Lipschitz on G , K > 1 . For any x £ A 

choose an almost superdifferential sx . For any natural m put 
Am " { *6A ; H V o P i 3 * ^ ~( ft x + h> - ̂ (x))) tf h ||"1 > nT1J . 

Clearly A = \J Am . Since X is separable we can choose for 

any m a sequence ( Am k ) such that Am == [J Am k and 

/Jsx - sy|| < 1/10m whenever x,y fc Am , . We can further 

(
m»-K oo 

Am k s t) s t=1 s u c n that 
©o 

A - = J Am v 0 . , diam Am v 0 . -tl s" and 
m,k L-/ m,k,s,t * m,k,s,t ^ 

(f (x+h) - f(x) - ( h,sxj)/jh/|"1 < 1/10m whenever // h // < 1/s 

and x g Am k s ^ . Now it is sufficient to show that each of 

the sets AM , „ + is porous. Let m,k,s,t, x £ Am , „ . and m,k,s,t r ? ? i » -̂ m,k,s,t 
r > 0 be fixed. Since x £ Am , we can choose y £ B(x,r) 

such that ((y-x , sx) - (f(y) - f (x)))/| y-x // "1 > 1/m . 

To prove that Am k s t i s P o r o u s a-t x it is sufficient 
to show that 

B(y, //y-xff/iOKm) n V k . e . t - * • 
Suppose on the contrary that there exists z g Am v o . such 

m, K , s , u 
t h a t I|y-z// < ijy-x|/10Km . By the choice of y we have 

* ( # - Ux) < (y-x, sx) - tfy-xtf/m 
and since f i s K-Lipschitz, 

Jf(y) - f (z ) | < | | y - x // /10m . Consequently we have 

(3) f(z) - f(x) < ( y - x , s x) - 9 / / y - x / / / 10m 

On the other hand, since x ,z £ A , + , we have 

f(x) - f (z) - ( x - z , s z ) < / / x - z / / / 10m which implies 

(4) f ( x ) - f(z) < f/x-z///10m + ( x - y , s x ) + ( x - y , s z - s x ; + ( y - z , s z ) . 
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Since I | z - x ) | < 2 / / y - x / / , | f s z f - < K and / / s z - s x / / < 1/10m , 

we obtain, adding (3) and (4) , 

0 < 2||y-x///10m - 9|/y-x///10m + fly-x///lOm + ffy-x///10m 

and this is a contradiction. 

Theorem 3. Let X be an Asplund space, GcX an open set and 

f: Gr->R a function which has an almost superdifferential at all 

points of G . Then f is Frechet differentiable at all points of 

a residual subset of G . 

Proof. For a natural number n let D be the set of points 

x £ G for which there exists a neigbourhooh U of x such that 

for any yeU, veX, k,h>0, for which JJv || = 1, y-hv£U, y+kv 6 U , 

the inequality J (f (y+kv) - f (y)) k~1 + (f(y-hv) -f (y)) rT1J ̂  1/n 

holds. All sets D are obviously open and it is easy to see (usi

ng the fact that f has at any point an almost superdifferential) 

that f is Frechet differentiable at any point of f} D . Con

sequently it is sufficient to prove that all D are dense. Suppo

se on the contrary that there exists n and an open set J2f # H C. G 

such that H r) Dn = JS . Using the Gregorys method of the separa

ble reduction/£ 53 , p. 141 ) it is easy to construct a separable 

subspace X such that If : -= XHH / $ and H fl D = £ , 

where Dn is defined for 7 : = f/X and G? = G{\X in the 

same way as D is defined for f and G . In fact, we define 

inductively an increasing sequence {^±) °^ seParab--e subspaces 

of X . First choose a separable subspace Ŷ  , Y.. f\ H # ff . 

Now given a subspace Y. define a subspace Y. .. as follows. 

Choose in Y. f\ H a countable dense subset T . For any t£ T 
t t t t choose sequences y. , v. , k. , h. , j = 1,2,... , such that 

y5 • h ) v 5 € B ^.va) • A+ k5 v 5 e B (t,1/d) • H H = 1 and 

I (f (y* + k* ,)) - f (yt))/ kj + (f(yt - hj v p - f (yt))/ h}J > 
> 1/n . 

Then let Y, 1 denote the closed subspace spanned by Y* and 
t t 

all points of the form y. , v. . Now it is sufficient to put 

X = IJ Y. . For a natural number m let A„ denote the set 

of all x 6 X such that for any v e X , \\ v f| -= 1 and 

0<k<1/m ,0<h<1/m , the inequality 

J (f(x+kv) - f(x))/k + (f(x-hv) - f(x))/h| > 1/n does not hold. 

From the continuity of f follows that all Am are closed. 

Let M denote the set of all points x g. H at which f is 

Frechet differentiable. Obviously, f has an almost superdiffere-
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ntial at any point of H f and since X is Asplund, X has a se

parable dual space. Therefore by Theorem 2 M is a residual sub

set of H • Clearly M C L/A and therefore there exists 
an index m such that Am contains a nonempty open subset 

#\»» m 0^ 

V Q H . But this is a contradiction since clearly V C D 
r*+ *>* . n 

and we know that H f) D = Jo . 
Since it is not difficult to prove that for an arbitrary con

tinuous function f any point of f) D is a point of the Fre
chet differentiability, we have proved in fact the following asser
tion. 

Proposition 1 . Let X be a Banach space, Gc. X an open set 
and f a continuous function on G . If for any separable sub-
space X f XHGr f tf f the function 7 : -= f/X is Frechet diff-
erentiable at all points of a residual subset of X O G , then f 
is Freehet differentiate at all points of a residual subset of G . 

Note 5« If we writte in the preceeding proposition "dense" 
instead of "residual" f the new proposition also holds [6 J 

Let X be a Banach space and let J2f/ M C X be an arbi
trary set. Then for the distance function d™ we have 

dM (x) = inf {^(x) ; *<S MJ 
where f^ ( x) =- ft x- o( J/ .If G is an open nonempty subset of 
X-M f then there exists a bounded set A C M such that 

d. (x) s d„(xj ' for x £ G . The functions f^ are 
1-Lipschitz and if X has uniformly Frechet differentiable norm 
(a.e. If the limit lim (l|x+tv/j- //x//)/t is uniform with res-

t«-̂  0 

pect to (xfv) £ S^ x S^ , where S1 = {y £ X ; /|y// « 1} ) f 
then it is easy to see that for the system / f^ ; o(6Aj the 
condition (ii) of Theorem 1 is satisfied. Therefore Theorem 1 
yields the following propositions. 

Corollary 1. Suppose that X is a Banach space with a separa
ble dual and X has uniformly Frechet differentiable norm. Then 
any distance function dM is Frechet differentiable at all points 

of the set X-M except those which belong to a (> -porous 
set. 

Corollary 2. Suppose that X has uniformly Frechet differen
tiable norm. Then any distance function in X is Frechet differen
tiable at any point of a residual subset of X 

Theorem EL has the following "Gateaux" analogy. 
Theorem 4» Let X be a Banach space, G C X an open set and 

E C G a subset of G , Let ^ f^ ;©(£ A J be a system of 
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real functions on G such that the following conditions hold. 

(i) There exists K > 0 such that any fo< is K-Lipschitz, 

(ii) At any x£G-E any function f^ is Gateaux differen

tiate and for any x^G-E and v£X the limit 

lim (f^ ( x+tv) - ^(x)) / t is uniform with respect 
t^° to K6A . 

(iii) F (x) : = inf f^ (x) > - <X> for any x6G . 

Then . (a) The one-sided directional derivative Dy F(x) exists 

for any x e G-E and v^X 9 and for any fixed xeG-E the 

function v-> D F(x) is K-Lipschitz concave function on X . 

(b) If on X exists a Lipschitz bump function which is 

uniformly differentiable at any direction (a.e. supp f # 0 is 

a bounded set and for any v£X the limit 

lim (f(x+tv) - f(x))/ t is uniform with respect to x ^ X ) f 
then F is Gateaux differentiable at all points of G-E except at 

those which belong to a first category set. 

Note 4. The proof of Theorem 4 will be given in a subsequent 

article. The proof of (a) is straitforward and essentially known. 

The Asplunds method(£l3) shows that (a) implies (b) . 

Corollary 3. Suppose that X has uniformly Gateaux differen

tiable norm. Then any distance function in X is Gateaux differen

tiable at any point of a residual subset of X 
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