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INFINITE DIMENSIONAL LIE ALGEBRAS: 

REPRESENTATIONS AND APPLICATIONS 

P. Goddard 

1. Introduction 

In these notes, based on four lectures given at the Srni Winter 

School, certain infinite dimensional Lie algebras, the groups to 

which they correspond, their representations and some of their 

applications in theoretical physics are described. The topics and 

treatment were chosen so as to compliment those covered by David 

Olive in his lectures at Srni (OLIVE). 

The current interests in these algebras in mathematics and 

theoretical physics both date from the latter half of the 1960's. 

In a relatively short period it has become apparent that they 

provide a relationship between apparently disconnected, or tenuously 

related areas, such as: sporadic simple groups in finite group 

theory; the theory of modular forms; "completely integrable" 

dynamical systems; (possibly) gauge field theory; string theories 

of elementary particles; conformally invariant field theories; and 

the theory of critical phenomena in two-dimensional statistical 

systems. Each of these subjects has established connections with 
t 

the next in the list, forming the links in chain joining disparate 

areas of mathematics and physics. The common feature underlying 

these connections seems to be the occurrence of infinite dimensional 

algebras. 

By way of introduction, we give an example of an infinite 

dimensional Lie algebra and one of the ways it occurs in theoretical 

physics. In some ways the simplest of the algebras we shall discuss 

is the Virasoro algebra (VIRASORO), 

[Lra,Ln] = (m-n) L m + n + ^ cm(m2-1) 6 ^ _n , • ( 1 . 1 , 

m, n 6 2Z , where c i s a c e n t r a l e l emen t , 
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[Lm,c] = 0 . (1.2) 

In any irreducible representation c is effectively a number and c 

will also be used to denote this number. We shall be concerned with 

unitary representations, that is representations in which the 

hermiticity condition 

L n = L - n <1-3> 

holds. In particular we shall discuss highest weight representations, 

that is ones in which a basis for the representation space can be 

generated from a highest weight state |h> , i.e. one satisfying 

LR|h> = 0 , n > 0 , (1.4a) 

and 

LQ|h> = h|h> , (1.4b) 

by application of operators L , n > 0 . Such representations are 

characterized by two numbers (h,c) . 

Two dimensional conformal quantum field theories have two such 

commuting Virasoro algebras [L } and {£ } (corresponding to 

analytic transformations on z = x + iy and z = x - iy , 

respectively). The representations of the two Virasoro algebras 

possess a common vaiue of c , characteristic of the field theory 

concerned and describing the anomalous breaking of conformal 

invariance. Basic fields, and the states they create from the 

vacuum, have values of h and h (the eigenvalues of L and L , 

respectively) associated with them: h + h gives the scaling 

dimension of the field and h-h its spin (POLYAKOV; BELAVIN, 

POLYAKOV and ZAMOLODCHIKOV). Critical exponents in associated 

statistical mechanical systems are simple linear combinations of 

these scaling dimensions. Certain important statistical models have 

their critical behaviour described by unitary quantum field theories, 

and so unitary representations of the Virasoro algebras (L } and 

{Ln}- • 

Not all values of the pair (h,c) correspond to unitary 

representations. There is a continuum (c >̂  1) of values of c and 

a discrete series of values in the interval 0 < c < 1. For each 

value of c in the discrete series, there are only finitely many 
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possibilities for h, and hence for critical exponents. This 

provides a sort of group theoretic explanation of the rational 

critical exponents found in these models (FRIEDAN, QUI and SHENKER). 

The second section of these notes defines the algebras, 

starting from the groups to which they correspond and discusses 

their central extensions. The third section gives some elements 

of their representation theory. The fourth section 

describes some instances of their occurrence in field theory. 

2. Algebras, Groups and Central Extensions 

We introduce the infinite dimensional Lie algebras we are to 

consider by describing first the corresponding groups. 

(a) Affine Kac-Moody algebras 

Consider an ordinary finite-dimensional Lie group G . We 

construct a new and much larger group -&• by taking suitably smooth 
1 1 

maps from the circle S -> G . We shall represent S as the unit 

circle in the complex plane, 

S1 = (z 6 C : |z| = 1} , (2.1) 

w r i t i n g z = e 1 ^, 0 < <J> < 2TT , and denote a t y p i c a l map as 

z -*• g ( z ) 6 G . ( 2 . 2 ) 

Given two such maps g*,g2 : S •+ G we can define an obvious group 

structure on y^ by pointwise multiplication, i.e. the product of 

tf.. and g2 is 9-j-92 where 

g . . . g 2 ( z ) =g.j(z)g2(z) . (2.3) 

Clearly this operation makes fy into an infinite dimensional Lie 

group. It is called the loop group of G. 

Let us now construct the Lie algebra of f̂ . Suppose 

Ta, 1 < a < d , is a basis for the Lie algebra of G , with 

[Ta,Tb] = ifab
cT

C , (2.4) 

so that 

g = exp[-Ta8a] (2.5) 
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is a typical element of G ; 6 , 1 < a < d are parameters for the 
1 a - -

Lie group. Maps S •> G can be described by d functions 8 (z) 
1

 a 

defoned on S . Thus 

A, = (g(z).= exp[-T
a
0

a
(z)]} . (2.6) 

For elements near the identity, 

g -- 1 - iT
a
8

a
 , (2.7) 

g(z) = 1 - iT
a
0 "(z> . (2.8) 

a. 

Making a Fourier (or Laurent) expansion of 8 (z) , 

a 
00 

0 (z) = I 0"
n
z

n
 (2.9) 

3
 h = -oo

 a 

we see that, if we introduce generators 

T
a
 = T

a
z

n
 (2.10) 

-Ъ, • -n 
for a , the 0 , 1 < a < d,n 6 .2, provide an infinite set of 

parameters for 'yr, with 

g(z) B 1 - i I T
a
 0

n
 (2.11) 

n,a 

From eq-A2.11) we see that -^ has the Lie algebra 

»£»*& - ifabcTm+n ' «2-12' 

This is the (untwisted) affine Kac-Moody algebra associated with the 

Lie algebra (2.4) (KAC 1968; MOODY), the algebra of the group of 

maps S -• G . 

Note that the operators Ta , 1 £ a < d , generate a subalgebra 

isomorphic to the Lie algebra of G . It corresponds to the subgroup 

of "0/ defined by constant maps S •> G , which is isomorphic to G , 

of course. 

Suppose G is a compact group and {T } a basis of hermitian 

generators, 

Ta+ = Ta . (2.13) 



INFINITE DIMENSIONAL LIE ALGEBRAS 77 

1 * -1 For z on the unit circle S , z = z , so that 

T
n
+ = T! n • (2.14) 

A representation of (2.12) satisfying this hermiticity condition 

will be calle 

for |z| = 1 

will be called unitary as, for real 0^ , g(z) will then be unitary 

(b) The Virasoro algebra 

Consider smooth one-to-one maps S -+ S under composition: 

Yl oY2(z) = Y 1 ( Y 2 (
Z ) ) • (2.15) 

These form a group which we will denote by V . Notice that, 

although we can regard S as a Lie group U(1), this infinite-

dimensional group ^ is different from the loop group ~fy of maps 

S -• U(1) because the multiplication:law is different in the two 

cases, being composition in the former case and pointwise multi

plication in the latter. In particular vJ j.s non-abelian, but, 

because U(1) is abelian, ^ is also. 

To calculate' the Lie algebra of "IT consider the faithful 
1 

representations defined by its action on functions S -+ V , 

where V is some vector space, the action being defined by 

Dyf (z) = f (Y"
1 (Z)) (2.16) 

for a function f : S •> V . For an element 

Y(z) = ze"
i£(z) , (2.17) 

close to the identity in ̂  , 

Y~1(z) = z + ize(z) (2.18) 

so that 

D
ү
f(z) = f(z) + iє(z)z -^ f(z) . (2.19) 

Making a Fourier (or Laurent) expansion, 
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n=-co 

we are led to introduce generators 

є ( z ) = l є _ n z n , ( 2 . 2 0 ) 

L n = - z R + 1 dT7 ' n G E ' ( 2 ' 2 1 ) 

which s a t i s f y the Lie algebra 

[ ! _ . . - _ ] " < m - n > L

m + n • < 2 ' 2 2 > 

A representation of this algebra will be called unitary if the 

hermiticity condition 

L+ = L_
n
 (2.23) 

holds. 

An important finite-dimensional subgroup of v/ consists of 

Mobius transformations 

z - Y(z) = f
Z
*

b
» (2.24) 

b z+a 

1 1 2 2 

which clearly maps S •+ S and, provided that |a| > |b| , this 

1 1 

map Y(Z) covers S once positively as z goes round S 

positively. We can then rescale a,b so that |a| - |b| = 1 ; then 
a b 

b a 
Є SU(1,1) . (2.25) 

The generators of this SU(1,1) subgroup are easily seen to be 

{L_
1
,L , L A . Actually there is an infinity of SU(1,1) subgroups 

which cari be obtained by doing Mobius transformations on z : 

-> Tl-l = (-^KУ/П
 (2.26) 

Vh z
n
+a / MD z"+a 

1 1 
The generators of this subgroup are {— L . L . — L^} . 3 c

 n -n o n n 

(c) the interrelation between Virasoro and Kac-Moody algebras. 

Virasoro and Kac-Moody algebras can naturally be considered as 

interrelating. To see this, consider a faithful representation of 

the group G in the vector space V . A map Y - S -* S in A/* is 

represented on functions as in eq.(2.16) 
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Yv(z) = V( Y ' 1 ( Z ) ) , (2.27) 

' 1 
and the action of g : S •> G is 

gv(z) = g(z)v(z) . (2.28) 

With this action, V , ̂  form the factors of a semidirect product; 

we define 

(Y,g) = Yg (2.29) 

so that 

Then 

(Y,g)v(z) = g(ү"1
(z))v(ү"

1
(z)) . (2.30) 

(Y
1
 ,g^ (Y

2
,g

2
) = (Y

1 0
g

2
'(g

1
 oY

2
) .g-j) . (2.31) 

Since the generators of V* and *M are represented by operators 

L
n ' " «"

+ 1
 HI • Ta = z nT a, (2.32) 

the semidirect product has the algebra, 

<Tm'Tnl = ifabcTm+n ' <2"33a> 

l V T n ] " - < + n '
 ( 2- 3 3 b ) 

[LB.Ln] = (m-n)Lm+n . (2.33c) 

The infinite dimensional groups ^ and -A* may be thought of 

as the groups of general coordinate transformations and gauge 

transformations, respectively, on the one-dimensional space S . 

(d) central extensions 

If in a classical theory one has a group of transformations G 

with Lie algebra 

[Ta,Tb] = ifab
cT

C , (2.34) 
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the corresponding generators will, under suitable circumstances, 

satisfy the Poisson bracket relations, 

l T a'TVB . = ̂ V ' < 2- 3 5> 
Following Dirac's quantisation proqedure, the corresponding quantum 

commutator is 

[Ta ,Tb] = i t f f a b
c T C + oeti2) . (2 .36) 

2 
The unspecified terms of order 0(-ri ) have to be chosen so that the 

Jacobi identities are satisfied. The simplest possibility is that 
2 

the 0 (-6 ) terms are c-numbers, multiples of the identity. What we 

have then is a central extension of the original Lie algebra (2.34), 

rescaled by a factor '6 . 

A central extension of (2.34) is an algebra with basis 

Ta , 1 <_ a < d, CJ , 1 <_ j < M, of the form 

[Ta,Tb] = ifab TC + kab.Cj
 f (2.37) 

c J 

[TafC
j] = [C1,-3] = 0 . (2.38) 

The additional structure constants k are constrained by Jacobi 

identities: 

[[Ta
fT

b]fT
C] + [[Tb

fT
C]fT

a] +- [[TC
fT

a]fT
b] = 0 (2.39) 

leading to 

_.ab , ec ^ ,-bc , ea ..ca , eb n /0 >m,.\ f k . + f k . + f k . = 0 f (2.40a) C D e j e 3 

together with 
/ 

kab _ _kba ^ (2.40b) 

Eqs.(2.40) constitute a set of linear equations and the dimension 

of the space of solutions gives the number of independent central 

extensions. However some of these are in a sense trivial because 

they can be removed by redefinition of the generators 

Ta - Ta - Ca-Cj (2.41) 
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under which 

kab. - kab. + ifab 5°. (2.42) 

D U c D 

In the quantum mechanical context, such a redefinition is by a term 

of order fi , which is insignificant in the classical limit. Thus 

one really wants to know the space of solutions of eq.(2.40) 

modulo transformations of the form (2.42). 

For semi-simple Lie algebras all solutions to eqs. (2.40) can 

be removed by (2.42) so that all central extensions are essentially 

trivial. In the case of both the affine Kac-Moody algebra associated 

with a simple Lie group and the Virasoro algebra, this quotient 

spacer is one-dimensional: 

[Ta,Tb] = ifab TC + km6 6ab , (2.43) 
m' n c m+n m,-n ' ' 

[L.L 1 = (m-n)Lm+n + -£• m(m
2-1)6m . (2.44) 

m n m+n 12 m,-n 

The central elements k,c may be thought of as numbers in any 

irreducible representation. 

3. Representation Theory 

(a) Kac-Moody algebras. 

We now consider irreducible unitary representations of the 

Kac-Moody algebra (2.43), i.e. representations in a complex space 

with a positive definitive inner product, with respect to which 

Tn + = T-n • <3-1> 

To discuss such representations it is convenient to use a Cartan-

Weyl basis. Such a basis for the original simple Lie algebra 

(2.3.4) takes the form 

[Ha,Hb] = 0 , (3.2a) 

[Ha,Ea] = aaEa , (3.2b) 

[Ea,E6] = e(a,3)Ea+3, if a + 3 is a root , 

= -^ a.H, if a = -3 , 

or 
= 0 otherwise. (3.2c) 
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The H , 1 < a <_ r , form a Cartan subalgebra, r is the rank, and 

the r-dimensional vectors a the roots of the Lie algebra. Written 

in this basis, the algebra (2.43) takes the form 

[Ha,Hb] = km6ab6mf_n , (3.3a) 

K<1 - aX+n ' < 3 ' 3 b > 
[E a ,E^] = e ( a , B ) E a * £ , i f a + 3 i s a r o o t , 

2 
= —-- (a.H + km5 ), if a =-B , 2. m+n m,-n a 

= 0 otherwise . (3.3c) 

We shall consider specifically highest weight representations, 

that is ones that can be built up from vacuum vectors i[» satisfying 

Eaip = H ^ = 0 , n > 0 . (3.4) 

The space of solutions to these equations clearly is a representation 

space of G , invariant under Ea,H . Since different subspaces of 

it invariant under G will generate disjoint invariant subspaces for 

the whole algebra. Thus, for an irreducible representation of a 

Kac-Moody algebra, the vacuum space (3.4) must be irreducible. 

We can take a basis for the vacuum space (3.4) consisting of 

vectors î» which are simultaneous eigenvectors of the Cartan 
a 

subalgebra H , 

Ha*x = \ \ , (3.5) 

so that the vectors X are weights for G . The theory of unitary 

representations of simple groups tells us that 

2 ^ € 2Z (3.6) 
a 

because it is the eigenvalue of 21 , where 

IQ = a.HQ/a
2 , I± = E*

a , (3.7) 

form an SU(2) subalgebra. 

We now consider what are the restrictions on the possibilities 
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for the vacuum representation and the values of the central element 

k. To this end we calculate 

IIE:> X II 2 = <4V E I E :>X> 

= <ф x , [ E r E ^ ] ' ^ > 

Ą (a.X + k ) | | ф x | | 2 ( 3 . 8 ) 

S i n c e | | ^ x l | 2 > 0 and | | E _ ^ X | | 2 > 0 , we f i n d 

2k 2a.X 
2 - 2 

a a 

(3 .9) 

Applying this with -a replacing a as well, we obtain 

|2cX| 2s > 
2 -

a 

(3.10) 

for each root a of G . This shows that k ^ 0 for a highest 

weight representation. But further we can show that the left hand 

side of (3.10) is an integer; consider 

ii , -a.N, • • 2
 w

 -aJ-1, _a
/T
_-avN.

 v 

II (--.-I) ^ x "
 = < ( E

- 1
J
 ^X'

 E
1

( E
- 1

J
 ̂ X 

= N(---^-- + Щ - N + 1) 
a a 

ш:y-\u (3.11) 

•o.N, 
As in the usual arguments of angular momentum theory (E-) iK 

must vanish for some positive integer N , or otherwise for 

sufficiently large N it would have a negative norm. Thus 

2a. X 2k 
2 

a a 

must be an integral and, because of (3.6), 

(3.12) 

Щ Є ZZ . 
a 

(3.13) 

For a simple Lie algebra, there are at most two values of a ; if 

there are both long roots and short roots let \p be a long root. 
2 2 

Then, as ty /a € ZZ , where a is any other root, the constraint 
(3.13) is satisfied if it holds for a = i[» . The non-negative 

2 
integer 2k/ip is called the level of the representation. The 

possible vacuum representations at this level satisfy the inequality 
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(3.10) for all weights X of the representation and roots a of G . 

The representation of the Kac-Moody algebra is fully determined by 

the level and the vacuum representation. For any non-negative 
2 

integer 2k/\p and vacuum representation satisfying ' (3 .1 0) a 

representation of the Kac-Moody algebra exists. 

(If we take a particular basis of simple roots for G , we can 

label the vacuum representation by its highest weight X , with 

respect to this basis. It is then enough to apply the constraint 

k > a.XQ (3.14) 

for all positive roots a ; the representation is determined by k 

and X .) o 

(b) Virasoro algebra 

We shall now consider the unitary representations of the 

algebra 

[L ,L 1 = (m-n)Lm+„ + - .%m(m2-1)6 (3.15) 
m n m+n \Z m,-n 

We shall seek highest weight representations again, this defined 

as irreducible representations generated from a highest weight 

vector \\) satisfying 

Ln^o = ° ' n > ° (3.16a) 

L ip =h\\) . (3.16b) 
o o o 

I t i s easy to see t h a t for such represen ta t ions 

h > 0 , c > 0 , (3.17) 

because 

HL-n*J |2 = < * o ' L n L - n V 

= < V [ L n ' L - n ] V 

= { 2 n h + ^ n(n 2 -1)} | | i ( /J | 2 (3 .18) 

and taking n = 1 we have h > 0 and n large c > 0 . However 
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unitary representations do not exist for all values of c and h 

satisfying (3.17). 

A highest weight unitary irreducible representation will be 

spanned by vectors of the form 

n n 
L
-1

 L
-2 

n 
L
 Г

ф 
-r

 r
o 

(3.19) 

Each of these is an eigenvector of the hermitian operator L with 

eigenvalue 

h
 + 1 jn. = h+N , say (3.20) 

For different values of N, these vectors are orthogonal. For a 

given value of N , the matrix of scalar products between the various 

vectors (3.19) can be calculated as a function of (c,h) using eqs. 

(3.16) and the hermiticity condition L = L (up to a factor of 

2 n -n 

|| ip || , which we can take to be 1). 

For the first three values of N this calculation proceeds as 

follows 

N = 0 <w = 1 • (3.21) 

N = 1 < L _ 1 V L - I V = < V L I L - I V 

= 2h . 

(3.22) 

N = 2 Set *_ = L_
2
^

o
 , ip

1
 = L_

1
 î

o
 , then 

<^
2
'^2

>
 <^

1
'^2

> 

<i|;
2
,̂

1
> <ip

1
,î

1
> 

The determinant of this matrix is 

4h + łc 6h 

6h 8łi + 4h 
(3.23) 

4híic + (c-5)h + 81i }" (3.24) 

if the representation is unitary, each of these matrices must 

be positive semidefinite. Conversely, if the matrices^ of scalar 

products of the vectors (3.19) are positive for each N , they can 

be used to define an inner product on the space with basis (3.19) 

with respect to which L = L . (If any of the matrices are 
n -n •* 
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positive semidefinite, but actually positive definite, i.e. has some 

zero eigenvalues, the corresponding space can be consistently 

converted into a positive definite space by taking the quotient by 

the subspace of null states.) 

This problem was analysed by FRIEDAN, QIU and SHENKER. The 

matrices corresponding to N £ 2 will be positive semidefinite if 

h > 0 and 

*c + (c-5)h + 8łi > 0 (3.25) 

Further we know we shall need c >_ 0 from (3.18). These conditions 

leave us with the region of the first quadrant of the (c,h) plane 

on and outside the curve given by equality in (3.25); this is 

illustrated in Fig. 1. 

vfc \ 

Fig. The interior of the shadedregion is forbidden. 

To progress beyond the first few levels one needs a general • 

formula and FRIEDAN, QIU and SHENKER exploited the formula given 

by KAC (1978) for the determinant of the matrix M,Ac,h) of the 

scalar products of the vectors for c given value of N . The 

number TT(N) of such vectors grows quickly with N; it is given 

by the partition function 

H (1-q 1 1)" 1 = I ïï(N) q N 

n=1 N=0 

The formula of Kac for this *ÏÏ(N) X TT(N) déterminant is 

(3.26) 
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N 
đet lL(c,Һ) = П П, (c,h)

1 T ( N
"

K )
 (3.27) 

w
 k=1

 к 

Here 

n, (c,h) = n [h - h (c)] , (3.28) 
K
 pq=k

 P
'

q 

where p and q range over the positive integers and 

h ( c ) = - ( M + P p - M q . 2 - 1 ( 3 2 9 ) 

p,q 4m(m+1) U . ^ ) 

with m a parameter defined in terms of c by 

c
 =

 1
 "

 ffl
/li - (3.30) 

m(m+l) 

The formula (3.27) was proved by FEIGIN and FUCHS and more recently 

a proof using techniques from relativistic string theory has been 

given by THORN. 

The determinants of eq.(3.27) are easily seen to be positive if 

c > 1 and h _̂  0 . For large h the matrices M (c,h) are 

manifestly positive definite. Hence it follows tfciat they are 

positive semi-definite throughout c _̂  1 , h _̂  0 . The only 

remaining region is 0 <_ c < 1 , and one might be tempted to try to 

reject all of this, except for c = 0 , h = 0 which corresponds to 

the trivial representation. But there are simple and well-known 

representations for c = i , with h = 0 ,---,-•. (These occur 

in the RAMOND and NEVEU-SCHWARZ dual models.) Actually the careful 

analysis of FRIEDAN, QIU and SHENKER showed that this is the first 

non-trivial term in an infinite sequence of values of c for which 

unitary representations might exist: 

c = 1 - ron ' m • 2 ' 3 ( 3 - 3 1 ) 

For a given c in this sequence, the possible values of h are 

given by eq.(3.29) with 1 < p £ m-1; q <_ q <_ p. The first few 

possibilities thus noted are: 

c = 0 h = 0 

c = i h = 0, -±-, 1 
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___7_ ь - n _ L J _ _ L l l 
C
 " 10

 П
 "

 U
' 80' 10' 16' 5' 2 

- - ! ь - n J - J _ l l C
 " 5

 П
 "

 U
' 40' 15' 8' 5' 

11 
40' 

1
 7 

3' 5< 

J_3 
8 ' 

(3.32) 

All of these representations have now been found explicitly (GODDARD 

and OLIVE; GODDARD, KENT and OLIVE) and the methods used will be 

described in section 4 of this article and in the contribution of 

Adrian Kent to this meeting (KENT). 

4. Current Algebras and a-Models 

We shall now look at some instances where these infinite 

dimensional Lie algebras occur in theories studied in physics. We 

only have time to look at some simple cases. Important and topic 

areas such as the r61e they play in theories of relativistic strings 

will have to be omitted, although this area in particular has held 

a pivotal position in the interchange of ideas and results between 

the mathematical and physical studies of infinite dimensional Lie 

algebras. 

(a) current algebra representation of Kac-Moody algebras 

To provide our first instance of a Kac-Moody algebra occurring 

in a physical theory, we consider a rather trivial example: a free 

real fermion field moving in one space and one time dimension. To 

describe such a field, we use a real representation of the Y~matrices 

in two dimensions: 

(4.1) 
0 1 

• Y 1 = 
0 - 1 ' . 5 _ o 1 

, Y = Y ү = 
'1 0 

1 0J [1 oj [o -1 

and field ij; with two real spinor components which, following 

WITTEN, we write as 

Ф 
^_ 

*
 + 

(4.2) 

for reasons.that will become apparent. The system is described by 

the action 

1 J d
2
x фiү^Ә

ц
ф (4.3) 

,T o where \p = \\f y . This leads to the Dirac equation of motion 



INFINITE DIMENSIONAL LIE ALGEBRAS 89 

^ 3 * = 0 (4.4) 

where, as usual, 3 = 9/3x^, x° = t, x' = x. Eq.(4.4), when 

written out in components, is equivalent to 

(3
o
 + 3

1
)i|;_ = 0

0
-3-,)*

+
 = 0 . (4.5) 

These Weyl equations say that ip and \j;_ are only functions of 

t+x and t-x respectively: 

* +
 E
 *

+
(t+x) , I|J_ = ijj(t-x) (4.6) 

Each of ty and I|J_ is a Weyl (i.e. an eigenvector of y ) and 

Majorana (i.e. real) spinor. (Such spinors only exist in space-time 

dimensions 8n+2 , where n is an integer; see GLIOZZI, OLIVE and 

SCHERK.) 

For the moment let us just consider one of the two Weyl 

components of ij;, ip
+
(t+x) , say. Independently, for each of the 

Weyl components, we have canonical anticommutation relations 

(iMx),iMy)} = Ti6(x-y) (4.7) 

for ip = ip
+
 , say, with {ij; (x) ,\|J_ (y) } = 0 . (Here {A,B} = AB+BA.) 

Actually we wish to consider an elaboration of this theory in which 

we have an internal symmetry index i taking values from 1 to N ; 

that is N non-interacting copies of the free real fermion theory 

we have been discussing. Then the anticommutation relations (3.39) 

are replaced by 

{ф
i
(x),ф

j
(y)} =fïŐ(x-y)őij . (4.8) 

Now to use these to construct a representation of the affine 

Kac-Moody algebra associated with a group G, take a real (not 

necessarily irreducible) representation of G under which T a -*• iMa , 

where M a . is an NxN real antisymmetric matrix satisfying 

[Ma,Mb] = f a b

cM
c . (4.9) 

If G has such a representation, it is a subgroup of the 0(N) 

symmetry group of the theory. Associated with this symmetry are 

conserved currents 
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J3 = — ^ M a Y j . (4.10) 
^ 2/2 U 

It is convenient to define light-cone coordinates for vectors 
/ o 1 x , v = (v ,v ) by 

v 1 = (v° ± v 1 ) / / 2 , v ± = (vQ ± V l ) / / 2 , (4 .11) 

-so t h a t v" = v_ and , for two v e c t o r s v and w , 

v w = v w + v w = v w_ + v_w . (4 . 12 ) 

Then 

J± = 1 *± M* *± ( 4 ' 1 3 ) 

so that Ja is only a function of x (t+x)//2 and Ja is only 

a function of x = (t-x)//2". Again we can consider independently 

J (x ) and J_(x~) and they will commute with one another because 

ip and \\>_ anticommute. Let us denote either by J (x) . Then 

the canonical anticommutation relations (4.8) imply a two-dimensional 

current algebra (see e.g. ADLER and DASHEN), 

[Ja(x),Jb(yH =infab
cJ

c(y)6(x-y) + - ^ 6ab6 ' (x-y)tl2 (4.14) 

where the second term on the right hand side is a SCHWINGER term and 

the constant K is (up to a representation independent normalisation) 

called the Dynkin index of the representation; it is defined by 

tr(MaMb) = ~<A6
ab . (4.15) 

Here X is meant to label the representation considered. Taking 

the trace over the indices a,b we see that 

c,d> = K, dimG (4.16) • 

where c, is the value of the quadratic Casimir operator in the 

representation X , 

(Ma)2 = -cxl , (4.17) 
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and N = d, is the dimension of the representation. 

Eg.(4.14) resembles a sort of continuous version of a Kac-Moody 

algebra (cf. eg.(2.43)). To make it discrete we impose periodic 

boundary conditions on the interval 0 _< x £ L , so that 

Ja(x,t) = Ja(x+L,t) (4.18) 

This implies that both J+(x) have period L ; thus, for either, we 

have a Fourier expansion 

Ja(x) = 1 I Ja
n(x) z

n (4.19) 

where the sum is over n 6 IS , 

L n -n' 

,. z = e2TTix/L ( 4 > 2 0 ) 

and 

Then (4.14) implies 

4 - C 
L 
Ja(x) zndx . (4.21) 

•\ 

[J* Jb] =ihf a b J° + -£• mh26ab6 n (4.22) 
m n c m+n 2. m,-n 

If we remove '6 by seeking (after noting that the central 
2 

extension term is 0(-n* ) as in eg. (2.36)) setting 

Ja = -K Ta , (4.23) 

we obtain 

[T* 1*] = ifab
c T m + n + ^ m 6 a b 6m „ (4.24) 

m n c m+n 2 m,-n 

which is exactly eg. (2.43) with k =2"K-. . Note that it follows 

from section 3 that <^/^ must be an integer for any real 

representation. 

It is natural to introduce 

Ta(z) = I T a
n z

n , (4.25) 
n 

a dimensionless current, such that 
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Ja(x) = \ Ta(z) . (4.26) 

Similarly we can make the fermion field dimensionless by setting 

<Mx) = /i_~H(z) • (4.27) 

Let us discuss now the implications of periodicity on the 

fermion field. There are two possibilities consistent with the 

periodicity of J , i.e. eg.(4.18), 

either ij; (x+L) = ip(x) or \\) (x+L) = -ip(x) . (4.28) 

So we have an expansion 

H±(z) = I b^r Zr (4.29) 

where in the case where ty is periodic, the RAMOND (R) case, r € ZZ 

and the case where ^ is antiperiodic, the NEVEU-SCHWARZ (NS) case, 

r 6 7L + 1 . Tr 

eguivalent to 

r 6 7L + -j . The canonical anticommutation relations (4.8) are then 

<br'bl> = 6iJ6r,-s (4-30) 

where either r,s 6 7L (R) or r,s 6 ffi + -=- (NS) . These fermionic 

annihilation and creation operators define a Fock space by the 

application of the b , r > 0 , to a vacuum state |0> satisfying 

br|0> = 0 , r > 0 , " . (4.31) 

In the NS case we take the vacuum to be a single non-degenerate 

state; in the R case it must provide a representation for the 

Clifford algebra 

{b^b^} = 6ij (4.32) 

N/2 and so the vacuum states form a 2 dimensional irreducible 

representation space for this algebra. In terms of these operators 

Ta = i / b1 M.. bj (4.33) 
n 2 £ r i_) n-r 
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where the sum is either over r 6 IS (R case) or over r 6 7L + -r (NS 

case). 

(From such representations we can obtain all the representations 

of the classical groups satisfying (3.14). Let us consider a 

specific simple classical group G with the squared length of the 

longest root normalised to 2. For each highest weight X. the 

maximum value of a-X (for positive roots ), k say, is the 

lowest level at which the vacuum representation can have highest 

weight X. . If we consider the fundamental weights X..,...,X of 

G , the corresponding lowest levels £..,...,£ all turn out to be 

1 or 2; for SU(n+1) and Sp(n), each %. = 1 , whilst for S0(2n+1) 

and S0(2n), %. = 1 for the vector and spinor fundamental 

representations, whilst I. = 2 for the other representations. 

Given an arbitrary highest weight, X, = £ n.X. , so that 

n. > 0 , one can show that k = Y n.Jl. . To construct a l — o ** 1 1 
representation in which the vacuum has highest weight X. and 

level k , we can take the tensor product of n. copies of 

representations with highest weight X. and level I. , 0 < i £ n , 
where n = k - k and X = 0 [and then take the subspace o o o c 

generated from the irreducible component of the vacuum with highest 

weight X . ]. Thus it remains to construct the representations with 

highest weights X. and levels I. . This can be done as follows: 

we use eq.(4.33) with M being the n-dimensional representation of 

SO(n). The NS case gives the scalar an n vector level 1 

representation whilst the R case gives the spinor level 1 

representation(s). The level 1 representations of SU(n) and Sp(n) 

are given by the inclusions SU(n) a SO(2n) and Sp(n) c SU(2n) 

SO(4n) and the level 2 anti-symmetric tensor given by fundamental 

representations of SO(n) are SO(n) a SU(n) a SO(2n).) 

j 

(b) Kac-Moody algebras in o-models 

The role that Kac-Moody algebras play in a-models was made 

clear by WITTEN, aspects of whose work we now describe. The 

principal a-model associated with a group G in a two dimensional 

space-time is described by the action 

- - L [ tr(g"1aa g"Vg)d 2x (4.34) 

where g(x,t) takes values in the group G , or rather some 

particular representation of it. Then the variation of Of 

corresponding to some small variation 6g of g is proportional to 

* ° 4X< 
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- J tr(g~19^g g~Vóg)d2x + J tr(g~19(ig g~
1óg g~Vg)d2x 

•í t r{g~ 1 óg9^(g~Vg)}d 2 x , (4.36) 

where we have discarded the surface terms which come from integrating 

by parts. Thus the action leads to the equations of motion 

3
(1(g"

l3*ig) = o (4.37) 

Now, if we set 

g'Vg = ja^(x,t)Ta , (4.38) 

where T are as usual a set of generators G , eq.(4.37) amounts to 

the conservation equation 

3 Jajl = 0 (4.39) 

But J*1 = g 9M'g also satisfies a consistency condition coming from 

eq.(4.38), essentially saying that the curl of a gradient is zero; 

since 

i*Jv = g _ 1 9 V g - g _ V g g~Vg 

= g" 1 3Vg - JWJV , 

we have 

3 V - 3VJU • [j",^] = 0 . (4 .40) 

Now if we aim to get again a Kac-Moody algebra for the light-

cone components of J , as in the free fermion cases we would seem 

to need Ja" to be functions of only one light-cone variable, x" 

respectively- Thus we need 

3_J
+ = 8+

J- = ° • (4.41) 

This condition implies not only to.the equation of motion (4.39) but 

also 3*\jv = 9VJM' , violating the compatibility condition (4.40) 

unless [J^,JV] vanishes automatically, i.e. unless G is abelian. 
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WITTEN found a way round this apparent impasse. He noted that 

if 

J
+
 = g " \ g (4.42) 

satisfies the first of eqs.(4.41), since 

9_(g"
1
9

+
g) = g"

1
9_9

+
g - g'

1
9.g g"

1
9

+
g 

= g"
1
9

+
0_g g"

1
) g, 

J. = O.g) g"
1
 (4.43) 

satisfies the second of eqs.(4.41). The need to treat the two 

light-cone components of J differently had eluded the authors of 

previous discussions of o-models and their relations to Kac-Moody 

algebras or, equivalently, current algebras. 

Of course eqs.(4.41), with definitions (4.42) and (4.43), are 

not the equations of motion following from the action (4.34). 

Consequently Witten also found it necessary to change the equations 

of motion. This he did by the addition of a WESS-ZUMINO term to 

®( , modifying the action to 

Ot =--
L
T f tr(g"

1
3

M
g g"Vg)d

2
x + KT (4.44) 

4 r J » 

where 

_ _ [ 
24rг J 

e X w v t r ( g " 1 3 x g g ~ \ g g " \ g > a 3 y , (4.45) 
B 

and K is a constant of the same dimensions as action. 

What is meant by the integral r requires some explanation. 

To do this it is simplest to suppose that, by analytic continuation, 

we may work in a Euclidean space-time which is a large two-dimension 

2 2 

sphere S . We take this S to be the boundary of a solid ball 

B in "R whose coordinates are y and extend g in an arbitrary 

smooth fashion through B . Such a definition of T is not 

obviously unique. Indeed the difference between any two values of 

T obtained in this way can be represented as an integral of the 

form of (4.45) but with
1
 B replaced by some three-dimensional sphere 

S . Now for any such sphere, this integral is an integral multiple 

of 2TT if g is in the defining N-dimensional representation of 

SO(N), whilst it is an integral multiple of TT for the defining 
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N-dimensional representation of SU(N) or the defining 2N dimensional 
representation of Sp(N). 

The ambiguity in the definition of T introduces a discrete 
ambiguity into the definition of &C of the form 27TnK , where 
n 6 7Z for SO(N) and n 6 j . Z for SU(N) or Sp(N). This discrete 
ambiguity in ®C causes no problems for the derivation of the 
classical motion because each of the possibilities for r will be 
stationary for the same paths. Quantum mechanically it potentially 
has> a significance because there we had exp(i#-/n) to be single-
valued. This leads to the condition 

K = vh (4.46) 

where v e ffi for SO(N) and v e 27Z for SU(N) or Sp(N). Note 
that this constraint on K is quantum mechanical rather than 
classical. 

To see how the term K.T modifies the equation of motion we 
calculate 

6F = 8¥ J 3Xe
XllVtr(g-16g g_19 g g_13vg)d

3y 
' B 

= " 3 ^ Jc^Vtr{g"16g g"19ii(g"
19vg)) d

2x (4.47) 

as the boundary of B is the Euclidean space-time in which we are 

working. Combining this with 

6#; = -X* [ tr(g"16g 9 (g"Vg))d 2x (4.48) 
° 2\ J ^ 

we obtain 

y g ~ V g - - - * euV 13 vg> = o . (4.49) 

tHere S v = "'evn ' eo1 = + 1 - ] 

If we consider the special value of the coupling constant 
2 

X = 4TT/K , the equation of motion (4.49) reduces to 

9_(g"19+g) = 0 , (4.50) 

thus giving 
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Э_J
+
 = Э

+
J_ = 0 (4.51) 

as desired, with 

J
+
 = g~

1
a

+
g > J_ = o.g)g'

1
 . (4.52) 

2 

If, on the other hand, we choose the special value X - - 4TT/K , 

we obtain instead 

9
+
(g"

1
9_g) , (4.53) 

so in this case obtaining eq.(4.51) with 

J
+
 = 0

+
g)g"

1
 , J. = g"

1
3.g (4.54) 

instead. 
2 

We shall now fix on the first possibility, X = 4TT/K . 

Note that, if we take a particular value of v in the quantum-

mechanical condition (4.46) it is no longer possible to take the 

classical limit h -> 0 at fixed X . This is similar to the 

position with magnetic monopoles where the electric and magnetic 

charge q,g have to satisfy qg/2irh 6 7L . 

We now wish to quantise this theory to see whether J
+
 will 

need to provide us with commuting Kac-Moody algebras as in the case 

of the current algebra of free fermion fields. To do this we need 

to calculate the Poisson brackets for the theory. This can be done 

in a canonical fashion and, if we absorb various dimensional 

constants by redefining 

T
a
J

a
 = - ig"

1
9

+
g g fl , (4.55) 

we obtain the Poisson bracket relations 

[J
+
(x),J

b
(y)]

p
 ^ = f

ab

c
J^(x)6(x-y) + ij^ 6^6-(x-y) , (4.56) 

There is a similar equation for J_(x) defined by 

T
a
J_ = -iO_g)g~

1
. g /Z (4.57) 

and 
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[Ja(x),J*(y)]p ^ = 0 , (4.58) 

Eq.(4.56) should be compared with eq.(4.14). 

As before to obtain a Kac-Moody algebra we need to impose 

periodic boundary conditions on 0 < x < L . So we define 

Jm " * Tm = J J + ( x ) zlldx (4.59) 

giving the canonical commutation relations 

, , VK, , 
[T3,^] = ifaiD T + --im6alD6 , (4.60) 
1 m' nJ c m+n 2 m,-n ' * ' 

where we have 

tr(TaTb)= KX 6ab . (4.61) 

So comparing again with eq.(2.43) we have a Kac-Moody algebra 

with k = i VK, . If we take G = SO(N) and v = 1 this is the 

same as eq.(4.24). For the N-dimensional representation of SO(N) 
2 2 

K,/a = 2k/a = 1 , where a is a long root, so that both eqs.(4.24) 

and (4.60) then correspond to level 1 representations of the SO(N) 

Kac-Moody algebra. The only possibilities in this case are the 

scalar, spinor and vector representations and, up to this ambiguity, 

the representation spaces provided by the free fermion theory and 

the o-model must be equivalent. Suggesting that, for the particular 

value of A considered, the theories are equivalent. 

For G = SU(N) or Sp(N) the lowest allowed non-zero value 

of v is 2. Then k = K, in eq.(4.60) and this differs from 
1 

eq.(4.24) superficially as there k = 2K\ * B u t ^ ^or example 
we consider the N-dimensional representation of SU(N) or the 

2N-dimensional representation of Sp(N) we cannot proceed directly 

as in (a) above because these representations are complex; to make 

them real we must double the dimension and this doubles k in 

eq.(4.24), so that k = K. agreeing with eq.(4.60). Since, for 
2 2 these representations 2K./a = 2k/a = 1 , where a is a long 

root, we have had one representation. Again there are only 

finitely many possibilities, the scalar and the N fundamental 

representations, and subject to this finite ambiguity, the theories 

appear to be equivalent. This equivalence, established by WITTEN, 

has been discussed further by KNIZHNIK and ZAMOLODCHIKOV. 
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(c) the energy momentum tensor and the Virasoro algebra 

If the a-model and the free fermion theory are to be equivalent 

under the identification of their Kac-Moody algebras, their energy 

momentum tensors must be the same after this identification. 

Indeed, if this is so, equivalence follows because the dynamics 

of the theories will be the same. The energy-momentum tensors also 

have an algebraic interest because they provide us with a 

representation of the Virasoro algebra. 

For the fermion theory, the symmetric energy momentum tensor is 

6^V = \ : {* ^ 3^* + * V 3%) , (4.62) 

with an implicit sum over the internal index i . This tensor is 

traceless because of the equation of motion (4.4), 

20 = 0^ = 0 . (4.63) 
+- p, 

This is necessary for the conformal invariance of the theory. Thus 

the only non-zero components of 0 are 0 + + and 0__ . These 

are proportional to ^.3.^. and ty_djl>_ respectively. Again let 

us fix our attention on one light-cone component. Then^ 0 is 

proportional to 

đ н
.н 2 . __-.. . - L(z) E _ L__Z

П
 (4.64) 

where we have normal ordered with respect to the fermion oscillators 

to avoid divergences, 

:b b : = - b b if r > 0 
r s s r 

= 1 [b ,b ] if r = 0 
2 r' s 

= b b if r < 0 . (4.65) 

r s ' 

With L defined by eq.(4.64) we can calculate their 

commutators and we obtain the Virasoro algebra 

[L.LI = (m-njL^ +^m(ni
2
-1)fi

 n
 (4.66) 

m n m+n _J4 m,-n 

which is just (2.44) with c = id . Further 
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[ V T n ] = " n T m + n ' <4'67> 

with T* defined by eq,(4.33), providing a representation of the 

whole semi-direct product algebra. 

Note that in the one-dimensional case d = 1 , c = 4 , w e have 

the first of the non-trivial terms in the series (3.32). In the NS 

case the highest weight states are |0>, b_,|0> , giving the 

h = 0,i representations, whilst in the R case the only possibility 

is |0> which gives h = -=-7- as then 

Lo = TT + -n
 nd-ndn • <4-68> 

n>0 

Now let us consider the energy-momentum tensor in the meson 

theory. It has the current-current form (SUGAWARA; SOMMERFIELD) 

8nv • J* Jv -I V JX j3X . < 4 - 6 9 > 

which is also traceless. The non-zero components are 

0 + + = j < J : (4.70) 

and there is a similar expression for 0 . In the quantum theory 

we again need to avoid divergences by some sort of normal ordering 

procedure. We do this with respect to the Fourier components of 

J a by d e f i n i n g 

- Tm T n '• = Tm T n 

= T n T m n m 

m < 0 

m > 0 (4.71) 
11 HI 

and then considering 

^m = 1 I - Tn Tm-n S (4-72) 
n 

which is proportional to the Fourier coefficients of (4.70). The 

jg so def ined sat Mm 
factor; if we set 

$ so defined satisfy a Virasoro algebra but up to a scaling 

*;-ì4' - ( 4 - 7 з > 
with 
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0 = \ (VKX + ĉ  ) , (4.74) 

where VK X is as in eq.(4.60) and c- is the quadratic Casimir 

operator of the group G in the adjoint representation 

-aCd f b dc =-c* &&h • (4-75) 

[5fm^n] = (m-n)5Jm+n • £ m(m2-1)6mf_n . (4.76) 

[*m'Tn] = - n T m + n ' <4'77> 

where, by eq.(4.16), 

vlcXd«l, vcxdx 
VKX + c* " VKX + c* 

(4.78) 

with d = dimG . These equations depend only on eqs.(4.72-4) 

and eq.(4.60). [For similar calculations see BARDAKCI and HALPERN, 

FRENKEL (1981), KAC (1983) and SEGAL (1981).] 

Let us compare eqs.(4.66) and (4.76) for the N-dimensional 

representation of SO(N). Then, with the length squared of a long 

root normalised to 2, and taking v = 1 again, 

Kx = 2 , d^ = \ N(N-1) , dx = N , c^ = 2(N-1) (4.79) 

so that the value .of c given by eq.(4.78), 

c = jN (4.80) 

agrees with that in eq.(4.66). This means that if we take the 

renormalised energy-momentum tensor to be rescaled by the factor 

3 , the theories are identical dynamically, subject to ambiguities 

mentioned before. 

For the N-dimensional representation of SU(N) we need to take 

v = 2, and since 

K X = 1 , d^ = N
2-1 , dx = N , c^ = 2N (4.81) 

the value of c given by eq.(4.78) is 

c = N- 1 (4.82) 
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We see there is a deficit of 1 in c relative to eq.(4.66) as we 

need to use the 2N-dimensional version of this representation. 

This deficit can be corrected for by adding a U(1) factor, enlarging 

SU(N) to U(N). 

Similarly for the 2N-dimensional representation of Sp(N), we 

have to have v = 2, and 

KA = 1 , d^ = N(2N-1) , d^ = 2N , c^ = 2N-3 (4.83) 

The value of c in eq.(4.78) is then 

c = 2N - jgL (4.84) 

This time the deficit of 3N/(N + 2.) can be made up by extending 

Sp(N) to Sp(N) x Sp(1) and, with this extension, the theories 

should be equivalent (GODDARD, KENT and OLIVE). 

(d) new representations of the Virasoro algebra 

We have seen that, for the defining representations of SO(N), 

SU(N) and Sp(N), the Virasoro algebras defined by eqs.(4.64) and 

(4.73) are the same if we identify the currents as in eq.(4.33). 

What happens for more general representations? . Clearly for the 

two to be the same the values of the central element c must be 

the same, i.e. 

2 cx 
F - n - r = 1 <4-85> 

where < is the value of the Dynkin index 

tr(MaMb) = -<x<5
ab (4.86) 

for the real form of the representation (i.e. K, = 2 in each of 

the cases we have first discussed. The equality (4.85) does not 

always hold; if it fails to, the extent to which it fails produces 

an interesting algebraic structure (GODDARD and OLIVE, 1984). 

Starting just from the algebra 

[Lm,Ln] = (m-n)Lm+n • £ m(m2-1)6m#_n (4.87a) 

' V T n l = " n Tm+n
 ( 4' 8 7 b ) 
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[-£'-£] = ~ i f a b n TLr, + k m 6

m n 6 ^ (4 .87C) 

m n c m+n m,-n 

and defining J5m by eqs.(4,72) and (4.73) with 

3 = k + 1 c^ (4.88) 

we obtain the commutation relations 

[Lnrt2rn] = (- n ) « m + n • ̂ m ( m 2 - 1 ) 6 ^ , (4.89a) 

[am,Srn] = (m-n)£ m + n • fi m(m
2-1) « m > _ n , (4.89b) 

where 
kd, 2kd . - _ Ł - Ф 
ß c. + 2k 

(4.90) 

It follows that ST and K = L_ --!£ from two commuting m m m ^ m -* 
Virasoro algebras 

[c?m,K ] = 0 (4.91a) 
m n 

[Km,Kn] = (m-n) Km+n • -f_.'m(m2-1) 6 m / _ n (4.91b) 

where 

cM = c - c1 , (4.92) 

- H - ^ ) 
in the particular case we have been discussing. 

If the spectrum of L is bounded below, as in a highest 

weight representation, it follows that the spectra of both K 

and §f must be bounded in this way. Hence we have c1, c" _> 0 . 

If the spectrum of L is bounded below and c" = 0 , K is 
c o n 

represented trivially and so L = §f . Hence eq.(4.83) is a 

necessary and sufficient condition for the energy-momentum tensors 

of the free fermion model and the a-model to be equal. It is 

satisfied not only for the defining representations we have 

mentioned but also for the adjoint representation of any group, 

and the traceless symmetric tensor representation of SO(n) as well 

as some others (GODDARD and OLIVE, 1984), suggesting a boson-

fermion equivalence in these cases as well. 
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An identity which throws light on these is that between the 

normal ordering of the product Ja(z)Ja(z) performed in two 

different ways [see eqs.(4.65) and (4.71)]: 

l?Ta(z)Ta(z) g = 1: Ta(z)Ta(z) : + cxL(z) (4.94) 

with 

Ta(z) = I T a
nZ

n = 1 H(z)MaH(z) (4.95) 

This yields the relation between the energy-momentum tensor 

Q 

£(z) = -i. :Ta(z)Ta(z): + -A L(z) (4.96) 

So they are equal if and only if the normal ordered quartic product 

of four H (z) fields vanishes and (4.85) holds; it can be verified 

that eq.(4.85) implies the vanishing of this quartic product as 

(we know it should since it implies L = 06 ). In general S3 
r n n n 

and K will each involve a mixture of a normal ordered quartic, 

the normal ordered product of H and dH/dZ . 

The physical interpretation of what happens when K i 0 is 

less clear but we can obtain some interesting representations of 

the Virasoro algebra this way. If we take the 7 dimensional 

representation of SO(3) or G2 we obtain
 c = Tn • A slight 

extension of this procedure provides the c = £ representation 

from the 6 dimensional representation of Sp(3). A further extension 

to a construction based on a subgroup H C G yields the whole 

sequence of eq.(3.31). 

5. Conclusion 

In these lectures the Virasoro algebra and the (untwisted 

affine) Kac-Moody algebra have been described together with some of 

what has been learnt about their representations. The aim has 

been to produce a simple approach accessible to theoretical 

physicists. There is an extensive mathematical literature and I 

am not competent to give all the appropriate references but amongst 

those which may be of particular interest to physicists are FRENKEL 

and KAC, FRENKEL (1981 and 1982), and FEINGOLD and FRENKEL. An 

extensive mathematical treatment of the representation theory, and 

further references are contained in the book of KAC (1983) . 

The fourth section of these notes was devoted to the current 
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algebra construction of representations of Kac-Moody algebras and 

the relation of those to principal a-models following the work of 

WITTEN. This is an example of an equivalence of a bosonic to a 

fermionic theory and our knowledge of such relationships has grown 

over the years as the result of the work of many authors (SKYRME, 

STREATER and WILDE, COLEMAN, MANDELSTAM). In such equivalences 

bosonic currents correspond to bilinear quantities in fermion fields 

and fermion fields are exponentials of quantities linear in boson 

fields. These expressions for fermions are of the form of the 

vertex operators first used in the theory of relativistic strings, 

and adapted for the construction of representations of Kac-Moody 

algebras by FRENKEL and KAC There has not been time to develop 

here the use of vertex operators to represent Kac-Moody algebras 

and to tie in with the boson-fermion equivalence. For discussions 

of aspects of this we refer to FRENKEL (1981 and 1982) and GODDARD 

and OLIVE (1983), where some further developments are also discussed. 

I am very grateful to the organisers of the 1985 Srni Winter 

School of the University of Prague for their very kind and generous 

hospitality. I should also like to acknowledge the many discussions 

about infinite dimensional Lie algebras I have had over the last 

few years with Werner Nahm and David Olive; many aspects of the 

presentation here are due to them. 
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