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C O N F O R M A L T R A N S F O R M A T I O N , C O N F O R M A L 
C H A N G E , A N D C O N F O R M A L C O V A R I A N T S 

T H O M A S P . B R A N S O N 

Abstract. Though standard Riemannian S 4 and standard Lorentzian 
Sl X S 3 support natural, fourth-order differential operators on one-
forms which intertwine representations of their 15-dimensional confor-
mal groups, there is no general fourth-order differential operator on one-
forms in Riemannian or pseudo-Riemannian manifolds that is universally 
covariant under conformal change of metric. 

0. Introduct ion . Conformal transformation and conformal change of 
metric have long been important topics in Mathematics and Physics, 
and with the advent of anomaly and string theories, this importance can 
only increase. There is an immense literature on the classification prob­
lem for differential operators covariant under conformal transformation, 
in, for example, 4-dimensional Minkowski, de Sitter, and compactificd 
Minkowski space. Such operators are intertwining for representations 
of the 15-dimensional conformal group, and thus have obvious impor­
tance for anyone seeking to decompose the natural tensor-spinor repre­
sentations on these spaces (that is, to find elementary particles without 
expensive equipment). 

At the same time, differential geometers have long been interested, 
albeit sometimes peripherally, in differential operators covariant under 
conformal change of metric, usually in the Riemannian (positive def­
inite metric) case. The best-known example is the Yamabe operator 
D2 = A + (n — 2)K/4(n — 1) on scalar functions (A == Laplace-Beltrami, 
n = dimension, K = scalar curvature), the conformal covariance law for 
which was used essentially and repeatedly in the solution of the Yamabe 
problem of conformal deformation to constant scalar curvature [Y, T , A , 

This paper is in final form, and no version of it will be submitted for publication 
elsewhere. Research supported by the N.S.F. (U.S.) through grant DMS-869G098, by 
a University of Iowa Faculty Scholar award, and by the Danish Research Academy. 
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Sc, L P ] . In dimension 4, D<i is the analytic continuation in signature 
of the curvature-modified d'Alembertian • + K/Q of classical relativ­
ity; indeed, classical relativity is the 4-dimensional, Lorentzian Yamabe 
problem. 

Covariants of conformal change are, of course, not differential oper­
ators on fixed spaces, but operator schemes which assign a differen­
tial operator to each Riemannian (or pseudo-Riemannian) manifold in 
a natural, universal manner. Given a covariant of conformal change, 
we get a covariant of conformal transformation on any manifold with 
metric, though the property is usually vacuous: generically, there are no 
conformal transformations but the identity. Nevertheless, there arc im­
portant manifolds with large conformal groups; the maximal dimension 
(n + l)(n + 2)/2 is attained for the product spaces Sp x Sq,p + q = n, 
with the standard signature (q,p) metric; in fact, the conformal.group 
is isomorphic to 0(p,q). 

There is no obvioLis reason, though, that covariants of conformal trans­
formation on these very symmetric manifolds should always give rise to 
covariants of conformal change on general manifolds with metric. Indeed, 
the conformal changes actually implemented by conformal transforma­
tions cut out only a finite-dimensional submanifold N in the infinite-
dimensional manifold C^(M) of all conformal changes, and one suspects 
(correctly, as we show here) that N is not "discriminating enough" to 
keep out all operators which do not generalize, even for very symmetric 
M (large dim N). 

In this paper, we give an example of an operator D±y\ previously stiid-
ied [B2, Sec 3] in the settings of Riemannian S4 and Lorentizian 5 1 x 5 3 , 
which, though covariant under conformal transformation, has no general­
ization to a covariant of conformal change on Riemannian or Lorentzian 
4-manifolds. D4 j i acts on 1-forms, has order 4, and fits into a large, 
many-parametered class of intertwining operators for 0 ( 1 , 5) and 0 ( 2 , 4 ) 
[J, B2] , and indeed for 0(2,p) [B2, B3] . It generalizes to a covariant 
of conformal change in dimensions n ^ 1,2,4 [Bl] . From this last point 
of view, our restilt here is that the restriction n ^ 4 is essential: not 
only does the formula in [Bl] not give a conformal covariant of the t}!pc 
desired, but there is no such covariant. 

The special behavior of dimension 4 relative to this and other oper­
ators is intimately related to the (relative) conformal invariance of the 
Bach tensor [Ba] . In fact, the argument in [Bl] docs give an operator in 
dimension 4 of the right level (homogeneity under uniform dilation of the 
metric), but the order collapses to 0; the operator is just the pointwisc 
action of the Bach 2-tensor on 1-fonns. Alternatively, analytic contin-
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uation of the calculation of [Bl ] in n, followed by division by n — 4, 
gives the Bach tensor and its conformal properties. In this paper, the 
Bach tensor also enters in an essential way: being separately covariant 
in its action on 1-forms, it is not available to help compensate the con-
formal non-covariaiice of higher-order terms in our prospective operator 
(Theorem 4.11). 

Sections 1-3 arc introductory; in Section 4, the main non-existence re­
sult is proved via a series of lemmas. Among other things, these lemmas 
show that modulo zeroth-order operators, the choices made in [B l , Sec. 
2.1] in the construction of a fourth-order conformal covariant on forms 
are essential. 

The author would like to thank the participants in a problem session on 
Conformally Invariant Differential Operators at the 1988 Czech Winter 
School on Geometry and Physics for stimulating conversations. 

1. Covariants of conformal trans formation a n d change. Let 
(M, g) be a connected pseLido-Riemannian manifold of dimension n. If 
M is oriented, denote by E a choice of normalized volume form, and if 
M has spin structure, denote by 7 a choice of spin representation. A 
conformal transformation of (M,g) is diffeomorphism h of M which has 
the effect 

h-g = n2
hg 0<£leC°°(M) 

on the metric, (ft- will always denote the natural push-forward of tensor 
fields by a diffeomorphism as in [H, p. 90]. For covariant tensors like gy 

h- acts as ( f t - 1 )* . For conformal ft, ft- extends to tensor-spinors [Ko].) 
The conformal transformations form a Lie group C(M,g) of dimension 
at most (n + l ) (n + 2) /2 [KN, Notes 9, 11, 13], and for any vector bundle 
F of tensor-spinors, 

(1.1) ua(h): hv—->fi«ft. 

is a homomorphism C(M,g) —> Aut C°°(F). A differential operator D 
is covariant under conformal transformation if for some a, b £ R, Dua(h) 
= ±Ub(h)D for all ft £ C(M,g). The ± sign comes into play only if D 
depends on our choice of E and/or 7 (both determined up to a sign). 
Then, clearly, we get Dua(h) = ui(h)D for ft in the identity component 
of C(M,g), with predictable sign changes for the other components, de­
pending on the signs in ft • E = ±fi£.E, ft • 7 = ±flh

1/y. 
On the other hand, if D is a differential operator scheme, a universal 

assignment of a differential operator to each pseudo-Riemannian mani­
fold of dimension n which, in local coordinates, is built universally and 
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polynomially from g, its partial derivatives, its inverse g^ = (gQ^), and 
if applicable, E,j, we say that D is covariant under conformal change if 

(1.2) g =tfg (E = ftn£, 7 = fi'S) > 

0 < ft G C°°(M) => I ) = n _ 6 -Df i a 

for some a, 6 £ R. (Here !Tia is to be interpreted as a multiplication 
operator.) This second kind of covariance is more general than the first: 
given M, g (and possibly E, 7) and h G C(M, g), consider the composition 

(M,g) JU(M,g = h-g = Sl\g) - ^ (M,g) 

of an isometry and a conformal change. If D is as in (1.2), 

DSla
hh- = £lb

hDh- = ±Qb
hh • D, 

the isometry invariance or anti-invariance used in the second equality 
coming from the universality of D. 

Because conformal changes live in one-parameter groups, and just not 
one-parameter families, (1.2) is equivalent to an infinitesimal property 
[ B l , Proposition 1.12] : let everything depend in a jointly smooth way on 
x G M and u in some open interval about 0 in R, and let " = (d/du)\u=Q. 
Then (1.2) is equivalent to 

(1.3) g = 2cug, to G C°°(M) =» D = -(b - a)uD + a[D,u]. 

2. T h e operator on S 4 and on S 1 x S 3 . Among the conformal 
transformation covariants studied in [B2] is an operator JD^I on 1-forms 
in Riemannian S 4 , and its Lorentz signature counterpart (also called 
-^4,1) on S 1 X S 3 . The leading term in each case is 3SdSd — dSdS, d 
being the exterior derivative, and S its formal adjoint in the appropriate 
metric. JD^I has conformal bidegree (—1,3); that is, it intertwines the 
representations U-\ and U3 of (1.1). According to [B2, Remark 3.30], 

DA)1 = 3Sd(Sd - 2) - dS(dS + 2) on S 4 . 

(Refer to [B2, proof of Theorem 3.2] for the definitions of the operators ti 
and C used in [B2, Remark 3.30].) On S 1 x S 3 , JD4,I is best expressed 
in terms of the exterior derivative dz and coderivative 53 on S 3 , and 
partial differentiation dt with respect to the S 1 parameter t. If 0 G 
C°°(A 1 (S 1 X S 3)) , we can wr i t e> = <f>0dt+4u where </>0 G CCG(S1 x S 3 ) , 
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and <j>i G C°°(A 1 (5 1 X 5 3 ) ) has t(dt)<j)i = 0 (interior multiplication). 
Unravelling [B2, equation (3.21)], we get 

(Al,Kr\)o = 

(-dl+ 283d3d
2
t + 363d363d3 - 1092 - 6 M 3 - 9)<£0 

P 4 , l ^ ) l = 

(3d,4 + ( 6 M 3 + 2c/3(53)a
2 + 3 M 3 M 3 - d363d363 

+ 6d2
t-663d3+2d363+3)(l>1 

-4(d? + d363 + l)d3dt<j>0. 

By [B2, equation (3.2)], this has leading term 36dSd — dSdS. 

3 . Tensor bund l e s , s truc ture groups a n d their representat ions , 
a n d differential operators . We would like to show that there is no 
covariant of conformal change on general 4-manifolds of any metric sig­
nature which acts on 1-forms and is properly fourth-order (never of lower 
order on any manifold). By analytic continuation in signature [ B 0 , Sec 
7], it is enough to work with Riemannian metrics. On a Riemannian 4-
manifold, the structure group of any tensor bundle can be reduced from 
GL(4) to 0 (4 ) , and in the orientable case to 5 0 ( 4 ) . The irreducible rep­
resentations of 0 (4) (resp. 5 0 ( 4 ) )are parameterized by highest weights 
(p,q) G Z2 with p > q > 0 (resp. p > \q\). Each irreducible represen­
tation corresponds to a vector bundle V(p, q) which is irreducible under 
its structure group. We abbreviate V(p, 0) by V(p). For example, the 
trivial line bundle is A0 ^ V(0); the 1-forms A1 =- V( l ) ; and the trace-
free symmetric p-tensors TFSP = V(p), where = stands for 0 (4 ) - or 
50(4)-equivariant bundle isomorphism. The trace-free tensors with the 
symmetries of the Riemann tensor (the algebraic Weyl tensors) live in 

Weyl^ow V(2,2), 

and thus the full bundle of tensors with Riemann symmetry is 

(3.1) Curv ^ 0 ( 4 ) V(0) © V(2) © V(2,2) , 

where the summands are represented by the scalar, trace-free Ricci, and 
Weyl curvatures. 

Under 5 0 ( 4 ) , the tensor product of V(l) with V(p, q) breaks up into 
irreducibles as follows: 
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(3.2) 
V(1)®V(0)^S O ( 4 )V(1), 

V(l) ® V(p) =soWV(p - 1) © V(p, - 1 ) © V(p, 1) © V(p + 1), 

P > 1, 
V(l) ® V(p, q) ^SO(4)V(p -l,q)@ V(p, q - 1)© 

V(p,q+l)®V(p+l,q), p > M > l , 

V(l) ® V(p,p) ^so (4)V(p,p - 1) © V(p + l,p), p > 1, 

V(l) ® V(p, -p) =so(4) V(p, -p + 1) © V(p + 1, - p ) , p > 1. 

(See, e.g., [F,.Theorem 3.4].) If q > 1, the 0(4)-bundle V(p,?) is the 
direct sum of the 50(4)-bundles V(p, q) and V(p, — q); V(p) is the same 
for 0(4) and 5 0 ( 4 ) . (In particular, the 2-forms A2 are V ( l , l ) as an 
0(4)-bundle, and V( l , 1) © V ( l , - 1 ) as an 50(4)-bundle.) Thus 

V ( l ) ® V ( 0 ) S o ( 4 ) V ( l ) , 

v(i) ® v(p) e.0(4) v(p -1 ) e v(p, i) © v(p +1), p > I , 
V(l) ® V(p, q) ^o(4)Y(P " 1, q) © V(p, q - 1)©. 

(3.3) V(p,<z + l)©V(p + l , g ) , - p > c z > l , 

V ( l ) ® V(p, 1) ^o(4)Y(P - 1,1) © 2V(p) © V(p + 1,1), p > 1, 

V ( l ) ® V ( l , 1) S 0 ( 4 )2V(1) © V(2,1), 

V ( l ) ® V(p,p) =o(4)V(p,p - 1) © V(p + l , p ) , p > 1. 

(3.2) and (3.3) are especially important here for two reasons: first, 
we are concerned with differential operators on 7 (1 ) , and second, the 
covariant derivative V carries sections of 7 ( p , q) to sections of 7 (1 ) ® 
V(p,q). 

By (3.1) and (3.3), the covariant derivative of a section of Curv is a 
section of 27(1) © 27(2 ,1 ) © 7 (3 ) © 7(3 ,2 ) ; but by the second Bianchi 
identity, the covariant derivative of the actual Riemann tensor lives in 

(3.4) WCurv ^o(4) V(l) © 7 (2 ,1 ) © 7 (3 ) © 7 ( 3 , 2 ) . 

(See, e.g., [St].) The 7 (1 ) summand is represented by the gradient of the 
scalar curvature; the .7 (3 ) component is the trace-free symmetric part 
of the covariant derivative Vr of the Ricci tensor; V r and the covariant 
derivative V C of the Weyl tensor both contribute to the 7 ( 2 , 1 ) piece, 
and the 7 (3 ,2 ) piece is a projection of VC. 
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It will be important to us to have explicit formulas for the projec­
tions of the covariant derivative of the trace-free Ricci tensor onto the 
summands of 

A1 ® TFS2 =o(4) V(l) © V(2,1) © V(3). 

It is easy to get the V( l ) and V(3) components, 

ProjV(Z)(<PaPy) = (%(9a0<P \<y + ffcry^A/.? ~ 590y<PX\a)), 

(3.5) ProjVi3)((pa/3y) = ( f (</>a/?7 + <Ppay + Vfocp) 

~ g(9ap<P \y+9ay(P A/? + 9p<r<P Aa))j 

and thus the V(2,1) component is 

/o *\ P r O i v (2A) ( ( r 0 a /3 7 ) = ( K ^ ^ T ~ Vfiay ~ <Pyafi) 
(3.6) 1 A A A 

— ^(gajSW \<y + ga1
(P \(3 ~ ^9Pl<P Aa))-

By Weyl's invariant theory [W, A B P , D P ] , all 0(4)-differential oper­
ators are built polynomially from gy g^ = (# a ^) , V, the Riemann tensor 
JJ, contractions, permutation of arguments (indices), and tensor prod­
uct. For 50(4)-operators , E can also enter, for example, via the Hodge 
*. (To get the operator version of this characterization from the tensor 
quantity version, take the leading symbol, form an appropriate "leading 
term" with V, subtract, and iterate.) Any properly fourth-order op­
erator scheme D o n a tensor bundle has a leading term in 4 covariant 
derivatives; otherwise its order on Riemann flat manifolds would be less 
than 4. This implies that the level of Z?, if D is to be conformally co-
variant, is 4: 

g = A2g, 0<AeR=>D = A~4D, 

by the dilation laws for V and R. Thus all such D are sums of terms 
which are schematically 

(3.7) 

W W (fourth order) , 

J2VV (second order) , 

(VI?)V (first order) , 

(V ViJ) , RR (zeroth order) . 

4- A nonex i s tence result . In this section, we always work over Rie-
mannian 4-manifolds. By a Z?4ji we shall mean a properly fourth-order 
covariant of conformal change acting on 1-forms. This should a pri­
ori only be assumed to be SO(4)-equivariant, but we shall soon show 
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(Lemma 4.4) that if there is an SO(4)-operator of the type we seek, then 
there is also an 0(4)-operator. We let C denote the Weyl conformal cur­
vature tensor, and 

J = K/6, 

VQp = 2(rQp - J gap), 

TQp = Vap — --JgaP-

T is the trace-free Ricci tensor, and J and 7 are useful for their conformal 
variational properties: in terms of the " operator of Sec. 1, 

/A , , J = -2UJJ + Au>, 
(4.1) 

VQp = -V a V/?u; = -(Hess u>)Qp 

[ B l , Sec. l.d] . 

LEMMA 4 . 1 . Modulo second-order operators, the space of fourth-order 
S0(4)-differential operator schemes is 2-dimensional, generated by SdSd 
and dSdS. 

PROOF: The fourth-order symbol of such an operator I? is a 4-homoge-
neous 50(4)-bundle map 

<74(D): A1 —» ^om S O (4 ) (A 1 , A1) . 

This polarizes to a bundle homomorphism from the symm^- i c 4-tensors: 

(4.2) 
a4(D) : 7 (4 ) 0 7 (2 ) © 7 (0 ) —> 7(1 ) ® 7 ( 1 ) 

=5o(4) no) e v(i, - i) © v(i, i) e 7(2). 
The space of these is 2-dimensional (the left and right sides of (4.2) have 
the summands 7 (0 ) and 7 (2 ) in common), and is clearly generated by 
a^(SdSd) and a^dSdS). • 

LEMMA 4.2 . Any D±tl has conformal bidegree (-1,3). 

PROOF: By Lemma 4.1 and (3.7), 

-D4,i = aSdSd + /3dSdS + E2 , 

where a ^ E R and E2 is an 50(4)-difFerential operator scheme of or­
der at most 2. Being conformally covariant and of level 4, D4il has a 
conformal bidegree (a, a + 4): 

DAtl = -4LODAA +a[D4A,u]. 
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An easy calculation with (1.2) and the definition of the formal adjoint 
shows that D% 1 has conformal bidegree (—a — 2, — a + 2): 

(Dliy = -4uDl1-(a + 2)[Dl1M-

Since 6d6d and d6d6 are formally self-adjoint, the difference of these last 
two equations is 

(E2 - E^ = - 4u(E2 - E*2) 

(4.3) + 2(a + I)[a6d6d + /3d6d6,u] 

+ a[E2M + (a + 2)[E2*M-

All terms here have order at most 3, and in fact, taking third order 
symbols, 

0 = 2(a + I)a3([a6d8d + /3d6dSM)-

Now if e and i denote exterior and interior multiplication, 

(4-4) 

Thus 

[djш] = є(duj), [<5,u>] = —t(duj) , 

0 = (a + I)az([a6d6d + f3d6d6,uj))(duj) 

= 4(a + l)\f^l{at(duj)e(duj)t(duj)e(duj) 

+ f3e(duj)t(duj)e(duj)t(duj)}] 

since UJ is arbitrary in C°°(M) and a and /? are not both zero, we must 
have a = —1. • 

LEMMA 4.3. If there is a .D4.1, then there is a formally self-adjoint D±}i. 

PROOF: Given a = — 1, (4.3) reads 

(E2 - £*)• = -4u;(£2 - JSJ) - [£2 - £*,u;]; 

that is, the formally skew-adjoint part of D*^ is separately conformally 
covariant of bidegree (—1,3). H 

LEMMA 4.4. If there is a D^^, then there is an 0(4)-equivariant D4)1. 

PROOF: The orientation-reversed version 1)4,1 of -D4A is also confor­
mally covariant of bidegree (—1,3). Since 6d6d and >d6d6 are 0(4)-
equivariant, Z?4,i + -D4A is properly fourth-order. B 
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LEMMA 4.5. Up to a constant factor, any D4ii must be 36d6d — d8d6 
modulo second-order operator scliemcs. 

PROOF: By [Bl, equation (2.1)], 

(6d8d)-+4u5d8d +[6d8d,u] = 

- 6d(-6e(<ko) + i(dco)d) 

-(8e(du)-c(du)d)8d, 
{ ' } (d6d8)-+4ud6d8 + [d5dS,u] = 

- d6(3dc(dw) + e(duj)6) 

- (di(du) + 3e(du>)S)d8. 

(In general in [Bl], the definition otD'(a> gives us — (D+(level D)uD— 
a[D,w]).) Thus by (4.4), if E4 = a8d6d + /3dSd8, 

a3(E4 + 4uEi + [E4,oJ})(0 = 

V ^ a { - t ( 0 e ( 0 . ( 0 e ( < M ~ <0<0<du)e(0 

(4.6) •• + i(0e(dwX0e(0 + *(<k,MO'(Oe(0} 

+ V ^ / ? { - 3 e ( 0 * ( 0 e ( 0 W + <0<0<dw)t(0 

- e(Oi(du,)e(OL(0 + 3e(du;)c(0e(0c(0}-

By the identities 

<tXl) + e(lW) = taVa, 

e(Oe(n) = -e(n)e(0, 

i(Z)t(ri) = -C(TJXO, 

choosing £ ± du in (4.6) gives 

CT3(EA + 4LOE4 + [E4JU>])(0 = 

^\£\2(a + 3/3)(e(du)L(0 - e (0 W ) , 

which carries £ i-> y/-[\Z\2(a+ 3{3)du>, du) h-> -y/^l \£\2(a + 3/?)f, and 
77 1—> 0 if 77 _L du), £. Since we can only compensate the conformal non-
covariance of E± with operators of order 2 and lower (recall (3.7)), we 
must have a + 3/3 = 0. B 

We are now reduced to proving the non-existence of a formally self-
adjoint 0(4)-differential operator of conformal bidegree (—1,3) with 
leading term 3SdSd — dSdS. 

If A = (Aap) is a (J) tensor, we abbreviate by A# the operator 
Aape(dx^)i(da) on differential forms. 

In what follows, we shall repeatedly use the tensor product decompo­
sitions (3.3) without explicit reference. 
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LEMMA 4.6. Modulo lower-order operators, the space of second-order 
O(^-differential operator schemes on locally conformally flat manifolds 
is 6-dimensional, generated by U\ = J8d, U2 = JdS, U3 = V#5d , U4 = 
V#d8, U5 = 8V#d, U6 = d8V#. 

PROOF: Locally conformally flat manifolds are exactly those for which 
C, the V(2,2) component of curvature, vanishes. By (3.7), we need 
to enumerate schemes of the form r V V modulo those of the forms 
(Vr )V, ( V V r ) , rr. After polarization, the second-order symbol of an 
r V V thus corresponds to an element of 

Homow(V(0) 0 V(2)) ® (V(0) © V(2)) ® V ( l ) , 7 (1 ) ) . 

(The V ( l , 1) part of V(l) ® V( l ) contributes only a curvature term to 
VV.) Now 

dim Homow(V(0) ® V(0) ® V( l ) , F ( l ) = 1 , 

and the corresponding operator is U\ = JA, where A = 8d + d8. (Mod­
ulo lower-order terms, we need not distinguish between A and V*V.) 
Furthermore, 

dim Homo{4)(V(0) ® V(2) ® V(l), V(l)) = 

dim Homow(V(2) ® V(0) ® V( l ) , F ( l ) ) = 

dim Homow(V(2), V(l) ® V( l ) ) = 1, 

the corresponding operators being 

tta) - (§-t(v„v* + V v a - ^„vAvA)M 

((^Q) -> ( T > „ ( A ^ , ) ) = T # A . 

Modulo r?* terms and J A, the first of these is —1 times 

U2 = JdS, 

and modulo J A , the second is 

Us = Y#A. 

Finally, 

dim tf o m 0 ( 4 ) ( F ( 2 ) ® Y(2)® 7 (1 ) , F ( l ) ) = 

A'm £ n d 0 ( 4 ) ( V ( 2 ) <8> V( l ) ) = 3, ' 
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the operators taking ((f>a) to 

(T^HM<f>a), (T'aHWJ, (T^H^a<f>7), 

where 
HaP = | ( V a V ^ + V*V a - |ga/?VAVA). 

Modulo lower-order terms and U\ , U2 , U3 , these last three operators 
are 

uA 

Ü6 

(*«) - (yfiavfiv<i>y), 

(<j>a) -> ( I ^ V ^ V ^ ) , 

(<M " (y^VpVaty). 

But U4 = —V#d6, and if = denotes equality modulo lower-order terms, 

(6V#d<j>)a = - Vx(V#d<j>)Xa 

= - VA(VA(<ty)„« + ^ " « W ) A M ) 

= - ^ " A V A V ^ Q + V A V A V * ^ . 

- F%VAVA<^ + V a V A V ^ A ; 

that is, cW#d = -U5 + U6 + U3 + U4. Furthermore, 

(d6V#4>)a = -vQvA(yA<^), 

so dSVH = — U6- If Uiy... , U6 a r e linearly independent, then so are 
U1,...,U6. 

But by [Bl, equations (1.27), (1.28), (1.30), (1.32)], putting U[ = 
Ui+4L>Ui + [Ui,u], 

U[ = (Au)6d, 

U'2 = (Au)d6, 

U'z = -(ffess u)#6d, 
{ ' ' U[ = -(Hess u)#d6, 

U'5 = -6(Hess u)#d, 

U't = -d6(Hess w ) # . 

To show that these are linearly independent conformal variation schemes, 
pick x G M and an orthonormal basis (ea) of M*. Hess UJ c.in be 
arbitrarily prescribed within the symmetric 2-tensors at x. Suppose \vc 
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have a linear relation ^iaia2(U'i)(()rj = 0 for all £,77 G M*. Then 
choosing £ = 77 = e1 , the choice (Hess u)x = e2 ® e2 gives 02 = 0, 
the choice (Hess u)x = e1 ® e2 + e2 ® e1 gives a4 = 0, and the choice 
(Hess UJ)X = e 1 ®e 1 —e2®e2 gives a^ + a^ = 0. Choosing £ = e1 , 7/ = e2, 
the choice (Hess UJ)X = e1 ® e1 — e2 ® e2 gives 03 = 0, and the choice 
(Hess u)x = e1®e1 — e3®e3 gives a5 = 0. In particular, the second-order 
symbols of Ui,... , Ue are linearly independent. B 

The next lemma states that only one linear combination of U\,... , Uc 
can be used as the second-order correction E2 to the fourth-order term 
given in Lemma 4.5. 

LEMMA 4.7. Modulo first-order operator schemes, any 0(4)-cquivnrinnt 
D±ti must be a constant multiple of 3SdSd — dSdS + E2} where E2 = 
—4U2 + 12^3 + 12U4 — 12U5, on locally conformally flat manifolds. 

PROOF: By (4.5) and [B l , equation (1.38)], with notation as in the 
proof of Lemma 4.6, 

(4.7) (SSdSd - dSdS)f = 3 ( A P + P A ) - 6SPd - 2dPS, 

where 
P = Au> + 2(Hess u)#. 

But 

Sd(Auj) = S(Au)d = U[, 

dS(Au) = d(Au)S = U'2 , 

(4.8) (6d(Hessuj)#<f>)Q = 

-VA(VA(tf'„<!>/,) - V a ( t f ^ ) ) 

= m-U^Uf
4)<t>)a, 

using tfPa as an abbreviation for V aV^u;. This makes the right side of 
(4.7) 

W2 - \2U'Z - 1 2 ^ + 12U£ 

modulo first-order schemes. But we showed in the proof of Lemma 4.6 
that Uj, • • • , UQ are linearly independent. B 

Calculations like those in (4.7), with —J in place of Au> and V in 
place of tf ess u>, now show that our prospective D^^, modulo first order, 
must agree with the E± + E2 of [B l , Sec. 2.a] on locally conformally 
flat manifolds. But [B l , equation (2.2) and the equation after (2.4)] 
shows that (E± + E2)' has order zero. Thus any first-order correction 
-Bi of the schematic form (V7?)V (recall (3.7)) must have ai(E[) = 0 in 
the locally conformally flat case. We would like to show that this forces 
ai(Ei) itself to vanish in the locally conformally flat case. 
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LEMMA 4.8 . Modulo zeroth-order operators, the first-order 0(4)-dif-
fcrential operator schemes on locally conformally Slat 4-manifolds arc 
6-dimensionaL A basis is given in (4.11) below. 

PROOF: By (3.4) and the remarks immediately following, the number 
of properly first-order operators is at most 

(4.9) dim Homow((V(l) © V(2,1) © V(3)) ® V ( l ) ® V ( l ) , V( l ) ) . 

But dim Homow(V(l) ® V( l ) ® V( l ) , V( l ) ) = dim Endow(V(l) ® 
V( l ) ) = 3. By the remarks following (3.4), curvature contributions to 
these operators involve only V J; the operators are 

5 . = (VXJ)VX : (<j>a) >—> ((VxJ)Vx<f>a), 

52 : (<t>a) •—> ((VxJ)Va<f>x), 

53 = -e(dj)8 : (<f>a) ,—> ((VaJ)Vx<j>x). 

From the V(3) summand, we get 

dim Homow(V(3) ® V( l ) ® V( l ) , V( l ) ) = 1 

operator. This involves the V(3) component A of VT; by (3.5) and the 
Bianchi identity V A T A a = | V a J , 

AQpy = 3 (V a T / j 7 + V /?T a 7 + V7Ta /j)— j ^ ( g a ^ V 7 J + a a 7 V / ? J + (7^7VCYJ). 

The operator is 
Si : (4>a) i—> (Aj*<Vp^). 

Finally, the 7 ( 2 , 1 ) summand in (4.9) contributes 

dim Hom0(i)(V(2,1) ® 7 (1 ) ® 7 (1 ) , 7 (1) ) 

= dim Homow(V(l, 1) © 7 (2 ) 0 7 ( 2 , 2 ) © 7 ( 3 , 1 ) , 

7 (0 ) © 7 ( 1 , 1 ) © 7 ( 2 ) ) 

= 2 

operators. These involve the 7 ( 2 , 1 ) component B of VT , where (by 
(3.6) and the Bianchi identities) 

Bap-, = \(2VaTp1 - VpTa-, - V 7T 0 / j ) 

(4.10) - ±(ga/3VyJ + gaiVf,J - 2gMVaJ) 

= \(2VaVM - V0Vay - V 7 7 Q / 3 ) . 
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D is totally trace-free, is symmetric in the last 2 indices, and has 

Bapy + Bp-fa + BJQp = 0> 

so the 2 operators are 

Ss : (4>a) •—> - 3 A " « V A ^ , 

so : (4>a) — • £ « A " V X < ^ . 

To get these operators in a form more suited to the conformal varia­
tional point of view, we introduce the gradients 

C(2),(3) = ProjV (3)V : C°°(V(2)) —> C°°(V(3)), 

G(2),(2,i) = Projv{2A)V : C°°(V(2)) —> C°°(V(2,1)) , 

G(i),(2) = Projv{2)V : C°°(V(1)) —> C°°(V(2)). 

According to [F] , all such operators are conformally covariant. We put 

Si = t(dJ)d, 

(«S'2^)a = (V J)(G^)^2)(t>)\ay 

5 3 = e(dJ)6, 

(Sit) a = -4A/Xa(G(i).(2)0)A/x, 

(Ss<l>)a = BXtla(d<l>)\p, 

(S6<t>)a = -BA'Xa(G(1)j(2)^)AM. 

By the conformal covariance of the gradients and the fact that 

A = G ( 2 ) , ( 3 )T, B = G(2)>(2ll)T,-

the conformal variations of the Si have the leading symbols 

*i(SÍ.)(0 = л/=ï.(d-V-0є(O, 

ffitöXO = - ^ ( d A w Ж Є ) , 

M U X 0 # « = >/=î(G(2),(з)-î,)л',«(C(i),(2)(0^)лł., 
M ^ X O ^ = л/-ľî(G(2),(21i)-î,)л',«(б(0^лł., 
ЫS'6)(0Ф)a = V^(G(2).(24)F)Л^C(l),(2,l)(0^)л,., 
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where F is the trace-free Hessian of u;, v—TC(i),(2,i) = ^1(^(1)^2,1)), and 
similarly for the other gradients. 

We shall show that the Si are linearly independent by showing that 
the cri(S'i) are. Assume a linear relation Efat<Ti(5t') = 0, and recall the 
notation of the proof of Lemma 4.6. On a flat manifold, the third covari-
ant derivative of u; is symmetric, soai(S5) and cr1(S

,
6) vanish. Within 

the symmetric 3-tensors V( l ) © V(3), VVVu; is arbitrarily prescribable 
at a point; making a choice with vanishing V( l ) component, we get 
04 = 0. Making a choice with vanishing V(3) component leaves us with 
Sio^-or(S[). But (o'i(St

i)(cl)(t>)x for i = 1,2, or 3 involves respectively the 
V( l , 1), V(2), or V(0) component of £ <g) <f)x. Choosing only one of these 
to be nonzero at a time, we see that ai = <22 — a3 — 0. 

To show that as and a$ must vanish, we work with a nonflat, bvit still 
conformally flat metric. By (3.6), 

(G(2)t(2ti)F)ocp~i = | ( 2 V a F / ? 7 - VpFai - V 7 F a / ? ) 

- \(ga^XFXl+gajV
xFXf3 - 2<7/?7VAFAa). 

By the Ricci identities and conformal flatness, 

V ^ V a V 7 u ; = V aVtfV7u; - J2"7/?aVMu; 

= VaV^V7u; + VMVau - Va7V*u; 
+ Vc/s^V^u; - V/#7aVMu;; 

in particular, using the symmetry of the Hessian, 

V A V A V a u ; = V A V a V A u; 

= V a V A V A u; + 2V A
a VAu; + JVauj. 

Thus in the conformally flat case, 

(G(2),(2tl)F)apy = f (<7a7V fi + ga/?VA
7 - 2g^VX

a)VXLO 

+ j ( V a 7 V ^ u ; + Va /?V7u; - 2V /?7Vau;) 

- \j(9ayVpLJ + gapV^CJ - 2#tf7VaU;), 

so that 

-y/ZifaWxafa = |(e A 4>)ay(jv
a«> - vaf,v0u>) 

- (f A <f>)afiVfi
yV

aU, 

-y/=l(<Ti(S'9)(t)<t>)y = | (C( i ) , (2 , i ) (0^W(V°" , V T a; - V^Vu,) 

+ | (C(l) )(2, l)(0^)a7( JV«W - V^VfiUj). 
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By, e.g., [LP, (2.5) and (2.6)], the value of V can be arbitrarily pre­
scribed within the symmetric 2-tensors at a given point x without dis­
turbing conformal flatness. In the notation of the proof of Lemma 4.6, 
the choice (Vu;)x = £ = e1 , (f>x = e2 , and Vx = e1 ® e2 + e2 (g> e1 gives 

-v^iMSJXO*)* = fc1, 

while the same choice with Vx = e1 ® e1 gives 

-V=l(ai(5iXW)«=0, 
- V ^ M ^ X W ) . =- - |e 2 . 

This shows that as = ae = 0. H 

As a corollary to the proof of Lemma 4.8, we get that any D 4 j l must 
agree with the operator given in Lemma 4.7 down to zeroth- (not just 
first-) order operators in the conformally flat case. 

LEMMA 4.9. Modulo zeroth-order operators, any 0(4:)-equivariant Z)4)1 

must be a constant multiple of 3SdSd — dSdS + E2, where E2 is as in 
Lemma 4.7, on locally conformally Bat manifolds. 

PROOF: By Lemmas 4.7 and 4.8, 

Z?4ji = 3SdSd — dSdS + E2 + T\a{Si (modulo zeroth order) 

for some constants a,-. By [B l , equation (2.2) and Lemma 2.2], (3SdSd — 
dSdS + E2y has order 0. Thus by the proof of Lemma 4.8, all a,- vanish. 
B 

In fact, [B l , equation (2.2) and Lemma 2.2] show tha t 

(3SdSd - dsds+E2y = 3(z2y - eia^i2)' - 2(v-ilv\y# 
+ 2(Vxu)(2VxV'. - vyx - VKA)#}, 

where Z = J'-2V# and \V\2 = Va
pV^a. Thus we can only have a JD4jl 

if there is a zeroth-order operator P for which 

P' = ( V V ) ( 2 V A I / \ - V.V'x - V - K A ) # 

= 3(VAw)I?A\# 

(recall (4.10)) on conformally flat manifolds. 
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LEMMA 4.10. Modulo actions of r ® r, the zeroih-order 0(4)-operator 
schemes on 1-forms in a conformally flat Riemannian 4-manifold are 2-
dimensional. A basis is given by AJ, (trace — free Hessian J)#. 

PROOF: By (3.7), the operator schemes in question are actions of V V r . 
There are 2 possible ways to enumerate these: first, using (2.4), we note 
that such an operator corresponds to an element of 

HomOW(V{l) ® (7(1) © 7 (2 ,1 ) © 7 (3 ) ) ® 7 ( 1 ) , 7 (1 ) ) . 

This approach gives 6 potential operators; however", it ignores the fact 
that Vr is not just an arbitrary section of 7 (1 ) © 7 ( 2 , 1 ) © 7 ( 3 ) , but one 
in the range of V. The other way is to temporarily ignore the second 
Bianchi identity and view our operator (modulo actions of r ® r ) as a 
section of 

Homo(4)((V(0) © 7(2)) ® (Y(0) © V(2)) ® V(l), V(l)). 

Taking this second approach, we calculate 

dim Hom(V(0) ® 7 (0) ® 7 (1 ) , 7 (1 ) ) = 1, 

the operator being A J; 

dim Hom(V(0) ® 7 (2 ) ® 7 (1 ) , 7 (1 ) ) 

= dim Hom(V(2) ® 7 (0 ) ® 7 (1 ) , 7 (1 ) ) = 1, 

the operators being. 

( V A V A T \ ) # , (trace - free Hessian J)# 

respectively. Finally, 

dim Hom(V(2) ® 7 ( 2 ) ® 7(1) , 7(1) ) = dim End(V(2) ® 7(1) ) = 3. 

The 3 operators produced, 

tta) •— (vavArA")^, 
(<t>a) — • ( V A V T A a ) ^ , 

(<t>a) —* ( V A V T A ^ 0 ) 

are linearly independent of the above for T an arbitrary section of 7 ( 2 ) , 
but collapse to linear combinations of the above for T satisfying the 
second Bianchi identity. As for the 3 surviving operators, the Bach 
tensor Y (see [B] , or [B l , Theorem 2.5] for a description in the present 
notation) agrees with (VxV\Tap), modulo actions of r ® r. Being a 
relative conformal invariant, Y vanishes on conformally flat manifolds, 
and it is straightforward to show that the 2 remaining operators are 
linearly independent. B 
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THEOREM 4 . 1 1 . There is no properly fourth-order covariant of confor-
mal change acting on 1-forms in pseudo-Riemannian 4-manifolds of any 
metric signature. 

PROOF: By analytic continuation in signature [ B 0 , Sec 7] , we need 
only work with Riemannian 4-manifolds. By Lemmas 4.1-4.9, we need 
only show that there is no zeroth-order 0(4)-operator scheme P satis­
fying (4.12). By Lemma 4.10, all zeroth-order 0(4)-operator schemes 
in the conformally flat case are linear combinations of A J, (trace — 
free Hessian «/)#, and actions of r ® r. But by [ B l , equation (2.9)] , 
denoting the trace-free Hessian operator by FT, 

(AJ ) ' = - A 2 u ; - 2(VAu>)VAJ + 2(Au;)J, 

((H J)')ap = -(HAu)ap 

+ 3((V ao;)V / ? J + (Vfiu)Va J - K V ^ X V A J ) ^ ) 

+ 2(Hu>)a(3J. 

By (4.1), the conformal variations (') of actions of r ® r are actions of 
r ® Hess u. 

Thus, since the jets of to are prescribable at a point x £ M , we need 
only produce a conformally flat metric near x with ( V J ) X -= 0,BX ^ 0. 
This just amounts to prescribing the V(2,2) component of R and the 
V( l ) , V(2y 1) components of VR independently at x. But a classical 
theorem (see, e.g., [Ku, B e , St ] ) states that the curvature and Bianchi 
identities are the only pointwise conditions on (R, VIZ); that is, that all 
components of R and VIZ corresponding to the irreducible summands in 
(3.1), (3.4) are independently prescribable at a point. • 
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