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HORIZORTAL LIFTS OF TERSOR FIELDS AND CORNECTIORNS TO THE TANGENT
BUNDLE OF HIGHER ORDER

Jacek Gancarzewicz and Maodesto Salgado

O, Introduction
Let T™ = {30y ] ¥:(~€s+&) ~—> M of class C™] be the tangent
bundle of order r, where M is a manifold of dimension n. We denote by

WM —— M, 'rr(igr) = y(o)

the bundle projection. Let [" be a comnection of order r on M, that
is, " is a connection in the principal fibre bundle F'M of frames of
arder r. Since T'M is am associated bundle with FrM, this connection
defines a distribution H on TrM, called the horizontal distribution,
such that )

T(T™) = V(T™) @ B

where V(TTM) = ker dm is the distribution of vertical vectors on
M.

The restriction dp'rrIHp igs an isomorphism of Hp oato T ()M and we
can defime the horizontal 1lift XH of a vector field X from M ta T'M
by the formula

-1
xH(p) = (am|H,) 7 (X (1))

In this paper we will discuss horizaontal lifts of tensor fields
from M to T'M.

This paper has six sections.

In Section 1 we recall results af A. Morimoto [?7], [11] about
1ifts of temsor fields to the bundle T™M,

This paper is in final form and mo version of it will be
submitted for publication elsewhere.
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In Section ). we study horizontal 1ifts of vector fields and
l=forms. For every V= Oy...,r we defime the horizontal y-1lift of
1=forms from M ta T*M and we study properties of

Xv(a) = O(v) - oﬁ’v

where © iz an 1-form on M and o{”), oY denote, respectively, the

p=lift and the horizontal y-lift of c to T*M. We have
)%
o) = L M ¥ M)
m=0

for every function f on M and every 1-form Jon M.
Since for a vector field X on M and

*gr(X) = X(r) - x

we have

5 = (0 ) - Z 20) x(z-»)
v=l1

then we obtain

X1':(1,){) - é ) x(r-v)(x)

if we define
XV(X) = x(v)

for v £ r-1,

In Section 3 using the methods of A, Morimota we find the prolon-
gation of the operation a‘y(t) fot any tensor field £t on M and we
define the horizontal y-lift of t from M to T°M by the formula

B = 2O) L P

and we study the principal properties of these operations for vy = 1,
essr. (The horizontal 0-1ift is not interesting because t¥0 = 0
for any temsor field t om M.)

The proposed definition gives a gemeralization of known cases. If
r =1, ti»! coincides with the horizontal lift defined by K. Yano
and S. Ishihara [12]. If r is arbitrary and t is a tensor field of
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type (1,1), then tHsT coincides with the horizontal 1ift tH defined
by J. Gancarzewicz, S. Mahi and N. Rahmani [5].

In Section 4 we study horizontal lifts of pseudoriemannian
netrics.

In Section 5 we define a horizontal 1lift of linear cammection V
from M to T'M with respect to & given comnection " of order r. Thus,
for r = 1, we have a horizontal lift of V (from M to ™) with
respect to a linear connection V,. If V = V, them this operation
coincides with the horizontal 1lift of linear comnectioms introduced
by K. Yano and S. Ishihara [12].

In Section 6 we stutg the relationship between the horizontal
lifts of temsor fields and linear connectioms.

In this paper all manifolds are differentiable of class C* and
all objects (as functions, vector fields, forms, temsor fields etc.)
are always of class C®,

1, 1Lifts of tensor fields to the tangent bundle of higher order
In the first section we recall briefly the main results of A.

Morimoto [7], [11] about lifts of tensor fields to the tangent
bundle of higher order, These results will be used in the sequei.

Let us denote by T'M the bundle of r-jets at O of curves ¥ of
class C” on a manifold M. If f 18 a function on M and ¥ = Oyeee,r
we define the y-1lift f(v) as the function on T'M given by the
formula

(1.1) ) (T = 5 g:-,-(fv'a')(o) .

If v 1s negative, then we set f(v) = 0.
For a chart (U,xi) on M we consider the induced chart
(! (U),xi’v) on T"M defined by

(1.2) oY - O

The family of y=lifts of functions is very important because, if X
and Y are vector fields on T*M such that f(f(v)) = 7(2”)) for every
function f on M and every V = O,...,r, then X = .

If X 18 a vector field on M and ¥V = Oy.eeyry, then there is one
and only one vector field x(”) on TM such that

(1.3) OV ey o (xe) (v42=r)
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for all functions f on M and A = Oyeeeyr (see [?7], [11]). The vector
rie1d X{”) on TPM 1s called the y-1ift of X.
Formulas (1.2) and (1.3) imply

9 3 _y(r=v)
(1e4) =5 = (7
Ix-*Y (Bx )
for vy = Opeeepr and 1 = 1,,0.,n (n = dim M),

Ifw is an 1-form on M and vV = Op.e.sTr, then there is ome and
only one 1-form c£”) on TM such that

(1.5) V@) o (ex) O 2T

for all vector fields X on M and X = Oyeeeyr. The 1=-form co(v) on ™M
is called the y-lift of w (see [?7],[11]).
From formxlas (1.2) = (1.5) we have

(1.6) axt” = (axh) )

for vy = 0....,1‘ and 1 = 1’...,n. Umg formulas (1.1)’ (1.5) and
(1.5) we can verify (see [?], [11]) the following properties of
v=11ifts

v

(].7) (f+E)(v) = f(v) + 8(”) . (fs)(v) = ZO t('*) g(v"f")
p=

(1.8) @) 2 x4 g () Z% £ x(»=p)
=

(1.9) (,_,,._T)(V) = w(y) + T(V) . (fm)(v) - Zv f()“') (»=p
m=0

for all functioms f, g, all vector fields X, ¥, all l=forms &, T and
y = 0.....1‘. From (1.3) we also obtain

(1.10) [x(v)’r("')J = [X’YJ(V‘#F-!')

Using formulas (1.7), (1.8) and (1.9) we can prove (see A,
Morimota [?7], [11]).

Proposition 1,1. For each ¥ = Oy.esyr there is one and only one
oparation t ——> t(v) which transforms tensor fields on M into tensor
tields on T*M and satisfies the following conditions:

(a) If t im of type (psq) on M, then t{”) is of type (p,q) om TPM.
(b) It t is of type (0,0) (respectively, of type (1,0) and (0,1)),
then t ) ig given by formula (1.1) (respectively, by (1.3) and



HORIZONTAL LIFTS OF TENSOR HIELDS AND CONKECTIONS

155
(1.5) ). v
(c) The operation t = t( ) is linear with respect to constant
coefficients.
(d) For two tensor fields t and t' on M we have
. y
(1.11) teotn® o 2 W g 0-»
p=0
The tensor field t{¥) is called the y-1ift of t ta T*M. From
(1.11), by inductior, we have
) v,) ()
(1.12) (6, .@t)® o 2y Ve .o P
P V1*...+VP=V P

for every tensor fields t‘,....t on M,
Using the above proposition and formulas (1.1), (1.3) and (1.5),
for a temsor t of type (O,p) or (1,p), we can obtain (see also [7],

(1]

(1.13) “’)(x('u‘).....x:,rp)) . (t(x1....,xp))(“"‘*”'*’kp'rp)
for all vector fields x‘,...,xp on M and Vs Mqreces = Ogeeeyr;
where on the right-hand side of formula (1.13) we have the
(V+P|+...+pp-pr)-1ift of a function t(xl,...,Xp) in the case of a
tensor field aof type (O,p) or of a vector field in the case of a
tensor field of type (1.p).

Using formulas (1.2), (1.4), (1.6) and (1.12) for

1.0.1

3 3
J ...Jp~r® oo»@"%@dx 1@ ooo@ dxq
1 Q Ix x P

t=1t

we can find the local expression of t(v). Namely, we have (see [11])

0‘01 ( —ZV Z- )
N D SN Jl.“j ¢ Uurre
vl,...,vp 1
‘71.00031(1
(1.14)
-I?"-;-®.o. ®-“'I§—. ® dx '"h®ooo @dqu’qq
ax V! ax P’
2, Horizontal 1iftg of vector fields and 1=forms

Let I be a connection of order r on M. For each point y of TrM,
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" defines a horizontal subspace H_ of Ty(TrM) such that

Y
Ty) =
Ty(T'M) = H, ® vy (TM)
= th .
where Vy(TrM) ker dy'n- is the vertical space at y. Since dy'rrlla, is

an isomorphism of Hy onto Tfr(x)M’ we can define the horizomtal 1ift
XH of a vector field X from M to P'M by the formula

B = i) )

If (T,x*) 1s a chart on M and

3 H v __3
X=Xt s , xB = gt =
then we have (see [5])
X0 o o
(2.1) v 1., i,V
xi’v=_Z g‘} ..:_. Xj rjji i x‘ 1...x3.5
s=1 V1+...+VS=V 1°**"s
Y‘,o.o’ys>o
for ¥y = lyeeegr and 1 = ly...,0n, where I’%i 4 are the
]... s

components of M.

We propose the following definition of horizontal y-1ift of
l-forms from M to T'M.

Definition 2,1. Let w be an 1=form on M and ¥ = Oyeeeyr. We
define the 1-form coH’v on T by the formulas
wH,v(xH) = 0

(2.2)
LI xM)) = (e(x)) 0¥

for all vector fields X on M and A = Ojeeeyr=1.

The 1-form coH’y is called the horizontal v-1ift of © from M to
T™ with respect to the given commection [" of order r. ’
Let us note that c*Y is a well-defined 1-form on T'M and the
restrictions of > and w(v) to the vertical space V_(TTM) coincide.

Also, if vy = 0, then J*C = 0 on TTM, ¥
In the case r = 1, B! coincides with the horizontal 1ift of

defined by K. Yano and S. Ishihara [12], [13].
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It (U,xi) is a chart on M and

QO = q dxi ’ CoH’v = mg:; dxi”‘k
then from (1.4, (1.6), (2.1) and (2.2) we have
Yy r
H,y 1 E J
0 = 2
i’o k:] 51 ‘B-T 11*...").5:)' rulooois
21,...,)8>0
(2.3)
i,,2 i,
x L x 8 (oY)

H,v _ V-p
wi:}» = (wy)
for ,A..'-‘ 1,.0.,1’.

The horizontal y=1ift of 1-forms has the following elemenmtary
properties.

157

Proposition 2,2. If ©, @' are 1-forms on M, f is a functiomn on M

and y = 0,...,!‘, then

(2.4) (0 + w')H’V = “H:"’ + Q.H.‘-"
v

(2.5) (g)Es” = 2 ¢ Hy =
p=0

Proof. The first formula is trivial., To show the second formula we

observe that for every vector field X on M we have

(?o £ By By - 0 = (o))
F.-

and .for A= O,...,r-l

v bY%
(Z ) By o T (a(xy) PpeAer)
=0 =0

I M (aqxy) AT

Pre=)
(ta(x)) O *+3=r)

u

]

(fw)H""(X(x))

"

aince for w > V+\-r and X £ r-1, V=utd-r is negative and hence
(0(x)) O =#¥A-T) = 0, and the results follows.
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Ifw is an 1=-form on M, we define
v
(2.6) x (CJ) = - W

So, K‘v(w) is an 1-form on T'M which measures the deformation between
the v-1ift and the horizontal v-lift of «.
Now from (1.9) and Proposition 2.2 we deduce

(2.7) e+ o) = @ + Plon
(2.8) e = I ) ke
p=o

for all 1-forms w, ' on M and all functions f on M.
If X is a vector field on M, we define

(2.9) K?(x) = x(*) _ xH

So, K"(x) is a vector field on T'M which measures the deformation
between the complete 1ift and the horizontal lift of X.
Using the formula

(e)E = 2(0) 4H

and (1.8) we abtain

Kr(fx) = (e 2 (e)H
F ) x(r=m) | p(0) LH
p=0

p=i
If we want to have an analogous formula to (2.8) for vector fields
in case v = r, we must define

(2.10) ACSIE M

for ’.A,= o’ooo,r"10
Now we have

(2.11) Xr(x) . qu‘xs"XX)
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Using formulas (1.8) and (2.8) = (2.10) it is easy to verify
Proposition 2.3. If X, X' are vector fields on M, f is a function
on M and y = Oyeee,ry, then

(2.12) SR DI C e )
v
(2.13) P = ¥ =k
p=0

3, Harizontal 1ifts of tensor fields
In Section 2 we defined the operations z{v, Y = OS...,r, for
vector fields and 1-forms. If we denote y”(f) = 1’(" for any
function £ on M, then Propositions 2.2 and 2.3 imply
hY
Z tho P
p=0
v LN Yt
Y (g = Z yi(n) 7 T)
(3.1) #=0
zyv(x + X')

3 ex)

[}

1]

HA"(X) + 7"

¥lo+ ) = o) + )

1]

Row, using the same arguments as A. Morimoto im the proof of
Proposition 3.1 in [11] we can prolonge the operations K‘V, Y= Ogeeen
r, for any tensor fields. We have the following proposition.

Proposition 3.,1. Let J(M) denote the algebra of tensor fields om
M. For any V = Oye.eyry there is one and only ome operation

K" 2 T(M) —eemems T(TTM)

such that

(a) It t is a temsor field of type (p,q) on M, then Kv(t) is a
tensor field of type (p,q) on T™M.

(b) If t and t' are temsor fields on M, then we have

/}:
(¢) If X is a vector field onm M, then

e e = )+ e
%
ACCRDNERp S (OF-Maath
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x(x¥) _ yH itver

Kv(X) =

X() ifv<r

(d) If wis an 1-form on M, then

Xv(“) = co(y) - By

where «i%” 1s the horizontal y-lift of w defined by (2.2).
(e) If £ is a function on M, then *(v(f) = 1O

From (b) we easily obtain by induction

v, %

4 1 ® P
02 E t ® Y @t = t ) X @ (t )
-2) ¢ p v1+;vp=y LR 5%

where tl”“ % are tensor flelds on M, Rext we laok for explicit
formulas for U'(t)’ where t is a tensor field of some special types.

Proposition 3,2. If ¥ = Oyesepr and t is a tensor field of type
(0,p) on M, then

(a) Pt = a8, L

for all vector fields Xi,...,Xp on M,
(b) If there is a vertical vector among XiseoesX, € Ty, (T™¥), then

PO EpeensX) = 0

Proof. Fistly, we suppose that t = 0, @ ...® ¢, where ©yseeyty are
1=-forms on M. Now, according to (3.2) we have

Y,
(3.3) Yo = 2= 0o .01
Vf”ooo"Vp:\)
From Proposition 3.1(d) we obtain
repad = ofPad)

and hence

(v )
MG LCSE) 2 o« ‘)(x*,‘)...w P (x0)

v1+...+v =y ! P
p

/]

e o, L)
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To prave the second formula for t = I~ ® e ® CJp, let XI,...,X
be vectors t.angent at y, € T™ to T™M such that for some i,
1< 1, < )(1_o is vertical. There are a vector field Yon M and 2,

0 ¢ A £ r-1, such that xl,, ) (¥o )+ Row, according to (3.3)
we have

P

~ o~ < v, ~ v, ~
YO Epeeask) = 2 pHOED cen ¥R E) =

v1+ooo"' Vp=v

because from (1.5), (2. 3 and (2.6) we obtain

V r~~
X%(wio)(xio)

Y,
@ M)
v, ) H,V.
= @ o @M (g - @ B0 ™)) ()
= O [

Let K be the family of tensor fields t of type (O,p) on M such
that t verify Proposition 3.2. We proved that tensor fields of type
9O ... ® O belong to X, where 01,...,C~>p are 1=-forms on M. From
the 1inear1ty af X and Y=1ifts we obtain that if t and t' belong to
K then so is t + t'. Since every tensor field of type (0,p) is a
sum of tensor fields of type ©, ® ... ® @5s K contains all tensor
fields of type (O,p), and the proof is complete.

To prove the analogous proposition for temsor fields of type (1,p)
we will need the following lemma.

Lemma 3,3. If g is a tensor field of type (O,p) on M and x1,...,xp
are vector fields on M, them

EE R R 1 RO S

Praof. It is trivial from the definition of the O-1ift of temsors
and formula (2.1).

Now we can prove the following proposition.

Proposition 3,4, If t is a tensor field of type (l.p) on My, p > 0,
and Y = Oyeeeypr, then

(a) If X;pesesX  are vector fields on M, them we have

P

(v)(x4”"’x ) if vér
() (X eeerXD) = -
X 1 t(r)(XE,...,XI:) - (t(x4i0°"xP))H if y=r
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(b) If there is a vertical vector among f],...,‘)‘(p € Ty (T"M) then
\) ~ ~
K(t)(x1po..’xp) = 0

Proof. We suppose, at first, that t = g ® X, where X is a vector

field on M and g is a temsor field of type (O,p) on M. From
Proposition 3.1(b) we have

v

(3.1) Yo = 2 eyt

lu.:-.
Now, for vector fields X],...,Xp on M, according to Proposition 3.2,
we have

v

Y, H M H H, V=M
Perod,xd - ,é, @ (aeeax) fVHx)

v

pan g o, yoh

and next, using (2.9), (2.10) and Proposition 3.2, we obtain

£
» . . f-% g(f‘)(xﬁ’,...,xg) X(y'ﬂ) ifv<r
=
X‘ (t)(x.l’ooo’xp) = v _
/LZ:_; g (x‘f,...,xg) x¢ =)
- s(o)(x?,....xg) x it v=r
A%
Z_ (g(’“)® x(""‘))(x*},...,xg) if V<r
={ *D
= e x=1) (xl . xE)
;k
AR S A

From Proposition 1.1, for every v= Oy...,r, we kndw that

b4
S eWe x®-P - o)™ = )
pm=0
and, on the ather hand, from Lemma 3.3

(S(Xl,...,Xp))(o) XH = (&(XI"‘.,XP) X)H = ((8®X)(X1,....Xp))ﬂ

(6K yeeesX )
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The above remarks finish the proof of part (a) of the proposition
for a temsor field t = g ® X. Part (b) of Proposition 3.4 for t =
€ ® X is an immediate consequence of Proposition 3.2(b). Using the
same arguments as in the end of the proof of Proposition 3.2 we can
prove that Proposition 3.4 is true for all tensor fields of type
(1,p), p> 0.

Now we praopose the following definition of horizomtal y=-lift of
tensor fields.

Definition 3.5. Let t be a temsor field of type (p,q) om M and
Y = Oyeeeyrs The tensor field (af type (p,q))

1%: A O T

on T™M‘is called the horizontal y=-lift of t from M ta T™M with
respect to a given connection af arder r on M.

Ta finish this section we give a few remarks.

Remark 3.,6. The horizontal O-1ift is not interestimg because for
every tensor field t, t2*C = 0. In fact, if

1iee0d 3 3
1
3,...39 —r®~--@ —r'®dx '@ e ®axt

2 9z ix P
is a tensor field of type (p,q) on M, then from formulas (1.12) and
(3.2) we have

t=

e =y (til::. b1 (-—I-ma @K"(F)
b 4
3
8y (ax” N ® oo ®P2ax’ )
1 eeed
- 1°°*1py(0) (3 _4(0) (0)
= (t11...3 ) (—-{T) ® o0 @ (_'I‘)
a Ix ‘ ax P
® (axH© @ ... ® (a3
- (0
and hence
g0 _ (0) Xo(t) = o
Remark 3,7. If t is of type (0,1) on M, them t¥Y 18 given by

formila (2.2). If t is of type (1,0), then t3»T = ! is defined in
Section 2 and iy 2 0 for vV <r.
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Remark 3,8. Since ]g”(x) = X(V) for ¥ <r and all vector fields X
on M, 1f
i oooi 3 3
t = t 1 p "-I- ® XX @ —1.
x ! ax P

is a tensor field of type (p,0), the for v < r we have

My Lieeel M M
f) = > S GO X'(—ar;) @ oo @Y P(=Fm)
dx

Poteeot i=V x P
i eeel (M
- 7 @hin e 2 e, . .0 (- ) e’
Mc"o.o—"}‘lp:y ax 1 ax P

= 0

and hence, R xv(t) = 0 for every tensor field t of type
(p,0) on M and v < r.

Remark 3,9. Let t be a tensor field of type (1,1) on M. According
to Proposition 3.4 we have

St SN
> hray o o
tH’v(XH) = 0
> ) =y O
for v = 1yeeesr=ly = Ojeeeyr~1 and all vector fields X on M.

Formulas (3.5) mean mean that t®sT coincides with the harizontal
111t t¥ of temsor fields of type (1,1) introduced in [5].

Harizontal r-lifts of geometric structures defined by tensor
fields of type (1,1) were studied in [S].

4 Horizontal 1ifts of metrics

In this section we will study horizontal v-lifts of tensor fields
of type (0,2), particulary, horizontal y-lifts of metrics and pseudo-
metrics. At first, we introduce the following notation. Lat g be a
tensor field of type (O,p) on M and a = 14eeeyPs FOor a wector field
X on M we denote by (x;g the tensor field of type (O,p=1) on M given
by the formula
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2"
(Mﬁ)(x1,ooo’x _1) = E(XI....,Xa_q ,X,Xa,..f,XP_I)

for all vector fields X1....,Kp__] on M,

From Proposition 3.2, Definition 3.5 and formala (1.13) we obtain
immediately .

Proposition 4,1. If g is a tensor field of type (0,2) on M and
Y = 1seeeyr, then gH’v is given by the formulas

(4.1) aﬂ’v(xﬁ.fﬂ) = 0

(4.2) g o, x W) - (u2g OT) (o)
(4.3) g M, x) = (wfg) O (o)
(o) g (x(M )y o (gx, ) OeasA-2r)

for all vector fields X, ¥ an M and P },._' = Ogeceyr=1.
Farmulas (4.2) and (4.3) imply that if g is symmetric then so is

g for every vV = ljeeeple

Let g be g symmetric tensor field of type (0,2) (a quadratic form)
an M, We suppose that the dimension of kernel of the linear mapping

TH D ¥ > g(¥,=) ¢ TRM

is constant on M. We denote by ¢ this dimension,
Every point of M has a neighborhood U and a frame X seeesXy

defined on U such that

&(X,Xy) = 0 for i £ %
1 ifi = 15.e052
g(xiixi) = -1 ivi = 8"‘1,...;&"‘b

o "1if1i

a+b+1 peecepll

for some numbers a, b3 of course a + b + ¢ = n = dim M.

Wa denote by (a,b,c) the signature of g. We suppose always that
the numbers a and b are independent of a point of M. The frame
X,seeesX, is called adapted to g, We have the following praposition.

Propogition 4,2, If g 15 a symmetric tensor field of type (0,2)
and (a,b,c) is the signature of g, then the signature of gt is
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(24 hd bév *2) ’ al» + S) d b,v’ C(v+ 1) + (r = y)m)

if v is even, and

( (a_+ b)z(v + 1) . {a_+ b)—‘.gv + 1) sc(v + 1) + (r -v)n)

if v is odd. ]

Proof. Let xl....,xn be an adapted frame to g on some neighborhood U.

We denote by g = [g(x »X )]
1273°01,3=

1,...,“

1 v4e..00C,..,.0,......0 }
HENS : r?
0 1 : o
(o] -1 O 0
(4.6) A E - e
0 00 -1 0
0 00 00 cl 3
: . [ 3 N .: c
0 00 o,}
\ . x ¥ )
Row
(4.7) {X:Ili! x;(iu) t lyd=lgecesn; M=0yece,r=l ¥

is a frame on T (0) © TM. Using formulas (4.1) = (4.4) and Lemma
3.3 we find the matrix G of gi*” with respect to the frame (4.7)

[0 ceetr 0 & 4 VPR Av_,1
0 eeee 00.0 0 vevea O
s : s : r=y+1
0 4000 00 O 0 veess O
- B 000 00-0 0 veeee O
G= 1A% ,,.00 0 0 ceeer &
g.’k et 00 0 veeer & O
: : : .l vl
¥ 12 00 g'eieern. O |
V41 y =1

where g 1s glven by (4.6) and;A;seeesA,_, are some (nx n)-matrices
(for a matrix A, A¥denotes the transpose of a matrix A). We also use
the fact that for a comstant function f = g(X;,X,), t®) 201
X # 0 and f(o) is the same constant,

In order to calculate the signature of @ we observe that G = PKGP,
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where i
I o000 0 o o 9 0....9 7
$T., 2t : r=v+1
0 veeed T O 0 veves O
P= [0 ceeee O &Ay oee €A,
9.00... 99 I oo 0o 9
. P M Vel
6 e 00 0w
r=v+1 Y=l
[ 0 eeeee O 8 Qeceess O
4 . . . R=y+1
0 eeeee 0O O seeas O
G = & eceee OO0 O seeee O
O oo 0 e O 0 O L X N X 3 &
: Tor ] by
[ 0 ceeee 00 & eoees O]

— —
reV+1 Vel

Since P 1s non-singular matrix and E = P‘GP, we conclude that G and
G have the same signature. To find the signature of G we look for
the number of negative and positive solutions of tne equation

det(G =aI) = O

where I is the identity (r + 1)n-matrix.
Through a straighforward computation we can obtain that

a(v+2% +b w ay +§b(V+2) c(+1) + (r=-v)n
£(1=2) (1+2) - A
if v is even
det(G=-2I)) = (a+b) (¥ +1) (asb) (»+1)
+(1-2) b2 (1+1) 1c(v+1) + (r->»)n
. if v is odd

which prove the proposition.
Proposition 4.2 implies that for V < r the tensor gﬂ’v is
degenerate. As an immediate comsequence of Proposition 4.2 we obtain
Carollary 4.3, If g is a pseudometric on M with signature (a,b,0),
then gH’f is a pseudametric on 7™M with signature
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(ac_? béroa) . a(r+1)2+ br , 0)

if r is even, and

¢ faR)(rsl) | fasb)(ztl) o )

if r is odd.

We observe that gH'r is never positive~defined. In the case r = 1
Corollary 4.3 coincides with the result obtained by K. Yano and S.
Ishihara [13].

S5e A horozontal 1ift of linear connectiong
rirst of all, we prove the rollowing theorem.

Theorem 5.1. If "is a connection of order ron M and Vis a
linear connection on M, then there is one and only omre linear
connection vH on TM such that

(5.1) viﬂrﬂ = (Tl
(5.2) Vi ¥ = [ O)]
H
(5.3) Vi) ¥ o= 0
H () 0 +h-r)
(5.4) oy TP = (%1

for all vector fields X, Y on M and Yy s = Ogece,r=1e

The linear connection V is called the horizontal 1ift of ¥ from
M to T™M with respect to [.
Ppoof. At first, we observe that conditioms (5¢1) = (5.4) determine
uniquely V » Really, if 7 is a linear comnection on T*M which
satisfies conditions (5.1) = (5.4), then we can compute the
Christofell symbols of VH as some functions of Christofell symbols
of V and I This implies the unicity of VH,

To prove the existence of such limear connection VIH on T™M we
consider a chart (U,xi) on M, Let

3 3

geceey

Ix!' ax?

be the canonical frame on U, Now

{ (‘;)H )(V) H i’.'i=1.o’o,n: V=0seeesr=1 }
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is a frame on T'M|U. Thus, there is one and only one linear
connection V on T*M U such that

9 \H 2 _H
(5.5) v o i 53 = (Vp 59

(
A v 9 (v) _ 3 \H , 3 (V)7
(5.6) V‘-iﬁ“ =p® = [EphEp ]
ox
(5.7) "7( 3 )(v) (%)H = 0
ot *
[ 9 | (V4+i-r)
5.8) V) =P - @ ) Oap-r
Ix3 Gl 3——3
(é-;I) X 5;{ X
for i,j = lyeeesn and V,M: Ogeceg=le.

Let K be the family of all pairs (X,Y) of vector fields on U such
that conditions (5.1) = (Y.4) hold for X, Y and Yyl = Oyeee,r=1,
~ ~ ~
where VH is remplaced by V. The definition of V implies that the

pair (a;;x-{ . -5-33) belongs to K for every i,j = 1yeeeynie
Now, we will prove that the family K has the following properties:

(a) I£ (X,¥) and (X',Y) belong to K, then stk is (X+X',Y).
(b) If (X,¥Y) and (X,¥') belong o K, then so is (X,F+Y').
(c) It (X,¥) belongs to K, then for every fonction £ on M (£fX,¥) and
(X, £fY) belong to K.
‘The. properties (a) and (b) are an immediate consequence of the
linearity of all operations which intervene in formulas (5.1) -

(5e4) o
To prove the property (c) we observe that (£x)¥ = £(0) x¥ ana
)

XB(f(o = (X£) (O). Now, using these formulas and the fact that
(X,Y) belongs to K, we obtain
~ ~ H
v ) Gl Y
() Vr“’)xH
= 200 (pH

= (£ Vnf
Vg tof o V(00
XH V)(H(f YH)

H, ,(0)y , o(0) & LH
= x3(elQy 4 ¢ U.r
e
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(xn) (@) ¢ 4 £(0) (yy)H

H
(v, £¥)

"

It means that the pairs (fX,Y) and (X,fY) verify conditiom (5.1).
Raow we have

TV 0 J0 o)
(ex)H <

£00) [xH,¢0)]

[f(o)xH,Y(v)] + ¥ (g(0)) 4H

[,y ]

1]

because !(v)(f(O)) = (Yf)(v’r) =u for ¥ = Ogyeeeyr=1. According to
(1.8), we obtain also

~ l -
Vg n® o Z 9 4 N
p=0 X
v ~
= 5 KHEW)p=p g0 g O
m=0 XH
= - XB(f(#J)y(V'FJ . f(FJ[kH’Y(vﬁ#)
p=0
j=0
=[x ()]

Hence, condition (5.2) 1s verified by the pairs (fX,Y) and (X,fY)
for ¥ = Ogeeeyr=l.

A verification of condition (5.3) for the pairs (£x,¥) and (X,fY)
is trivial. Condition (5.4) for these pairs we verify by the same
method as in the construction of the complete 1ift v(T) of U (see A.
Morimoto [8], [11]).

Ta sum up the last arguments we have proved properties (a), (b)
and (¢c) of Ko It implies that V is a linear connection on TINIU
satisfying conditions (5.1) = (5.4) for all vector fields X, Y on U
and Vo = Opecesr=1. '

Let (U, xi) and (U',x ) be two charts on M. Using ¢ our construction
for these charts we obtain linear connections V ana V' on T™M|U and
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T™M|U' respectively satifying conditionms (5.1) = (5.4). It implies
that the restrictions of V and 7' to T™M lUnU' are two linear
connectios on T™M[U AU satisfying (5.1) = (5.4) for all vector
fields X, ¥ on UnU' and Vg = Oseeeyr-1, Taking into account the
unicity of linear connections satisfying®these conditions, V V' on
TerUnU'. 'l’hus, using an atlas or M we can construct a linear
connection V an T™M satisfying the conditioms of our theorem.

From Theorem 5.1 we obtain

Corollary 5.2. 1f V and V, are two linear connections ox M, then
there is one and only one linear connection VH on TM (the horizonmtal
1ift of V with respect to Vo) such that

H v
Va ¥ = (T » VT

2 v
VXV

(7, x DY

0

1]
1]

H LV
(¢} Vy?Y
’ xV

for all vector fields X, ¥ om M, where !H denotes the horizontal
lift of X with respect ta Vq.
'1(.9 of. We employ Theorem 5.1 for r = 1, Taking into account that
= XV and [x ,YVJ = (\Z1 Y)V, conditions (5.1) = (5.3) imply the
first three conditions of our corollary and from (5.4) we obtain

H LV _ (0+0=-1) _ (-1) _
va ¥ o= (V¢ D) = (, gD = 0
Corollary 5,3. rhe horizontal 1ift of V with respect to V to the

tangent bundle ™ coincides with the construction of K. Yano and
Se Ishihara given in fIZJ, [13].
Progf. We use Corollary 5.2 for V= Y.

Proposition 9.4. Let V/ be a linear connection and [" be a -
connection of order r on M. If V 1s a vertical vector field on T™M
and X is a vector field on M, then

H 5 H S
VExE - o v ¥ = [X&,¥
¥ ’ Xt (7]
Proof, To prove the first formula we fix a point y of T™™. There are
a number Y < r and a vector field ¥ omn M such that

V@ = P

Now we have
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W@ = @, B = o
\'J Y

Teo- prove the second formula we observe that every vertical wector
field V on T'M can be locally written as a linear combination

T a
v-z_.rav

where f(a) are functions on T M, '9.' are vector fields on M and Ya
are numbers such that O < Vg < r-l. Now from (5.1) we obtain

V= SIvi. ¢ ¢ @

H
Vi axﬁaa

= [&5]

Proposition 5,5. Let T and T be the torsions of V and Y&
respectively. If X, ¥ are vector fields on M and Vym = Opeeeyr=1,
then

(5.9) Fod, el = (o, )F - R, Y)
(5.10) FoxE, )y - o
(5.11) Fx ™)y o (rex,) AR

where RG(X,Y) is a vector field defined in [5] which depends on the
curvature form of the given connection I"of order r on M.
Proof. It is trivial taking into account the formula (see [51)

(5.12) [,vH] = [x,7]% R7(x,Y)

and the definition of VH-

Proposition 5,6. Let [" be a connection of order r, r > 2, and V
be a linear connection on M. The horizontal lift VY of V with
respect to [" is without torsion if and only if V is without torsion
and the curvature form {l of [  vanishes (['is without curvature).
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Progf. In fact, if VH is without torsion and r > 2, then there exist
vsMu €& r=1 such that A =v +u=r > O. Row, from (5.11), we obtain

(T(x, !’))( ) . o] for some positive number 2 and so T = 0. Next, from
(5.9), we obtain 87(X,¥) = 0 for an;,r vector fields X and ¥ on M.
According to the defimition of R7(X,¥) (see [5]), we have e, vl =
0, where (1 is the curvare form of [" and X and Y!B denaote the .
horizontal 1ifts (with respect to ") of X and Y to the bundle FM of
frames of order r. From this we obtain (L = O.

Inversely, 1f we suppose that T = O and {1l = O, then the definition
of R%(X,Y) implies that RY(X,¥) = 0 and from (5.9) - (5.12) we obtaim
F = 0. The prof is finished.

In the case r = 1 this proposition is not true because in formula
(5+11) we must consider v = i = O and we have

(5.13) Fx(,r() - (rex,;m " - o

In the case r = 1, using (5.9), (5.10) and (5.13) we can prove
easlly the following proposition.

Proposition 5,7. Let V, Vo be two linear connections on M. We
denote by T and Ro, respactively, the tarsion of V and the curvature
af vo'

(a) I£ T = 0, then the horizontal 1ift V" of V with respect ta ‘Z) is
without torsion if and only if R = O.

(b) 12 R, = O, then v is without torsion if and onmly if V is without
torsion.

In the case V= ¥, the part \a) of Proposition 5.7 was proved by
K. Yano and S. Ishihara [2].

We can look for the curvature tensor of V but farmulas are more
complicated. Namely, we have

Proposition 5.8Let V be a linear connection and I' be a connection
of order r on M. If R is the curvature tensor of the horizontal 1lift
W 0t 7 with respect to [, then

goE, ¥z - (r(x,1)2)E

gxH vz 00) o [R (X,Y) z(”)] - v, z)
RY(X,¥)

RxE,xONHE - o

ROeE,x @)yzW) o I, [y, 2] 0] - (v) [,249] - (v)]
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r(xM) ¥ (M)zE - o
rxO), e @D o (r(x,¥)2)) #1120

for all vector fields X, Y, Z on M and 9,}44 = Opeeoyr=l,
Proof. Trivial from (5.1) - (5.4) and the definmitions, taking into
account that [XH Y _] =0 for V< r-1,

§s Relationship between the horizontal 1ifts of limear connection
and tensor fields.

Let ™ be a given connection of order r on M. This connection r
defines the covariant derivation. of sections of matural bundles of
arder r. We will denote this derivation by D(r). For every y = Oyeceen
r-1, this connection ' determines one and only one cannection of
order V, called the part of order vy of r‘, and this connectiom
defines the covariant derivation, denoted by D v)’ aof sections of
natural bundles of order VY,

We consider the matural (vector) bumdle

2
JNm) = {jxx : X€ M, X is a vector field on M ]

2
of order A+1, where A= Ojeseyr=1, If 6 is a section of J (TM) and
v £X we can define the vector field §(*) an TTM by

(6.1) s = xPy
where y is a point of T™M and X is a vector field on M such that
s
S = dgpnX -
0f course, we have (3”X)) = (™11 - x) for p= 0peeerr=1,
where J”X is the section x —» ;l X of 3J¥(TM).
In [5_] the following formula was proved
4 4
(6.2) [x8,¢®)] = (¢ *1 g7 ) = (iR =1y )
fgr v = Oyeeesr-1. The last equality holds because in the expression
Dy ) JlY we can use any number X 2V,

We also consider the (vector) bundle

b S
J(mMeoT™™M) = {j:t : XEM, t is a tensor field of type (1,1) on M}
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af order A+l for A = Oyee.yr=1. We can define an cperation between
sections of J'(TM) and J (TM ® T™4). If 6 is a section of J'(TM) and
T is a section of JM(TM ® T™M), we consider a new section TS6 of
INTM) given by

(6.3) (T6)(x) = 34(E(X)
where x is a point of M, t is a tensor field of type (1,1) on M such

that T(x) = j;t. and X is a vector field on M such that 6(x) = Jix.
Taking into account the bilinearity of the cperation

(Ty6) e TFE
we have the following farmula
(6.4) p*V(zs) = N6 s |

If T is a section of J}(TMQ ™M) and y €2, then we define the
tensor field T(”) af type (1,1) on T™M setting

(6.5) @ = Wiy

where y is a point of):l‘rM and t is a tensor field of type (1,1) on M
such that T(T(y)) = Jfr(x).t’
It is clear that for any tensor field t of type (1,1) on M we have

(6.6) £ L o™ o @™y

for ¥ = Upeesyr-1, where J”t is the section x —»> i;t of Jy(m@T'M)..
We have the following proposition. ’
Proposition §,1. Let « be integer from 1 to r. If If t is a

tensor field of type (1,1) on M, X, ¥ are vector fields om M and

VM = Oyeespyr=1, then we have

(o) if x £ r=1
(6.7) (viutﬂ"")(xﬂ) =

((Tee) (r))H ifa=r
(6.8) Wit ) = (pfF)™1e) @) (r))
(6.9) (r‘)‘[(,,,t“"‘)(w% =0
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(th) (% 4v=r) (Y(f‘t’) )

(6.10) (Vi(v)tH’“)(Y(M)
((Vgt) (7)) @ #Y4p=2r)

To prove this proposition we need the following lemma.
Lemmg 6,2. If § is a section of g1 (™M) and » £ r-1, then

1.;H,oa(a(x?)) o (te)(al‘i’)’-r)
where t6 = (J t)S (see (6.3)).
Proof. Let y be a point of T™ and X be a vector field on M such

that S(T(y)) = §T})X. Now § () = x®)(y) anad according to (3.5)
and (3.6) we obtain

@B Oy ) = @B @O i)
= (tX) (% +V=r)

= (tG') (°t+v"‘r)

Praof of Proposition 6,1. Formula (6.7) is an immediate consequence
of (3.5) and (3.6). To praove (6.8) we use (3.5), (3.6), (5.2), (6.2)
and Lemma 6.2. Really, we obtain

H ,Hooy o (V) H , Hyx e (V) Hyt ;B L ()
) (xY) = % (y -t Y
(VXH ) ) va( ( )) (VXH )

VHH(W) (X 4V=p) _ tﬁ*“((n)((r)f‘l'))(”)
X

= (n)((r)f“t)(“) (@),

Formula (6.9) is obtained directly from definitions of V" and
et e verify (6.19) in the same way as in the paper of A. Morimoto
[11]. The proof is complete.

From Proposition 6.1 we deduce immediately

Corollary 6.,3. Let " be a connectionm of arder r, V/ be a linear
connection and t be a temsor field of type (1.1) on M, e 3¢
parallel with respect to VE if and only if t is parallel with respect
to V and D(r)J’"t = 0, where p{*) is the covariavt derivation with

respect ta I,
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Corollary G.4. (K. Yano and S, Ishihara [12]) Let Y he a linear
connection and t a tensor field of type (1,1) on M, If V and t
tHs! denote the horizontal 1ifts of V and t to the tangemt bundle M
with respect to V , then VEtH¥ = 0 1f and only if V& = 0.

We have alsa the following proposition.

Propogition 6,5. Ef t is a tensor field of type (1,1) on M, X, Y
are vector fields om M and Vel = Oseeepr=1, then

) - @ &%, 1)) if o« £ =1
@ gt al) =
X (@) (oNF + rUx,7) - t&) Rz, 1)) if«=r

@ gt @) = @™o @)

) (t p{F)gT=Tx) (+v-r) 1f w < =
(L (9)*-H’°‘)(YH) =
X (t n&“)ﬁ“x - Dg)'x)(‘)) it x=r

(Lx(),) i) (Y(}*)) = (L) (D) (o4 Y4 flm21)

Proof. Using the definitions of t¥** ana V¥ and formila (6.2) we
cbtain directly the above formulas talking into account that ¢ He% and
t( ) coincide for vertical vectors. The last formula can be obtained
as in the paper of A. Morimoto [7], [11].

From Proposition 6.5 we obtainm immrdiately

Corollary 6.,6. Let r be an integer such that r > 2,
(a) If « ¢ r1, then L (y)t Hs* - 0 1f and only if Lyt = O and for

evary vectar ﬁ.eld Y on M we heve t(D(r)Jbix) = 0.
(b) L (U)tH’ =0 if and only if L t o] aud for every vector fieldY

Yon i we have t(o{7)a™x) - ng)a““x.
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