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ON MUTATIONAL DEFORMATION RETRACTS 

José M. R. Sanjurjo 

Let X be a closed subset of a metrizable space X1 considered as 

a closed subset of an ANR(«̂ 6)-space .P. The family U(X',P) of all open 

neighborhoods of X' in P is called the complete neighborhood system 

of X' in P. By a mutational deformation retraction of X' to X we 

mean a mutational retraction (see [5J) r:U(X',P) —> U(X,P) such that 

for every U'£U(X',P) and for every rfcr with range U' there exists 

V'£U(X',P) contained in U' and in the domain of r such that r|v,~i 

(the identity) in U'. If the homotopy can be. chosen stationary on X 

we say that r is a stationary mutational deformation retraction. A 

mutational retraction r:U(X',P) —> U(X,P) is said to be regular if 

for every U'£U(X',P) and for every r,r'£r with range U' there 

exists V'£U(X',P) such that r|v,'-r'|Vl (rel X) in U'. The notion 

of regular mutational retraction is a generalization of Dydak's no

tion of regular fundamental retraction [2 J in which a more restric

tive condition is imposed on homotopies. 

The problem whether every W-shape deformation retract is statio

nary has been raised by K. Borsuk in his book [lj (p. 190, Problem 

4.15) and, up to the author's knowledge, is open even in the com

pact case. In the present note we give a partial answer to the ana

logous problem in Fox shape theory [4]. The reader is referred to 

[lj, [3] and [6j for information about theory of shape. 

Theorem 1. Let r:U(X',P) —->U(X,P) be a deformation mutational 

retraction. Then r is stationary if and only if r is regular. 

Proof. The part "only if" is trivial, we are going to prove the 

converse. Let U'£U(X',P) and consider r^r with range U' and domain 

U'£U(X',P). Since r is a mutational deformation retraction there 

exists an open neighborhood V'£UJ of X' in P such that 

(1) r.v-=i in U'. 

Since U'£ANR i t i s easy to see, by using the homotopy extension 
theorem, tha t there e x i s t a map s :V —>U' and an open neighborhood 
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U C v' of X in P such that 

(2) s(x)=x for every x £ U 

(3) r, V I-s, V I (rel X) in U'. 

Since r is regular, there exists r'£ r such that r':W —->U v/here 

W C V is an open neighborhood of X' in P and such that 

(4) r'-r|w, (rel X) in U'. 

Let us now define a map (j) :K=W x {OlUXxI (J W x {1} ^v' by 

(Mx,0)=x, <f>(x,l)=r' (x) for every x £ W 

and (f>(x,t)=x for (x,t)£Xxi. 

Since <|>(x,l)£u it follows from (2) that 

scj) (x,0)=s(x) , scf> (x,l)=r' (x) for every xfeW 

and scf)(x,t)=x for (x,t)£X*I. 

It follows from (1) and (3) that cf)~scj) in U' . Moreover scj) is homo-

topic in U' to the map \p:K — > U ' defined by 

i|)(x,0)=iKx,l)=r'(x) for every x £ W 

and i|;(x,t)=x for (x,t)£ Xxl. 

To, see it consider a homotopy x-Wxi — > U ' such that x(x,0)=s(x), 

X(x,l)=r'(x) for x £ W and x(x,t)=x for (x,t)£xxi. We define a map 

F:Kxl —-^ U' by 

F((x,o) ,t')=x(x,t') ,F((x,l) ,t')=r' (x) f or x £ W , t'£I 

and F( (x,t) ,t') =x for x £ X and t,t'£l. 

Obviously, F ( (x, t) , 0) =s<|) (x, t) and F (x, t) , 1) =i|> (x, t) for (x,t)£K. 

hence uO — s4> ̂  cf>. Since U'CANR and \p can be extended to W'xi (by the 

map $(x,t)=r'(x)) then, in virtue of the homotopy extension theorem, 

(j> can also be extended to a map <f>:W,xI — > U ' which realizes a homoto 

py between i and r' stationary on X. Since r.-.-r1 (rel X) in U' we 

conclude that ri,J(-i (rel X) in U' and, consequently, r is statio

nary. 

Corollary. Let X be an MANR [5j with compact components. If X is 

a mutational deformation retract of a metrizable space X' lying in 

P£ANR(^t) , then X is a stationary mutational deformation retract of 

X' . 

Proof. By Corollary 3.11 of [5] X=(J) {X±, i e i } , where {X i,i£l} 

is the family of all components of X. Since X.£ FANR for every i£ I 

it follows from Dydak's Corollary 1, [2], that each X. is a regular 

mutational retract of one of its neighborhoods in P. Hence, there 

exists a neighborhood W of X in P which can be represented as a to

pological sum W=@{W. , i £. 1}, where W. is a neighborhood of X. in P 

and X. is a regular mutational retract of W. for i fc. I. Consequently, 

there exists a regular mutational retraction r:U(W,P) —> U(X,P) . 

Since X is a mutational retract of X' there exists a map s:X' — ^ W 
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such that s(x)=x for every x£X. Let s:U(X',,P) >U(W,P) be a muta

tion generated by s. Then r'=r s_ is a regular mutational retraction 

and, since X is a mutational deformation retract of X', we can 

easily get from Theorem 1 that r' is a stationary, mutational defor

mation retraction. 

REFERENCES 

1. BORSUK, K. Theory of Shape, Monografie Matematyczne 59, Polish 

Scientific Publishers, Warszawa, 1975. 

2. DYDAK, J. A simple proof that pointed FANR spaces are regular 

fundamental retracts of ANR's, Bull. Acad. Polon. Sci. 

Sér. Sci. Math. Astronom. Phys, 25 (1977) 55-62. 

3. DYDAK, J, and SEGAL, J. Shape Theory: An introduction, Lecture 

Notes in Math. 688, Springer-Verlag, Ber-

lin, 1978. 

4. FOX, R.h. On Shape, Fund. Math. 74 (1972), 47-71. 

5. GODLEWSKI, S. On components of MANR-spaces, Fund. Math. 114 (І981) 

1-9. 

6. MARDESIČ, S. and SEGAL, J. Shape Theory, North Ыolland, Amsterdam, 

1982. 

Departamento de Geometría y Topología 

Facultad de Matemáticas 

Universidad Complutense 

28040 Madrid. Spain. 


		webmaster@dml.cz
	2012-09-18T09:53:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




