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LOCALLY FINITELY GENERATED DIFFERENTIAL SPACES OF CLASS Cr 

Wlodzimierz Borgiel, Klaus Buchner, Wiesiaw Sasin 

In this paper we consider differential spaces of class Cr, 
which are a generalization of the concept of differential spa
ces introduced by Sikorski ({Vf, [9]) . We consider differential 
structures of functions of class Cr with values in the field K 
(K= E or c) , where r€ tNu{oo f coj.f Q means analytical functio
ns. In Section 2 we study some properties of differential spa
ces, which are locally finitely generated by a family of K-va-
lued functions. 

1.BASIC NOTIONS. Let C be a non-empty set of K-valued fun
ctions defined on a set M. ThenTT^ is the weakest topology on 
M such that all functions of C are continuous. The family of 
sets f" (Q) , where Q is open in K, f€ C,is a subbasis of the 
topology T Q . 

For any subset A of M we denote by C^ the set of all K-va
lued functions f on A such that for every point peA there exi
st a neighbourhood UeT^ of p and a function g€ C such that 
f|Anu = gUnu . 

Let Cr(Kn,K) be the set of all functions C: Kn > K of 
class Cr, where r€ Utfv{cx> , o j , N is the set of natural numbers. 

Denote by scrC the set of all functions Co(f^f.##ff ) f 
where ^€C r(K n,K), f^.,.,^6 C, n6 H, r€ Nf{oo , co] . 

The set C is said to be a differential structure of class 
Cr on M (shortly dr-structure) if 

(a) the set C is closed with respect to localization, i.e. 

C = cM , 
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(b) the set C is closed with respect to composition with 
smooth functions of class Cr, i.e., C=scrC 

It is easy to verify that every dr-structure C is a linear 
ring over K. 

By a differential space of class Cr (shortly dr-space) , 
where re INu{oo , co} , we shall mean any pair (M,C), where M is 
a set and C is a dr-structure on M . If (M,C) is a dr-space 
and A is an arbitrary non-empty subset of M, then (A,C.) is 
also dr-space, which is called a dr-subspace of (M,c). 

.For a set C of K-valued functions on M the set C=(scrC_)-^ 
is the smallest dr-structure on M including the set C . Then 
(M,C) is called the dr-space generated by C . It is easy to 

see that Tn = °Cn 
* o # 

Let C be the set of germs of functions from C at p. By 
a vector tangent to a dr-space (M,c) at a point p of M we shall 
mean any K-linear mapping v: C > K such that 
(1.1) v^o^,...,^)) « | £ G|±(f-,(?),...,fn(p))-v(f.) 
for any £,,...ffn€ C , G e C ^ K 1 1 ^ ) . 

We will denote by T (M,c) or shortly T M the set of all 
vectors tangent to (M,C) at a point peM and by TM the disjoi
nt sum of all K-linear spaces T M , peM . 

Let TC be the dr-structure on TM generated by the set 
{f o% ; f 6 c\ U jdf ; fee}, where 3T : TM — > M is the natural 
projection and df: TM > K is the function defined by 
(1 .2 ) (d f ) (v ) = v ( f ) f o r any v f TM . 

A mapping F : M > N of a d r - s p a c e (M,c) i n t o a d r - s p a c e 

(N,.D) i s c a l l e d C r-smooth i f F * ( D ) CZ C , where F * ( D ) := { g o ? ; 

g 6 Dj . One can prove 

LEMMA 1 . 1 . Let ( M , C ) be a d r - s p a c e gene ra t ed by C , p e M 
A ° 

an atbitrary point and v : C > K be a function satisfying 
the condition 
(*) for any Ge Cr(Kn,K) , f̂  ,... ,fn<= C Q p , ne N if 

ff°(£1f...f?n). 0 then^(i(f1(p),...,fn(p))-vo(f.)= 0. 
Then there exists a unique vector v tangent to (M,c) at p such 
that v|C = v . 

Proof. Let v: C > K be the mapping defined by v^f J = 
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- Z I ^1(^1 fP) V p > ) # vo(^i) ' for f 6 Cp , where 

£| ,..•,.?n€ C and G*6Cr(K ,K) are such germs that there is 
an open neighbourhood U € TTQ of p and f|U = o©(f .. ff )lu . 
Prom (*) is follows the correctness of the definition of the 
vector v .O 

Now, let (M,C) be a dr-space, rgKu{oo,cjl, generated by 
a set C . A vector field tangent to (M,C) is a mapping 
X: M > TM such that 9T°X = idM . Let us put V^ n^oo^u> . 
For any vector field X tangent to (M,C) and f 6 C let Xf:M —> K 
be the function given by (Xf)(p):= X(p)(f) for peM . A vector 
field X tangent to (M,c) is called Ct-smooth, (t^r), if ̂ QXf 
€ Ht-1 , where E±: = (sc1 CQ) M for ie Nufoo ,0} and HQ is the 
set of all K-valued continous functions on the topological spa
ce ( M , T C ) « It is easy to verify that X: M > TM is a C*-
smooth vector field tangent to (M,c) if and only if X*(TC)(Z 

Ht-1 • . t 

Denote by 3£ (M) the set of all C -smooth vector fields 
tangent to (M,c). It is clear that X (M) is a H^ .-module. 

A dr-space (M,c) has a constant differential dimension n 
if for any p6M there exist a neighbourhood UeTTp of p and Cr-
smooth vector fields X..,...,Xn€ 3£ (UJ such that for any qeU 
the sequence X. (q) ,... ,X (oj is a vector basis of T (M,c) and 
X1f...,Xn is a basis of (-î-j) TJ -module 3f

r(u). 
If M is a Cr-manifold, Cr(M) the set of all Cr-functions 

on M, then (M,Cr(M)) is a dr-space of constant differential 
dimension. 

2.MAIN RESULTS. Let (M,C) be a dr-space, r€ Nu{°o , co]. 
(M,c) is said to be finitely generated by a set C -{f̂ ,...,f ] 
if C = (scCQ)M([4]) . 

Let N be a non-empty subset of Kn, n€ K and D:= C ^ K ^ K ) ^ 

It is easy to observe that (N,D) is a finitely generated dr-
space by the set {^T^N -^nlN] , where 9T±: K

n »• K is 
the projection onto the i-th coordinate for i = 1,...,n . The 
natural imbedding tjj: N ^ r is a smooth mapping of (N,D) 
into (Kn,Cr(Kn,K)) . 

Let peN be an arbitrary point and I :T (Kn,Cr(Kn,K))—•K11 
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be the natural isomorphism given by 
(2.1) Ip(v) -(vC^),...,^)) for v€T p(K

n) . 
It is evident that the composition L=Io(i w) : T (N,D)—^K11 

* P P v Ny*p pv 7 ' 
is infective. 

Let us put Or(N):= { f e C ^ K ) ; f|N = o} . Consider a K-
linear subspace N =fh 6 Kn ; f|h(p)= °

 for any f € Or(N)J ,where 
f |h(p) is the directional derivative of f in the direction of 
h . 

PROPOSITION 2.1. N = L (T (N,D)) . 
Proof. We first show that L (Tp(

NfE))c:N . Let h 6 
L (T (N,D)) . There is a vector v6 T (N,D) such that lp(v)= h. 
For any f $ 0r(N) we have f«tN = 0 . Thus v(f°*N) = 0 . It is 
easy to. see that 

•(-Sr> -v(f<>(3LrN,...,TrnlN)) - 0 | . ( P ) - V ( * : . I N ) = 
L*I i 

= (grad f)(p)-h = f|h(p) . 
Thus ^|h(p) = 0 for any f€ 0

r(N) or equivalently h6N p . 
Let now h€N .It means that f|h(p) = 0 for any f 6 0r(N). 

It is evident that the following condition is satisfied: 
(*) for any GeCr(Kn,K), n€ N if ̂ (g^ IN ,... ,3TnlN) = 0 

in, 

then ̂ T GT^Cp)-^ » 0 . 
In fact, since 660r(N), G|h(p) = 0 or equivalently 

> b|^(p)#h^ = 0 . Prom Lemma 1.1 it follows that there exi

sts a unique vector v,6 T (N) such that Vn(9C.|N) = h. for 

i = 1 ,... ,n . Of course - ^ 0 0 = h • This proves the inclusion 
N

P
C L p C T

P C N ^ ) - D
 f , 

Now, let us put G = {(grad f)(p) ; f6 0r(N)j. Of course G 
is a K-linear subspace of K . One can prove 

PROPOSITION 2-2. G © N = Kn and G is g-orthogonal to 
N with respect to the metric g defined by 
(2.2) g(x,x') »jZ--1'--i for x.x'eK11. 

Proof . The proof is almost t r i v i a l . It is easy to see that 
N - {he K?; (grad f) (p)«h = 0 for any f 6 0r(N)} = G^ . Since g 
is non-degenerate, G © N = IT . D 

COROLLARY 2.1. The following conditions are equivalent: 
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(i) dimT N = n 
(ii) f |h p = O for any f e 0r(N), 
(iii) %J.(P) - ... = H (P) = O for any féOr(N). 

i v n 

Proof. Prom Proposition 2.2 it follows that dim N = n 
iff dim G = 0 . It is clear that dim G = 0 iff (grad f)(p)= 0 
for any f 6 0r(N) . This is equivalent te£i) and (iii) . a 

PROPOSITION 2.3. If dim T N = k̂ .1 , then there exists an 
open neighbourhood UeTT-r. of the point p and a k-dimensional 
Cr-surface SCKn including .U and D]J« C^s)^- , where C

r(s) = 
Cr(Kn,K)c . Moreover, the integer k = dim T N is the smallest 

r -P 
dimension of such a C -surface S. 

Proof. L is an isomorphism of T N onto N . Thus dim T N = 
P P P P 

dim N = k . Prom Proposition 2.2 it follows that dim G- = n-k . 
P P Let u.,...,u v6 K

n be a vector basis of G- . There exist fun-
i n—K. p 

ctions f. ,... ,f , € 0r(N) such that v. = (grad f.) (p) for i=1 ,. 
...n-k . Since rank (-Q̂ i(p)) -ĵ i-̂ n-k = n~k' the maPPinS 

^ 1£ j^n 
(fA ,...,f ,) : Kn > Kn~ is regular at p. There is a neigh-

n /Of \ 
bourhood V open is topK of p such that rank (mn^-((0) i<i£n-k 

= n-k for q e V . 
Consider the set S = [q<sV ; f 1 (q)=f2(q) = .. .=fn_k(q) = o} . 

Prom the implicit theorem ([1] , [7] , do]) it follows that S is 
a k-dimensional Cr-surface in Kn. Of course, the set U = MAV 
is open in TTp and UCS . Clearly D-j=- Cr(s)u .D 

PROPOSITION 2,4. If dim IN = 0 then the point p is isola-
XT 

ted in N. 
Proof. Suppose that p is not isolated in N. Then there 

exists a sequence (p.) of points of N different from p and co
nvergent to p . Consider the sequence lî : = . ?** ~ Ijjj . , n6 K , 
of points such that hn =|l|for any netl. There exists a sub
sequence (h ) convergent to a point hGK11 and |h[= 1 . One 
can easy seeHhat for any f €Cr(Kn,K) 

f(Pnt)-f(P) 
i-»oo |P n. 
VJL IX - P I = f l ^ > 

*І 
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Thus for any f 6 0r(N), since f|N = 0 , we have 

f(Pv,.)~ *YP) 
I n i-^oo I P n P| 

Hence heN and h $ 0 . Thus dim N ^ 1 , which contradics 
dim I N = dim N p = 0 .Q 

Now let^)r([12]) denote the class of all dr-spaces (M,c) 
which fulfills the condition: 

(* *) for any pe M there exist a set U 9p open in Tp and a 
C -manifold M such that U is contained in the set of points of 
M, dim M = dim Tp(M,c) and C-j = C

r(H)a . 

Prom Proposition 2.3 and 2.4 it follows that (N,D)62.)? . 
Now consider a dr-space (M,C) finitely generated by a set 

CQ= [f.,.,.,^] . Let $ : M > Kn be the smooth mapping defi
ned by 

(2.3)^ §(p) = fo(p).."ffn0?))
 f o r p € M • 

Let $ : (M,C) >($(M), C r(K n,K)^^) be the mapping <f> on
to the image 4>(M). Similarly to Lemma 2.1 in ([4]) one can 
prove 

IiEMMA. 2.1. Let (M, C ) be a dr-space finitely generated by 
the set c

o= / f . ! ,...,fn^ . Then: 
(i) the empty set and the sets of the form <f>~ ( A ) make 

a base of the topology ^ Q , where A is an arbitrary set from 
the base of the Tikhonov topology of Kn, 

(ii) the mapping $ : (M,c) > (<£>(M), C ^ ^ K ) Q ^ ) is 
open , 

(iii) T c is the Hausdorff topology iff <£ : M * 4>(M) is 
a homeomorphi sm. 

PROPOSITION 2.5. If (M,c) is a finitely generated dr-space 
by the set C0= {f^...,^] , then the mapping $ ^ C ^ K ^ K ) ^ ^ 

> C is an isomorphism between linear rings. If TTQ is a Hau
sdorff topology, then the mapping 

$ . (MfG) * ($(M)f CV(}^9K)^^) 
is a diffeomorphism. 

Proof. Since 9 is a surjection, <£ is a monomorphism . 
mmmmmmmmmmmmm

 tmi^ 

Now we wi l l prove t h a t $ i s "onto" . For any f 6 C , l e t 
Gf: $ 0 0 > K be defined by 
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(2.4) C f (q) = f(p) for q 6 $(
M) , 

where peM is such that q = <|>(p). Cleary, 

(2.5) G fo$ = f . 

It remains to show that Cf 6 C ^ K ^ K ) ^ / - ^ . Fix q6<§(M) 
and choose p€M such that $(p) = q . There exist an open nei
ghbourhood V € T c of p̂ and a function GeC^K^K) such that 

(2.6) flv = Gfo$lv . 
From (2.5) and (2.6) we have 

Co^lv = Cf° $ Iv . 
Hence^Gf| 4> (v) = G|$(v). Evidently from Lemma 2.1 it follows 
that ̂ (V) is an open set containing q . Thus »~$ C1*(Kn>K)xAfl) • 

If TTQ is a Hausdorff topology, then by Lemma 2.1 $ is a 
homeomorphism. It remains to show $ is smooth. In fact, it 
results from the following equalities: 
(2.7) f±<>§"

1 = SE^IfcOO for i = 1,...,n . 
This finishes the proof.D 

A dr-space (M,c) is said to be locally finitely generated 
if for every p 6 M there exists an open neighbourhood V 9 p such 
that the dr-subspace (v,Cy) is finitely generated. 

Let X r denote the class of all locally finitely generated 
Hausdorff dr-spaces. 

PROPOSITION 2.6. <£r = 2>^ . 
Proof. If (M,C) is of class Sb* , then for any p6M there 

exist a set U9p open in Tp and Cr-manifold M such that UcM, 
dim M = dim T (M,c) and Cy = Cr(M)TJ . Since M is locally fini
tely generated,(U,Cy) is also locally finitely generated as a 
dr-subspace of M . Thus (M,C) belongs to £ r. We have proved 
the inclusuon SDrCI<£r . 

Now let (M,C) a locally finitely generated dr-space. For 
any p€M there exist an open neighbourhood V of p and functions 
g±: V > K , i = 1,...,n such that Cy = (sc

r{g1 f-tSn J)y 
From Proposition 2.5 it follows that <f = (g1,...,gn) is a 
diffeomorphism of (v,Cy) onto (^(v), C

r(Kn,K) vp(v)) •
 Let 

dim T (M,C) = k . Then dim T y ^ VOO = k . From Proposition 
2.5 it follows that there exist an open neighbourhood We 
top ty(V) of vf(p) and a k-dimensional Cr-surface S(ZKn such 
that Cr(Kn,K)w = C

r(s)w . 
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Let !3 = VP"1(W)U(S^W) x {w} and l e t P: £3 > S be the 

mapping def ined by 

J Yfo) when q e ^
1 ( W ) 

C2.8J F(q) = ^ q/ w h e n q = q̂/ ̂  w^ and q' e S^ W . 

Cleary, F is a bisection. It is easy to see that Cr(s) : = 
F*(cr(s)) ia a dr-structure on S such that F is a diffeomorph-
ism of S onto S. Obviously, dim S = dim S = k and 9"1(w)cS . 
Moreover, C , = Cr(s)u. . f because F | Y~

1(w) = Y| ̂ "1(w) 
Y '(w) Y ^w) 

Therefore (M,c)e <£r and J ^ C ^ * . a 

PROPOSITION 2.7. Let NcKn be a subset such that dimT (N,L) 
= n for every peN, where D := Cr(Kn,K)N . Then (N,D) has a 
differential dimension n . 

Proof. Let us put Xi = T^- for i = 1,...,n . Of course, 
X1f...fI is a global basis of

1 Cr(Kn,K)-module 3£r(Kn). It 
is evident that (^N)^p •*

 T
p(Nf-D) -—> T (Kn) is an isomorphism 

for every p € N. Let us put 

(2.9) Y.(x) »(tN)"i xCXi(x)) for x e N, i = 1 ,... ,n . 
It remains to prove that Y . j f . . . fY is a basis of H 4-module 
# P ( N ) , where H ^ = (scr"" {O^l N,..., 9rjN})N . It is easy to 
see that Y.(5T.|N)= di . for i,j = 1 ,... ,n . Evidently every 
dr-smooth vector field Z € 3£r(N) may be presented in the form 
Z = £ Z f hL , where Y 1 = Z (STjN^ H ^ , i = 1,... ,n . Of 
course, Y1 (x),... fYn(x) is a basis of Tx(N,D) for every xeN.Q 

COROLLARY 2.2. The sequence Y1f...fYn defined by (2.9) is 
a basis of H. .j-module 36 (N) for any t-£r . 

Proof. Let W e ^ ^ N ) . Since Y., (x) ,... ,Yn(x) is a vector 
basis of T (Nf.D)f W(x) for any xeN may be uniquely presented 
in the form W(x) = 5 ^ H;1(x)Y.(x)f where Y

1 is a K-valued fu-
1*1 ±

 r \ 

notion defined on N, i = 1f...fn . Hence and from (2.9J we 
have 

WCX)(5TJN) = M^fx) for xeN, i = 1,...fn . 

Thus ̂ P1 = W(3T.|N)e Ht-1 for i = 1 ,...,n . This finishes the 

proof. • 

COROLLARY 2.3. If (MfC) is a space of class $)* such that 
dim T (Mfc) = n for any peM, then (M,c) has a differential 

dimension n . 
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Proof. This is a consequence of Proposition 2.6 and 2.7.O 

EXAMPLE 1 . Let N C R 2 be the graph of a function f: R —> ft 

which is of class C 2 but not C 5. The dr-space (N,D) with D = 

Cr(ft2,IR)N , r£Hu{oo, cj], has a differential dimension 2 for 

r>3 and has a differential dimension 1 for 1^ r<2 . It resu

lts easily from .Proposition 2.3 and Proposition 2.7. 

EXAMPLE 2. Let N c K n be a dense subset, D = C r(K n,K) N . 

Then (N,D) has a differential dimension n for rs Nu{oo , a>J# 
EXAM 

given by 

EXAMPLE 3. Let NCR 2 be the graph of the function f:R—>R 

•{ 
x5 for x>0 

f ( x ) = \x2 f o r x < 0 . 
The d r - s p a c e ( N , D ) , where D = C r ( R 2 , R ) N , r e N u { o o , <*>}, i s a 
1-dimensional C r -manifold f o r 1 « r < 2 , but dim T ( Q X ( N , D ) - = 2 

f o r r > 3 
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