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LOCALLY FINITELY GENERATED DIFFERENTIAL SPACES OF CIASS cF

Wodzimierz Borgiel, Klaus Buchner, Wies%aw Sasin

In this paper we consider differential spaces of class Cr,
which are a generalization of the concept of differential spa-
ces introduced by Sikorski ([8],[9]). We consider differential
structures of functions of class C¥ with values in the field K
(K= R or C) , Where ré€ INU{OO ’ w}, CQ means analytical functio-
ns. In Section 2 we study some properties of differential spa-
ces, which are locally finitely generated by a family of K-va-
lued functions.

1.BASIC NOTIONS. Let C be a non-empty set of K-valued fun-
ctions defined on a set M. Thencl':C is the weakest topology on
M such that all functions of C are continuous. The family of
sets f°1(Q) , where Q is open in K, f€ C,is a subbasis of the
topology Tg. _

For any subset A of M we denote by CA the set of all K-va-
lued functions f on A such that for every point peA there exi-
st a neighbourhood Ue‘tb of p and a function g€ C such that
flANU = glANTU .

Let cT(k®,K) be the set of all functions 6: K'—> K of
class C¥, where ré INU{OO ,60} , N is the set of natural numbers.
Denote by scTC the set of all functions G'OCf1,...,fn) ’

where G € C*(¥%,K), f,,...,f,€C, ne N, re Nufoo, @},

The set C is said to be a differential structure of class
¢* on M (shortly d*-structure) if

(a) the set C is closed with respect to localization, i.e.

C = CM ’

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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(b) the set C is closed with respect to composition with
smooth functions of class Cr, i.ed, c=scTC.
It is easy to verify that every d¥-structure C is a linear
ring over K.

By a differential space of class c* (shortly dr—space) ’
where re Nu{oo, w}, we shall mean any pair (M,C), where M is
a set and C is a d'-structure on M . If (M,C) is a dF-space
and A is an arbitrary non-empty subset of M, then (A,CA) is
also d¥-space, which is called a d*-subspace of (M,C).

For a set Co of K-valugd functions on M the set C=(scr00')M
is the smallest d'-structure on M including the set Co. Then
(M,C) is called the dr—space generated by CO. It is easy to
see that TC = TC .

Let 8p be the %set of germs of functions from C at p. By
a vector tangent to a dr-space (M,C) at a point p of M we shall
mean any K-linear mapping v: & —> K such that

(1 .1) v(GO(f1 ,...,fn)) = %: .Gli(f1(p) ,...,fn(p))-v(fi)

for any f1,...,fne ﬁp ’ GGCr(Kn,K).

We will denote by TP(M,C) or shortly TpM the set of all
vectors tangent to (M,C) at a point pe M and by TM the disjoi-
nt sum of all K-linear spaces T M , pe M .

Let TC be the dF-structure on TM generated by the set
{ftﬂf; fe C}U{df .; fe C}, where T : ™ —> M is the natural
projection and df: TM —> K is the function defined by
(1.2) (df)(v) = v(%) for any v€ TM .

A mapping F: M —> N of a dr-space (M,C) into a dr-space
(¥,D) is called CT-smooth if F¥(D) C , where F¥(D):= {goF :

g€ D}. One can prove

LEMMA 1.1. Let (M,C) be a dr—space generated by Co sy PEM
an atbitrary point and Vot 6op —> K be a function satisfying
the condition
(») for any GGCr(Kn,K) , %,...,%ne'&o , ne N if

° f1,...,fn)= 0 then 3 Gli(f1 (p),...,fn(p))-vo(fi)= 0.
Then there exists a unique vector v tangent to (M,C) at p such
that vlC = v_ . R
Proof. Let v: Cp —> K be the mapping defined by v(f) =
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T~
= Zgli(f1 (p) ,...,fn(p))~vﬂ(fi) , for fe ép , where
f1 ,":4..,fne dop and G6eCT(X",K) are such germs that there is
an open neighbourhood U € TC of p and flU = G‘°(f1,...,fn)lU .
From (%) is follows the correctness of the definition of the
vector v .0

Now, let (M,C) be a d¥-space, re Nu{oo ,w} , generated by
a set C_ . A vector field tangent to (M,C) is a mapping
X: M —> TM such that {ToX = idy . Let us put n‘g’N n<ocogw
For any vector field X tangent to (M,C) and feC let Xf:M — K
be the function given by (Xf)(p):= X(p)(f) for peM . A vector
field X tangent to (M,C) is'called Ct-smooth, (tSr), if f\?CXf
€ H,_, , where H;:= (sc* C_ ) y for ie Nu{eo ,w} and H  is the
set of all K-valued continous functions on the topological spa-
ce (M, T;). It is easy to verify that X: M —> ™ isa C'-
smooth vector field tangent to (M,C) if and only if X*(TC)C
H

t-1
Denote by X °(M) the set of all C'-smooth vector fields

tangent to (M,C). It is clear that X°(M) is a H,_,-module.

A dF-space (M,C) has a constant differential dimension n
if for any p€ M there exist a neighbourhood Ue‘fC of p and cr-
smooth vector fields Xj,...,X € XT(U) such that for any q€ U
the sequence X,(a),...,X (q) is a vector basis of T (M,¢) ana
Xyse..,X, is a basis of (H._;)y -module XT(v).

If M is a CT-manifold, C®(M) the set of all C'-functions
on M, then (M,Cr(M)) is a d¥-space of constant differential
dimension.

q

2.MAIN RESULTS. Let (M,C) be a d“-space, re Nufoo,w}.
(1,C) is said to be finitely generated by a set C ={fy,...,f ]}
if C = (scCo)M([lll) . . )

Let N be a non-empty subset of K, ne N and D:= C (Kn,K)N.
It is easy to observe that (N,D) is a finitely generated at-
space by the set {‘J[’.IIN,...,‘anlN} » where IT,: K — K is
the projection onto the i-th coordinate for i = 1,...,n . The
natural imbedding 4 y: N — K' is a smooth mapping of (N,D)
into (Kn,Cr(Kn,K)) .

Let pe N be an arbitrary point and Ip:Tp(Kn,Cr(Kn,K)) —>g"
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be the natural isomorphism given by

(2.1) Ip(v) =(v(ﬁ1),...,v(9?n)) for VveT (Kn)
It is evident that the composition L =1 °(1,
is injective.

Let us put 0°(N):= {feC"(x",K); £IN = 0}. Consider a K-
linear subspace Np:{heKn 5 flh(p)= O for any f€ Or(N)} ,where
i‘|h(p) is the directional derivative of f in the direction of
h .,

PROPOSITION 2.1. N, = L (7 (N,D)).

Proof. We first show that L (T (n, D))CNP . Let h €
L (r_(v, D)) . There is a vector Ve Tp(N D) such that Lp(v) h.

N)wp : TN, D)—>Kn

For any f € 0°(N) we have foty = 0 . Thus v(fo'l.N) . It is
easy to see that
Ca)
v(ory) = V(f°(9l' Iv,..., o IN)) Z (p)~V(fﬂ: 7 Iv) -

(srad £)(p)-h = £, (p)

Thus f|,(p) = O for any f€ 0F(N) or equivalently h€N_ .
Let now h€ N_ . It means that flh(p) = 0 for any fE€ o~(N).
It is evident that the following condition is satisfied:

(x) for any GecT(x",K), neW if G'o(&qln,...,ﬁ‘t‘nln) =

4
then g Gll(p)-h = .

In fact, since G eo™(N), Glh(p) 0 or equivalently
; G|i(p) h = 0 . From Lemma 1.1 it follows that there exi-
sts a unique vector vhe T (N) such that i (‘JC' IN) = h for
i=1,.u.,n . Of course L (v ) = h . This proves the 1nclusion
N, <L (2, (¥, D) .o ‘

Now, let us put 6= {(grad £)(s) ; £eo*(M}. of course G
is a K-~linear subspace of K*. One can prove

PROPOSITION 2.2. G, @® N/ = k' and G, is g-orthogonal to
Np with respect to the metric g defined by

m
(2.2) g(x,x') = E X X§ for x,x'eK".
Proof. The proof is almost trivial. It is easy to see that
= {he Kn, (grad £f) (P +h = O for any f€ Or(N)} = Gp . Since g
is non-degenerate, Gp@ Np .o
COROLLARY 2.1. The following conditions are equivalent:
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(1) dimTpN =n ,

(ii) fl, p =0 for any fe 0°(N),

(1)  Z(p) = ... = —3—% (p) = 0 for any fe o°(N).
1 . n

Proof. From Proposition 2.2 it follows that dim N_=n
iff dim G = O . It is clear that dim Gp= 0 iff (grad f)(p): 0
for any £€O0°(N). This is equivalent tefii) and (iii).qQ

PROPOSITION 2.3, If dim TPN = k21 , then there exists an
open neighbourhood Ue‘fD of the point p and a k-dimensional
oY -surface S K including U and Dy= Cr(S)U , Where Cr(S) =
Cr(Kn,K)s . Moreover, the integer k = dim TpN is the smallest
dimension of such a C'-surface S.

Proof. Lp is an isomorphism of T N onto N ., Thus dim T N =
dim Np: k¥ . From Proposition 2.2 it follows that dim G_= n-k .
Let uyye0e,uy € K* be a vector basis of G_. There exist fun-
ctions fy,...,f, | € orD(N) such that v;= (grad f;)(p) for i=1,.
..,n-k . Since rank (—é—gj:(p)) 1<ign-x = -k, the mapping

1€ jgn
is regular at p. There is a neigh-

(£y00erty )t K—s KK

bourhood V open is topK® of p such that rank (-%f{;(q)) €i€n-k
1€ j<n
= n-k for q€V .

Consider the set S = {qeV ; £,(a)=f,(d=...=f,_,(a)= 0} .
From the implicit theorem ([11,[7], [10])it follows that S is
a k-dimensional C¥-surface in K'. Of course, the set U = MNV
is open in TD and UCS . Clearly DU= Cr(S)U .0

PROPOSITION 2.4. If dim TpN = 0 then the point p is isola-
ted in N,

Proof. Suppose that p is not isolated in N. Then there
exists a sequence (pi) ‘of points of N different from p and co-
nvergent to p . Consider the sequence h := I_gﬁ-':'—%-l , neN ,
of points such that h =|1] for any ne N. There exists a sub-
sequence (hn.) convergent to a point h€ K> and |h[= 1 . One
can easy see’that for any. fecr(Kn,K)

f - f
lim (pn;)- (»)
j»o00 |pni pl

= f1,() .
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Thus for any fe€ Or(N), gince f|N = 0 , we have
f(p,,) - £(r

£,.(p) = lim (n.,) (e) =
Ih i~ oo lpni - pl

Hence he N_ and h # O . Thus dim Np>1 , which contradics
dim TN = dim N_ = 0 .gg
Now letﬁbf ([12)) denote the class of all d"-spaces (M,C)
which fulfills the condition:
( ») for any pe M there exist a set U3p open in "C'c and a
cT-manifold M such that U is contained in the set of points of
M, dim M = dim TP(M,C) and Cy = CT(¥); .
From Proposition 2.3 and 2.4 it follows that (N,D)e.‘,bf .
Now consider a dr—space (M,C) finitely generated by a set
Cy= {f1 seeesfy} o Let $: M ——> K" be the smooth mapping defi-

ned by

(2.3 ) = (£,(»)--+»£,(p)) for peM .

Let $: (M,c) —> (P (M), cr(Kn,K)q,(M)) be the mapping ¢ on-
to the image @(M) Similarly to Lemma 2.1 in ([4]) one can
prove

LEMMA 2.1. Let (M,C) be a dr-space finitely generated by
the set C_= [f1,...,fn1, . Then:

(i) the empty set and the sets of the form ¢ '(A) make
a base of the topology TC' » Wwhere A is an arbitrary set from
the base of the Tikhonov topology of Kn,

(ii) the mapping ;f: (M,c) —> (<I>(M), Cr(Kn,K)qp(M)) is
open ,

(iii) Ty is the Hausdorff topology iff $: M —s (M) is
a homeomorphism.,

PROPOSITION 2.5. If (M,C) is a finitely gerhl'erated dr—space
by the set Co= {f1 ,...,fn} » then the mapping @“:Cr(Kn,K)q)(M)
——>» C is an isomorphism between linear rings. If TC is a Hau-
sdorff topology, then the mapping

& : (M,0) —> <‘P(M)’ cr(Kn'K)@(M))
is a diffeomorphism.

Proof. Since 5 is a surjection, &;* is a monomorphism .
Now we will prove that. 5' is "onto" . For any fe C , let
Gf: (M) —> K be defined by
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@.4) Gy (Q) = £()  for aed(W) ,
where peM is such that g = (p). Cleary,
(2.5) Geod =1 .

It remains to show that Gfe Cr(Kn,K)qD(M). Fix g€ (M)
and choose p€M such that $(p) = q¢ . There exist an open nei-
ghbourhood V € T of p and a function GGCr(Kn,K) such that
(2.6) tlv = Gedlv .

From (2.5) and (2.6) we have

. Godlv = G'fOEI;Iv .
Hence~Gfl<I>(V) = Gl%(V) Evidently from Lemma 2,1 it follows
that P (V) is an open set containing q . Thus Gfe Cr(@’K)‘}(M)'

If ‘T:C is a Hausdorff topology, then by Lemma 2.1 ¢ is a
homeomorphism. It remains to show ® ' is smooth. In fact, it
results from the~following equalities:

(2.7) £,097 - W IDM) rfori=1,...m.
This finishes the proof. O

A dr—space (M,C) is said to be locally finitely generated
if for every p€M there exists an open neighbourhood V 3 p such
that the dr—subspace (V,CV) is finitely generated.

Let I.r denote the class of all locally finitely generated
Hausdorff dr-—spaces.

PROPOSITION 2.6. L7 = DT .

Proof. If (M,C) is of class Q7 , then for any p€M there
exist a set U3 p open in ‘L'c and CF-manifold M such that Ucﬁ,
dim M = dim TP(M,C) and Gy = C°(f) . Since ¥ is locally fini-
tely generated,(U,CU) is also locally finitely generated as a
dr—subspace of M. Thus (M,C) belongs to ,f,r. We have proved
the inclusuon 56? cLr .

Now let _(M,C) a locally finitely generated dr-space. For
any p €M there exist an open neighbourhood V of p and functions
gi: V—>K,i=1,...,n such that Cv = (scr{g1,...,gn})v.
From Proposition 2.5 it follows that Y - (g1 ,.-.,gn) is a
diffeomorphism of (V’CV) onto (W(V), Cr(Kn:K)\p(v))- Let
aim T (M,C) = k . Then aim Ty ey ¥(V) = k . From Proposition
2.3 it follows that there exist an open neighbourhood We
top Y(V) of Y(p) and a k-dimensional cF-surface SCK* such
that ¢*(k,K), = ¢*(8)y -
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et §= Y I(wW)u(s~w)x{w} and let F: § —> S be the
mapping defined by

-1
.8  F@ - {\P(q) when q e Y7'(W)

when q = (q' ,» W) and qd'e S~W .

Cleary, F is a bijection. It is easy to see that cr(s)
F*(Cr(s)) ia a d¥-structure on S such that F is a diffeomorph-
ism of S onto S. Obviously, dim S = dim S = k and t|’"1(W)C§' .

‘P" W = Cr(g)w_1(w), because FIW-1(W)=\P| ‘P'WW)
Therefore (M,C) € £F and £,rc:2§f .a

PROPOSITION 2.7. Let NcK® be a subset such that dimTp(N,D)
= n for every pe N, where D := Cr(Kn,K)N . Then (N,D) has a
differential dimension n .

Moreover, C

Proof. Let us put Xl = —%c for i = 1,...,n . Of course,
Xy,...,X  is a global basis oft ¢*(k®,K)-module XT(x").

is evident that (1‘N) : T (N D) 4 T Kn) is an 1somorph1sm
for every p€ N. Let us put
(2.9)  Y,(x) (tN L& (x) for xeN,i=1,...n.

It remains to prove that Y1,...,Yn is a basis of Hr 1—module

xr(N) where H, (sc {JL1IN,...,T IN})N . It is easy to
see that Y, (JLJIN) Si' for i,j = 1,...,n . Evidently every
at -smooth vector field Z € xr(N) may be presented in the form

Z?ly , where ¥1 = 2(@W,IN)eH, , , i=1,...,n.0f
course, Y (x),...,Y (x) is a basis of T (N D) for every xe N.n

COROLLARY 2.2. The sequence Y1,...,Y defined by (2.9) is
a basis of H,_,-module QEt(N) for any t<r .

Proof. Let We xt(N) Since Y (x),...,Y (x) is a vector
basis of T (N D), W(x) for any xeN may be unlquely presented
in the form W(x) = i LPl(x)Y (x), where Y1 is a K-valued fu-
nction defined on NL i=1,00.yn . Hence and from (2 9) we
have

W(x)(..ll, IN) = ‘Vl(x) for xeN, i = 1,..0on .
Thus Y1 = w(:rc IN)€H,_, for i = 1,...,n . This finishes the
proof. O
COROLIARY 2.3. If (M,C) is a space of class ) such that
dim Tp(M,C) = n for any peM, then (M,C) has a differential
dimension n .




LOCALLY FINITELY GENERATED DIFFERENTIAL SPACES OF CIASS cT 65

Proof. This is a consequence of Proposition 2.6 and 2.7.0
EXAMPIE 1. Let NCRZ be the graph of a function f: R — R
which is of class G but not C>. The d-space (N,D) with D =
C*(R?R)y , r€NU{00, &}, has a differential dimension 2 for
ra33 and has a differential dimension 1 for 1€ r<2 . It resu-
1ts easily from Proposition 2.3 and Proposition 2.7.
EXAMPLE 2. Let NCK" be a dense subset, D = CT(K",K)y .
Then (N,D) has a differential dimension n for re€ NU{OO , w}.
EXAMPLE 3. Let NCR® be the graph of the function f:R—>R
given by . '
X3 for x>0 ,
£(x) = 9x%  for x<0 .
The a"-space (N,D), where D = C(R°,R)y , re Nu{oo, @}, is a
1-dimensional C*-manifold for 1$r€2 , but dim T . +(N,D)= 2
for r23 .
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